Suppler	nental Tał	ole 1. DNA cons	tructs for	xLNNd prote	eins			
clone	enzymes	5' 3' 1st pcr, 2nd pcr sizes	cut sites pcr	vector size	1st forward primer	2 nd reverse primer	2 nd forward primer	1 st reverse primer
αLNNd clones								
Q157P	HindIII- Xael	680bp, 1157bp, 1816bp	1510bp	7648bp	GTAGGCGTGTACGGT GGGAG	GACGGCATAGTACGG CCAGGG	CCCTGGCCGTACTATGC CGTC	CATGCAGAGTGCAGA GACTATGC
C73R	HindIII-	430bp, 1780bp,	2064bp	7094bp	GTAGGCGTGTACGGT	CGTCACAGACCCGGCG	TCGACACGCCCAACGC	TGGGTGCCCCAGGAA
K171E	Eco911 HindIII-	zısupp 710bp, 1109bp,	1510bp	7648bp	GTAGGCGTGTACGGT	GTGGAGTTATTTCGTA	GACCCGCTACGAAATA	GATGCAGAGTGCAGA
	Xagl	1816			GGGAG	GCGGGTC	ACTCCAC	GACTATGC
βLNNd								
clones								
WT	HIndill-	1774bp, 965bp, 2720bc	2143bp	6897bp	GGCGTGGATAGCGGT	CACAAGTCTGCTGTCG	GATGGATGTCGACAGC	CGAGGAGACGGGCA
S68R		cut from	826bp	8263bp				
	EcoNI	111580R		- - -				
S68A	-IIIpulii-	512bp, 803bp,	826bp	8263bp	GGCGTGGATAGCGGT	CTGCAAGTGGGCGAC	CTGTATCGTCGCCCACT	CCGAAACAGCAACGC
	EcoNI	1296bp			TTGAC	GATACAG	TGCAG	CTGTA
R234Q	-IIIpuIH-	cut from	826bp	8263bp	GGCGTGGATAGCGGT	CACAAACTTGATTTGC	CCAACTTGCAAATCAAG	CCGAAACAGCAACGC
	EcoNI	111R246Q			TTGAC	AAGTTGG	TTTGTG	CTGTA
H135R	HIndill-	713bp,	826bp	8263bp	GGCGTGGATAGCGGT	GTCATTACGAGATGAG	CCATTITACTCATCTCGT	CCGAAACAGCAACGC
	EcoNI	604bp,1296bp			TTGAC	TAAAATGG	AATGAC	CTGTA
E198K	HIndill-	893bp, 420bp,	826bp	8263bp	GGCGTGGATAGCGGT	GTTGAGGGTTCAATCT	GATATTCTAAGATTGAA	CCGAAACAGCAACGC
	ECON	1296bp			IIGAC	IAGAAIAIC	CCCICAAC	CIGIA
K184E	HIndIII- EcoNI	859bp, 458bp, 1296bn	826bp	8263bp	GGCGTGGATAGCGGT TTGAC	GTCATCGACTTCTTTCA	GGCCCCATGAAGAAG TCGATGAC	CCGAAACAGCAACGC
	2	2222)))))))
clones								
WT	Nhel-	2642bp	2188bp	2188bp	GGCGTGGATAGCGGT	GGCACAAGTCTGCTGT	GCAGGATGCAGGCCAC	CGAGGAGACGGGCA
	BsrGl				TTGACT	GGCCTGCATCCTGC	AGCAGACTTGTGCC	GACTTG
Y145R	Nhel-	795bp,1866bp,	2188bp	2188bp	GGCGTGGATAGCGGT	GGAACTTGAGACGCA	CATCACCCGTGTGCGTC	CGAGGAGACGGGCA
	BsrG	2642bp			TTGACT	CACGGGTGATG	TCAAGTTCC	GACITG
R147E	Nhel- BerGl	801bp,1860bp, 2642bn	2188bp	2188bp	GGCGTGGATAGCGGT TTGACT	GAACTTGAGCTCCACA TAGGTGATGTC	GACATCACCTATGTGG AGCTCAAGTTC	CGAGGAGACGGGCA GACTTG
Laminin	5	2)
hLm111(1R234Q	3 HindIII- Clal	1012bp, 1875bp, 2865bp	1957bp	8446bp	GGCGTGGATAGCGGT TTGAC	CACAAACTTGATTTGC AAGTTGG	CCAACTTGCAAATCAAG TTTGTG	GCAGTGTGATCGGTG CTTAC

