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A statistical framework to model the

meeting-in-the-middle principle using metabolomic data:

application to hepatocellular carcinoma in the EPIC

study.

1 PLS regression

1.1 Introduction

PLS (partial least squares) regression is a widely used method in multivariate statistics to relate

two sets of variables while reducing their dimensionality. It was �rst developed as a method

to predict a set of variables Y from another set X; and also to depict their common structure.

The main aim of PLS is to regress a set Y of q variables (y1, y2, . . . , yq) of interest, which

are called responses, on a set X of p predictor variables (x1, x2, . . . , xp) that may display high

levels of correlation. PLS combines and generalizes features of principal component analysis

(PCA) and multiple linear regression (MLR); and results in a set of PLS latent factors as linear

combinations of variables, in turn, in the X- and Y -sets. By simultaneously decomposing X

and Y , PLS �nds components that explain as much as possible of the inter-relations of X and

Y . The latent factors obtained from the decomposition can be used to predict Y . The following

details of the algorithm are adapted from Michel Tenenhaus' book La régression PLS, Théorie

et Pratique [1].
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1.2 The PLS algorithm

Two di�erent, but closely related, techniques exist under the name of PLS regression. The

canonical or symmetric PLS regression assumes that the X- and Y - sets play a symmetrical

role. The version presented here is the regression mode where latent variables are computed

from a succession of singular value decompositions (SVD) followed by de�ation of both the

X- and Y - matrices. These sets are assumed to play the asymmetric roles of predictors and

responses, respectively. Next, we brie�y describe the landmark algorithm NIPALS Nonlinear

estimation by Iterative Partial Least Squares. As a �rst step, two substitute matrices X0 and

Y0 are initialized with X0 = X(n×p) and Y0 = Y(n×q), where variables were standardized to have

means and standard deviations equal to zero and one, respectively. For h = 1, . . . , H, where

H = min(p, q), the PLS factors are obtained iteratively. PLS regression focuses on �nding two

sets of weights, wh(p×1) and ch(q×1), in order to create respectively a linear combination of the

columns of X and Y , known as the PLS factors, such that these two linear combinations have

maximum covariance and are unique. These weights de�ne a �rst pair of vectors, called the X-

and Y -scores, th = Xwh and uh = Y ch where we have tᵀhuh maximal. PLS can be written as

the following optimisation problem where maximum covariance is sought between th(1×n) and

uh(1×n) for each h = 1 · · ·H:

Max cov(Xwh, Y ch) (1)

under the following normality constraints

‖wh‖ = 1 (2)

‖ch‖ = 1 (3)

and the following orthogonality constraint

tᵀh(t1, . . . , th−1) = 0 (4)

By construction we also have the following property:

uᵀ
h(t1, . . . , th−1) = 0 (5)

The �rst pair of X- and Y - scores can equivalently be obtained via a singular value decom-

position. Indeed, the SVD of the cross-product matrix Xᵀ
h−1Yh−1 leads to the identi�cation of

the �rst left and right singular vectors and of the weights wh and ch. The scores th and uh are

obtained as follows:

th = Xh−1wh (6)

uh = Yh−1ch (7)
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The vector th is then normalized (a scaling of uh is optional). Regressing the predictor and

response matrices on the th vector yields the corresponding loadings.

ph = Xᵀ
h−1th (8)

ch = Y ᵀ
h−1th (9)

Next is the de�ation step, where information based on the extracted latent factor h is subtracted

from the current data matrices.

Xh = Xh−1 − thp
ᵀ
h (10)

Yh = Yh−1 − thc
ᵀ
h (11)

The described steps of the algorithm are iterated until one of the following criteria is met:

� If H is speci�ed, and the algorithm stops when the H-th PLS factor is extracted and its

associated statistics computed.

� If H is not speci�ed, the algorithm stops when XH becomes a null matrix. In this case

however, H cannot exceed min(p, q).

Algorithm 1 PLS1 classic algorithm steps - When Y is univariate.
1: X0 ← X ; y0 ← y

2: for (h = 1;h ≤ H;h + +) do

3: wh = Xᵀ
h−1yh−1/yᵀh−1yh−1

4: wh = wh/
√

wᵀ
hwh

5: th = Xh−1wh/wᵀ
hwh

6: ph = Xᵀ
h−1th/tᵀhth

7: Xh = Xh−1 − thp
ᵀ
h

8: ch = yᵀh−1th/tᵀhth

9: uh = yh−1/ch

10: yh = yh−1 − chth

When Y is univariate, the PLS algorithm carried out is PLS1 (See Algorithm 1, following

the notation of M. Tenenhaus [1]). PLS2 (Algorithm 2) is used when Y is multivariate. When

there are missing data in either the X- or Y - sets, the coordinates of the vectors wh, th, ch, uh,

and ph are computed as slopes of the least squares straight line that passes through the origin,

using the available data as follows:
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Algorithm 2 PLS2 classic algorithm steps - When Y is multivariate.
1: X0 ← X ; Y0 ← Y

