Supporting Materials for "Pressure induced superconductivity bordering a charge-density-wave state in NbTe₄ with strong spin-orbit coupling"

Xiaojun Yang^{1,2}, Yonghui Zhou³, Mengmeng Wang¹, Hua Bai¹, Xuliang Chen³,

Chao An³, Ying Zhou³, Qian Chen¹, Yupeng Li¹, Zhen Wang¹, Jian Chen¹,

Chao Cao⁴, Yuke Li⁴, Yi Zhou^{1,6}, Zhaorong Yang^{3*} and Zhu-An Xu^{1,5,6†}

¹ State Key Laboratory of Silicon Materials and Department of Physics, Zhejiang University, Hangzhou 310027, China.

² School of Physics and Optoelectronics,

Xiangtan University, Xiangtan 411105, China

³ Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China

⁴ Department of Physics, Hangzhou Normal University, Hangzhou 310036, China

 ⁵ Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, China
⁶ Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, P. R. China (Dated: April 11, 2018)

 $^{^{\}ast}$ Electronic address: zryang@issp.ac.cn

[†] Electronic address: zhuan@zju.edu.cn

The field dependences of ρ_{xx} and ρ_{yx} are fit by the following equations:

$$\rho_{xx}(B) = \frac{1}{e} \frac{(n_h \mu_h + n_e \mu_e) + (n_h \mu_e + n_e \mu_h) \mu_h \mu_e B^2}{(n_h \mu_h + n_e \mu_e)^2 + (n_h - n_e)^2 \mu_h^2 \mu_e^2 B^2}$$
(1)

$$\rho_{yx}(B) = \frac{B}{e} \frac{(n_h \mu_h^2 - n_e \mu_e^2) + (n_h - n_e) \mu_h^2 \mu_e^2 B^2}{(n_h \mu_h + n_e \mu_e)^2 + (n_h - n_e)^2 \mu_h^2 \mu_e^2 B^2}$$
(2)

where n_e , n_h , μ_e and μ_h are the carrier densities and mobilities of electrons and holes, respectively. Simultaneously fitting our ambient pressure data with the above equations in the low field region ($B \leq 1$ T), we can get the temperature dependences of n_e , n_h , μ_e and μ_h . The fitted curves are displayed as lines in Fig. S1(a) and S1(b) and they agree well with the experimental data in the field region of 0 T - 1 T.

FIG. S 1: Two band model fitting of low field transport properties of NbTe₄ single crystal with I//c-axis and B//b-axis. Field dependence of (a), transverse magnetoresistivity ρ_{xx} and (b), Hall resistivity ρ_{yx} . The symbols correspond to experimental data, while the lines are the fitting curves by the two-band model. (c) and (d) display the temperature dependence of carrier density and mobility, respectively.