Supplemental Fig. 1. *Polymerization of* β LNNd--Lm β 1 Δ LN complexes. WT Lm111, Lm β 1 Δ LN, and WT and modified β LNNd proteins bound to and co-purified with Lm β 1 Δ LN were incubated at 37°C for 3 h in 50 µl aliquots at different concentrations that were then centrifuged to sediment the polymer (P) fraction and separate it from the non-polymerized supernatant (S) fraction. These were then analyzed under reducing conditions by SDS-PAGE and stained with Coomassie blue. WT Lm111, β LNNd complex, and β LNNdK184E (chosen as likely "control" with non-conserved residue) polymerized whereas complexes with β LNNd containing conserved residue mutations showed little or no polymerization. Plots shown in Fig. 3.

Supplemental Fig 2. *Polymerization of* αLNNd--Lmα1ΔLN and γLNNd-Lmγ1ΔLN complexes. Panels **A-E.** Lmα1ΔLN, and WT and modified αLNNd proteins bound to and co-purified with Lmα1ΔLN were incubated at 37°C for 3 h in 50 µl aliquots at different concentrations that were then centrifuged to sediment the polymer (P) fraction and separate it from the non-polymerized supernatant (S) fraction. These were then analyzed under reducing conditions by SDS-PAGE and stained with Coomassie blue. WT Lm111, αLNNd complex, and αLNNdK171E (containing a poorly conserved residue with a charge change) polymerized whereas complexes with αLNNd containing conserved residue mutations showed low levels of polymerization. Panels **F-I**. Lmγ1ΔLN and WT and modified γLNNd proteins co-purified with Lmγ1ΔLN were treated and analyzed as above. The two mutations substantially reduced polymerization. Plots shown in Fig. 3.

Supplemental Fig. 3. *Comparisons of polymerization of laminins and laminin/linker protein preparations*. Different preparations of laminins and linker protein bound to laminins were incubated at 37°C, centrifuged to separate supernatant (S) from polymer (P), and analyzed by SDS-PAGE as described. Scans of the Coomassie blue stained gels were quantitated by densitometry and plotted as total concentration against polymer concentration. Comparison of pairs (and 4 WT laminin preparations) evaluated reveal limited experimental variability.

