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This document provides supplementary information to the article “Cycloid scanning for wide field optical 
coherence tomography endomicroscopy and angiography in vivo” https://doi.org/10.1364/OPTICA.5.000036.   

A. Scanner control and software acquisition/display During imaging, it is important to ensure continuous circularscanning of the piezoelectrically actuated resonant fiber, to avoid transients that would limit volumetric acquisition speeds. Therefore, the sinusoidal outputs were continuously generated from a D/A card (National Instruments (NI) DAQ) to actuate the resonant fiber. The D/A was externally clocked by the swept laser trigger (583490 Hz) to optimize timing synchronizations and accuracy of the generated sinusoidal frequency 7030 Hz. The forward and backward sweep of each laser sweep period were used to generate 2 A-scans. Each circular fiber scan was stored as one frame consisting of a fixed integer number of 166 A-scans.  The micromotor was driven by a vendor-provided board with its own output sampling clock. To optimize synchronization between the micromotor rotation rate and the volumetric acquisition rate, the number of circular frames per volume was one-time empirically tuned such that the volumetric period was approximately equal to the micromotor rotation period. The image acquisition software had a preview mode in which a volume was continuously acquired, processed, and displayed in real time. Tuning of the volumetric period was aided by the software preview, in which the strut fiducial in the en face image plane could be observed to be drifting lengthwise if the micromotor and the volumetric rate were not adequately synchronized.  

A ‘volume trigger’ waveform and the two sinusoidal waveforms for driving the piezoelectrically actuated resonant fiber were simultaneously generated from the D/A card using acquisition software (Fig. S1). The volume trigger was a pulse with period equal to the volume period in phase with the sinusoidal waveforms, and triggered the start of a volumetric acquisition. Once the software completed processing and displaying a volume, the A/D card (AlazarTech) read in the next volume trigger for the subsequent acquisition. This ensured that all acquired volumes were synchronized to the same reconstruction parameter φ . The acquisition software used the CPU to process the OCT raw data, therefore the speed was modest and volumetric image preview was limited to ~0.5 volumes/sec. Future work utilizing GPU processing would achieve preview rates limited only by scanner speeds[1]. For data acquisition of single or multiple volumes, the raw data was continuously streamed to memory without processing, such that the volumetric data acquisition rate was the same as the micromotor scanner speed (3 volumes/sec). 
B. Image reconstructionFor imaging a large FOV, multiple sequential volumes were continuously acquired starting from a single ‘volume trigger’ (explained in section A), which resulted in a small accumulated 
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