2: for (h = 1;h ≤ H;h + +) do

3: uh = Yh−1[, 1] i.e. the �rst column of the matrix

4: while wh has not converged do

5: wh = Xᵀ
h−1uh/uᵀ

huh

6: wh = wh/
√

wᵀ
hwh

7: th = Xh−1wh/wᵀ
hwh

8: ch = Y ᵀ
h−1th/tᵀhth

9: uh = Yh−1ch/cᵀhch

10: ph = Xᵀ
h−1th/tᵀhth

11: Xh = Xh−1 − thp
ᵀ
h

12: Yh = Yh−1 − thc
ᵀ
h

� wh = (wh1, . . . , whp)
ᵀ, is a normalized vector, where whj is the slope of the least squares

line passing through the origin of the plane de�ned by (uh, Xh−1,j). Xh−1,j is the j-th X

variable of the h− 1 PLS factor.

� th = (th1, . . . , thn)ᵀ, where thi is the slope of the least squares line passing through the

origin of the plane de�ned by (wh, xh−1,i). xh−1,i is the i-th x observation of the h − 1

PLS factor.

� ch = (ch1, . . . , chq)
ᵀ, where chk is the slope of the least squares line passing through the

origin of the plane de�ned by (th, Yh−1,k). Yh−1,k is the k-th Y variable of the h− 1 PLS

factor.

� uh = (uh1, . . . , uhn)ᵀ, where uhi is the slope of the least squares line passing through the

origin of the plane de�ned by (ch, yh−1,i). yh−1,i is the i-th y observation of the h− 1 PLS

factor.

� ph = (ph1, . . . , php)
ᵀ, where phj is the slope of the least squares line passing through the

origin of the plane de�ned by (th, Xh−1,j). Xh−1,j is the j-th X variable of the h− 1 PLS

factor.
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1.3 Tools for interpretation

1.3.1 Choice of number of components

The number of PLS latent factors or components to be retained can be decided based on a

cross-validation.

For each model with a number h of extracted factors, this is done by running the PLS analysis

on only a part of the data called the training set, and then evaluating how well the model

�ts observations in the test set. This includes the part of the data not involved in the PLS

modelling of the training set.

The dataset comprised of n observations is split into z approximately equal sets of observations.

The training set consists of the data in the �rst z − 1 folds and the remaining fold is used as

test set. Predicted values for the Y -set are computed on this test set along with the sum of the

squared error of prediction. This process is repeated z times so that each fold can in turn serve

as a test set. In practice, for each number of possible latent factors h = 1, . . . , H, we compute

the prediction of yi by the PLS model with results obtained on the training set with a number

h of components applied to observations in the test set in order to yield ŷh(−i). The Prediction

Error Sum of Squares (PRESS) is the resulting sum of all squared errors of prediction statistic

computed across all test sets as de�ned in the following equation:

PRESSh =
∑

(yi − ŷh(−i))
2 (12)

The Residual Sum of Squares (RSS) is computed in a standard way:

RSSh =
∑

(yi − ŷhi)
2 (13)

Di�erent criteria can be used to determine the number of components h to retain. One such

criterion, Q2
h was �rst introduced by H. Wold [2] and is mainly used in the software SIMCA-P.

It is based on the following statistic:

Q2
h = 1− PRESSh

RSSh−1

(14)

As pointed out by M. Tenenhaus, the initial value for RSS when y is univariate centred-scaled

and h = 0 is:

RSS0 =
n∑

i=1

(yi − ȳ)2 = n− 1 (15)

In the software SIMCA-P the PLS component is kept when the following condition is met:√
PRESSh ≤ 0.95

√
RSSh−1 (16)

⇐⇒ Q2
h > 0.0975 (17)
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The default threshold 0.0975 is equal to 1− 0.952. In SAS, the criteria to select the number h

of components to be retained is by minimizing the PRESSh statistic.