Laminin	beta	LN	domain:
---------	------	----	---------

mus	Net4	GANSRCEKACNPRMGNLALGRKLRADTMCGQNATELFCFY S E-NADLTCRQPKCDKC	NAA-HSH	86
Dro	$Lm\beta 1$	PCERSSCYPATGNLLIGRENRLTASSTCGLHSPERFCIL S HLQ-DKKCFLCDTREETKH	DPYK	109
hum	Lmβ2	GCSRGSCYPATGDLLVGRADRLTASSTCGLNGPQPYCIV <mark>S</mark> HLQDEKKCFLCDSR	RPF-SAR	100
mus	Lmβ2	GCSRGSCYPATGDLLVGRADRLTASSTCGLHSPQPYCIV S HLQDEKKCFLCDSR	RPF-SAR	103
mus	Lmβ1	GCAEGSCYPATGDLLIGRAQKLSVTSTCGLHKPEPYCIV S HLQEDKKCFICDSR	DPY-HET	88
		βl		
		A		
		80		
mus	Net4	LAHPPSAMADSSFRFPRTWWQSAEDVHREKIQLDLEAEFYFT H LIMVFKSPRPAAM	142	
Dro	$Lm\beta 1$	NHRIGQIIYKTKPGTNIPTWWQSENGKENATIQLDLEAEFHFT H LIITFTTFRPAAM	166	
hum	Lmβ2	DNPHSHRIQNVVTSFAPQ-RRAAWWQSENGIPAVTIQLDLEAEFHFT H LIMTFKTFRPAAM	160	
mus	Lmβ2	DNPNSHRIQNVVTSFAPQ-RRTAWWQSENGVPMVTIQLDLEAEFHFTHLIMTFKTFRPAAM	163	
mus	Lmβ1	LNPDSHLIENVVTTFAPN-RLKIWWQSENGVENVTIQLDLEAEFHFT <mark>H</mark> LIMTFKTFRPAAM :	148	
		R		
		135 B3		
mus	Net4	VLDRSQDFGKTWKPYKYFATNCSATF-GLEDDVVKKGAICTSRYSNP F PCTGGEVIF R 1	99	
Dro	$Lm\beta1$	YIERSFDFGQTWHIYRYFAYDCKESFPGVPT-VLENITDVMCTSRYSNVEPSRNGEVIFR 2:	25	
hum	Lmβ2	LVERSADFGRTWHVYRYFSYDCGADFPGVPLAPPRHWDDVVCESRYSEIEPSTEGEVIYR 22	20	
mus	Lmβ2	LVERSADFGRTWHVYRYFSYDCGADFPGIPLAPPRRWDDVVCESRYSEIEPSTEGEVIYR 23	23	
mus	Lmβ1	LIERSSDFGKAWGVYRYFAYDCESSFPGISTGPMK <mark>K</mark> VDDIICDSRYSDI E PSTEGEVIFR 20	08	
		Ε β5' Κ β6		
		184 198		
mus	Net4	ALSPPYDIENPYSAKVQEQLKITNLRVRLLKRQSCPCQINDLNAKPHHFMHYAVYDFIVK 2	58	
Dro	$Lm\beta 1$	VLPPNINVTDPYAEHVQNQLKMTNLRIQMTKLHKLGDNLLDSRLENEEKYYYGISNMVVR 2	85	
hum	Lmβ2	VLDPAIPIPDPYSSRIQNLLKITNL <mark>R</mark> VNLTRLHTLGDNLLDPRREIREKYYYALYELVVR 23	80	
mus	Lmβ2	VLDPAIPIPDPYSSRIQNLLKITNLRVNLTRLHTLGDNLLDPRREIREKYYYALYELVIR 2	83	
mus	Lmβ1	ALDPAFKIEDPYSPRIQNLLKITNLRIKFVKLHTLGDNLLDSRMEIREKYYYAVYDMVVR 2	68	
		Q		
		234		
		p/		

Supplemental Fig.4. Laminin βLN mutations and sequence homologies. Comparison among mouse (mus), human (hum) and Drosophila (Dro) LN domain sequences including that of the laminin polymer-inhibitor netrin-4. Mutated residues indicated below mouse β1 sequence (mouse sequence number designations used for experimental residue labels). Colored arrows indicate secondary structure near affected residues [36]. Selected human Pierson syndrome –associated and Drosophila heart-associated mutations are indicted in yellow for affected subunit isoform and species. The K184 residue (blue) was chosen for comparison. Patch (red) corresponds in location to the PLENGE polymerization patch described in Lm α 5 and located on the β 6- β 3- β 8 "front" face of the LN domain [35, 36].

Laminin alpha LN domain:

Dro	$Lm\alpha 5(A)$	-QAELTPPYFNLATGRKIYATATCGQDTDGPELYCKLVGANTE-HDHIDYSVIQG 73	
mus	$Lm\alpha 5$	LHPPYFNLAEGARITASATCGEEAPTRSVSRPTDLYCKLVGGPVA-GGDPNQTIQG 105	
hum	Lm α 3B	LHPTYFNLAEAARIWATATCGERGPGEGRPQP-ELYCKLVGGPTAGS-GHTIQG 99	
hum	$Lm\alpha 2$	QQRGLFPAVLNLASNALITTNATCGEKGPEMYCKLVEHVPGQPVRN 80	
mus	$Lm\alpha 2$	QQRGLFPAVLNLASNALITTNATCGEKGPEMYCKLVEHVPGQPVRN 76	
mus	Lma1	QQRGLFPAILNLATNAHISANATCGEKGPEMFCKLVEHVPGRPVRH 70	
Dro	$Lm\alpha 5(A)$	OVCDYCDPTVPERNHPPENAIDGTEAWWOSPPLSRGMKFNEVNLTINFEOEFHVAYLFIRMGNSPRPGLWTL	145
mus	$Lm\alpha 5$	OY C DI C TAANSNKAHPVSNAIDGTERWWOSPPLSRGLEYNEVNVTLDLGOVFHVAYVLIKFANSPRPDLWVL	177
hum	Lma3B	QFCDYCNSEDPRKAHPVTNAIDGSERWWQSPPLSSGTQYNRVNLTLDLGQLFHVAYILIKFANSPRPDLWVL	171
hum	$Lm\alpha 2$	PQ C RICN-QNSSNPNQRHPITNAIDGKNTWWQSPSIKNGIEYHYVTITLDLQQVFQIAYVIVKAANSPRPGNWIL	154
mus	$Lm\alpha 2$	PQ <mark>C</mark> RICN-QNSSNPYQRHPITNAIDGKNTWWQSPSIKNGVEYHYVTITLDLQQVFQIAYVIVKAANSPRPGNWIL	150
mus	Lma1	AQCRVCD-GNSTNPRERHPISHAIDGTNNWWQSPSIQNGREYHWVTVTLDLRQVFQVAYIIIKAANAPRPGNWIL	144
		R β3	
		73	
Dro	$Lm\alpha 5(A)$	EKSTDYGKTWTPW Q HFSDTPADCETYFGKDTYKPITRDDDVICTTEYSKIV 196	
mus	$Lm\alpha 5$	ERSTDFGHTYQPWQFFASSKRDCLERFGPRTLERITQDDDVICTTEYSRIV 228	
hum	$Lm\alpha$ 3B	ERSVDFGSTYSPWQYFAHSKVDCLKEFGREANMAVTRDDDVLCVTEYSRIV 222	
hum	$Lm\alpha 2$	ERSLDDVE-YKPW <mark>Q</mark> YHAVTDTECLTLYNIYPRTGPPSYAKDDEVICTSFYSKIH 207	
mus	$Lm\alpha 2$	ERSLDDVE-YKPWQYHAVTDTECLTLYNIYPRTGPPSYAKDDEVICTSFYSKIH 203	
mus	$Lm\alpha 1$	ERSVDGVK-FKPW Q YYAVSDTECLTRY <mark>K</mark> ITPRRGPPTYRADNEVICTSYYSKLV 197	
		P E	
		$157 171 a^2$	
		β5	
Dro	$Lm\alpha 5(A)$	PLENGEIPVMLLNERPSSTNYFNSTVLQEWTRATNVRIRLLRTKNLLGHLMSVARQDPTVTRRY 260	
mus	$Lm\alpha 5$	PLENGEIVVSLVNGRPGALNFSYSPLLRDFTKATNIRLRFLRTNTLLGHLMGKALRDPTVTRRY 292	
hum	Lm α 3B	PLENGEVVVSLINGRPGAKNFTFSHTLREFTKATNIRLRFLRTNTLLGHLISKAQRDPTVTRRY 286	
hum	$Lm\alpha 2$	PLENGEIHISLINGRPSADDPSPELLEFTSARYIRLRFQRIRTLNADLMMFAHKDPREIDPIVTRRY 274	
mus	$Lm\alpha 2$	PLENGEIHISLINGRPSADDPSPELLEFTSARYIRLRFQRIRTLNADLMMFAHKDPREIDPIVTRRY 270	
mus	Lma1	PLEHGEIHTSLINGRPSADDPSPQLLEFTSARYIRLRLQRIRTLNADLMTLSHRDLRDLDPIVTRRY 264	
		β6	