The above described formulae can be generalized for multivariate Y , thus we have for any given

variable yk, k = 1, . . . , q:

Q2
kh = 1− PRESSkh

RSSk(h−1)

(18)

Q2
h = 1−

∑q
k=1 PRESSkh∑q
k=1RSSk(h−1)

(19)

The criteria for keeping a PLS factor are identical to what was established for the univariate

case. One can alternately use one of the following rules, where the equivalence de�ned in

formula (17) still holds true:

� Q2
h > 0.0975

� At least one value of Q2
hk > 0.0975

If the criteria are met by several values of h, the one retained is the smallest h, to achieve a

better dimensionality reduction.

The Q2 and PRESS criteria are relatively robust to the choice of number of folds (blocks) used

for cross-validation. A number of folds between 5 and 10 is recommended (Tenenhaus 1998,

p.238) [1]. The default choice in the SIMCA-P and SAS softwares is 7, and is the parameter

used in this study.

1.3.2 Variable Importance in the Projection (VIP)

The Variable Importance in the Projection (VIP) is a measure of the explanatory power of a

given variable xj over Y . The V IPhj of a given component h of the j-th variable xj is de�ned

as:

V IPhj =

√√√√ p

Rd(Y ; t1, . . . , th)

h∑
l=1

Rd(Y, tl)w2
lj (20)

and one has:
p∑

j=1

V IP 2
hj = p (21)

where Rd(Y ; t1, . . . , th) is the redundancy of Y with respect to the t scores (t1, . . . , th). It

describes the amount of variance of Y explained by the component th of the X-set. It is de�ned
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as follows:

Rd(Y, th) =
1

q

q∑
k=1

cor2(yk, th) (22)

It can be equivalently computed as:

Rd(Y, th) = r2h
1

q

q∑
k=1

cor2(yk, uh) (23)

where rh = cor(Xwh, Y ch) is called a canonical correlation and r2h is the hth largest eigenvalue

of the crossproduct matrix decomposition.

The contribution of a variable xj to the construction of a component tl is measured by the

weight w2
lj. For each l, with l = 1, . . . , h, the sum of these weights across the p variables xj

equals 1. To measure the contribution of the variable xj to the construction of Y through

the components tl, one should consider the explanatory power of the component tl, measured

by the redundancy Rd(Y ; tl). An equal weight w2
lj indicates an explanatory power of the xj

variable over the Y -set whose importance increases with the level of redundancy Rd(Y ; tl).

The VIP enables the ranking of the predictors xj according to their explanatory power on Y ,

and summarizes their contribution to the model. A VIP is considered small if its value is less

than 0.8 and high when its value is greater than 1. Variables with a high VIP (V IP > 1) are

the most important for the reconstruction and prediction of Y .

2 Statistical Recoupling of Variables (SRV)

The SRV procedure was introduced by Blaise et al.(2009) [3] and for which a matlab toolbox was

later implemented [4]. The SRV is an "intelligent bucketing" algorithm that aims at regrouping

variables (typically the smallest unit of the NMR spectrum) in clusters corresponding to a wider

biological and chemical entity.

SRV exploits the spectral structure of data, without forming any metabolic hypothesis to reduce

the dimensionality of spectra. A typical NMR 1H 9 ppm spectrum is often partitioned into

9, 000 buckets of 0.001 ppm width. The main idea of the algorithm is to exploit the spectral

dependency landscape L which is the covariance to correlation ratio between two neighbouring

variables along the chemical shift axis to assemble them within a cluster. If one considers a

matrix Z of serum spectra acquired by NMR with n observations and r columns (z1, . . . , zr)

corresponding to neighbouring bins of NMR signals. The �rst bin-variable starts the �rst
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cluster, then L is computed for each zi as follows with i = 1, . . . , r :

L(zi) =
cov(zi, zi+1)

cor(zi, zi+1)
(24)

= sd(zi) ∗ sd(zi+1)

where sd is the standard deviation.

The variable then joins a cluster according to the following rules:

� L(zi) values are used to locate local minima i.e. borders between clusters.

� If L(zi−1) > L(zi) then zi−1 and zi are associated in the same cluster, otherwise zi and

zi+1 start a new cluster.

� The minimum number of variables belonging to a cluster is set a priori as it is based on

the resolution of the NMR spectra. When acquired at 700 MHz, the typical peak base

width of a well-resolved singlet is equal to 7 Hz. Therefore, the threshold was set to 10

in our analysis, meaning that if a cluster has less than 10 variables, it is discarded.

� The super-cluster intensity is computed as the mean of the intensities of the signal in the

bins assigned to the super-cluster.

� If two neighbouring clusters have a correlation > 0.9, they are aggregated to form a

super-cluster. In these analyses, the association is limited to 3 clusters per super-cluster

(this value is empirical and was discussed in the original paper [3]).
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