Supplemental Fig. 5. *Laminin* α LN mutations and sequence homologies. Comparison among mouse (mus), human (hum) and Drosophila (Dro) LN domain sequences. Mutated residues indicated below mouse α 1 sequence. Colored arrows and bar indicate secondary structure near affected residues. Human LAMA2-deficient muscular dystrophy-associated mutations indicted in yellow for affected subunit isoform. Lm α 5 residues within PLENGE found to affect LN trimerization indicated in grey [36]. The affected and flanking residues show considerable sequence identity. The non-conserved E171 residue (blue) was chosen for comparison. Patch (red) corresponds in location to the PLENGE polymerization patch described in Lm α 5 and located on the "front" face of the LN domain [36]. Italics for Lm α 5 indicate disordered residues in the α 5LN-LEa1-2 structural analysis [36].

Laminin gamma LN domain:

Dro Lmyl	ECYDPYGRPQKCLPEFINAAYQ	77
mus Lmy3 RVLSLLATVASMA-LVIQETHFAAGADMO	GSCYDGVGRAQRCLPEFENAAFG	54
hum Lmy1 MRGSHRAAPALRPRGRLWPVLAVLAAAAAAGCAQAAMI	DECTDEGGRPQRCMPEFVNAAFN	60
mus Lmy1 MTGGGRAALALQPRGRLWPLLAVLAAVAGCVRAAMI	DECADEGGRPQRCMPEFVNAAFN	58
Dro Lmy1 LQIESTNTCGEQNDNHFCIQT-MNQNHKNCEFCKYNDHNE	PSFLTDLHDPQSPTWWQS 133	
mus Lmγ3 RRAEASHTCGRPPE-DFCPHVGAPGAGLQCQRCDDADPGRRHDA	ASYLTDFHSPDDSTWWQS 114	
hum Lmy1 VTVVATNTCGTPPE-EYCVQTGVTGVTKSCHLCDAGQPHLQHGA	AAFLTDYNNQADTTWWQS 120	
mus Lmy1 VTVVATNTCGTPPE-EYCVQTGVTGVTKSCHLCDAGQQHLQHGA	AFLTDYNNQADTTWWQS 118	
Dro Lmy1 ETMFEGIQHPNYVNLTLHLGKSYDIT Y V R ILFRSPRPESFTIYF	KRTSESGPWIPYQFYSA 193	
mus Lmy3 PSMAFGVOYPTSVNLTLSLGKAYEIT Y V R LKFHTSRPESFAIYF	KRTYASGPWEPYOYYSA 174	
hum Lmy1 QTMLAGVQYPSSINLTLHLGKAFDIT Y V R LKFHTSRPESFAIYF	KRTREDGPWIPYQYYSG 180	
mus Lmy1 QTMLAGVQYPNSINLTLHLGKAFDIT Y VRLKFHTSRPESFAIYF	KRTREDGPWIPYQYYSG 178	
R E		
145 147		
β3		
Dro Lmv1 TCRDTYSLPDSRATRKGEGEAHALCTSEYSDISPLRDGEIAFST	LEGRPSGINFERSGEL 253	
mus Lmv3 SCOKTYGRPEGHYLRPGEDERVAFCTSEFSDISPLNGGNVAFST	TLEGRPSAYNFEESPVL 234	
hum Lmy1 SCENTYSKANRGFTRTGGDEOOALCTDEFSDISPLTGGNVAFST	TLEGRPSAYNEDNSPVI, 240	
mus Lmy1 SCENTYSKANRGFIRTGGDEOOALCTDEFSDIS <mark>PL/TGGN</mark> VAFST	TLEGRPSAYNFDNSPVL 238	
Dro Lmy1 QEWVTATDIRITLDRLNTFGDELFGDSQVLKSYFYAI 290		
mus Lmy3 QEWVTSTDILISLDRLNTFGDDIFKDPRVLQSYYYAV 271		
hum Lmy1 QEWVTATDIRVTLNRLNTFGDEVFNDPKVLKSYYYAI 277		
mus Lmy1 QEWVTATDIRVTLNRLNTFGDEVFNEPKVLKSYYYAI 275		

Supplemental Fig. 6. *Laminin \gammaLN mutations and sequence homologies*. Comparison among mouse (mus), human (hum) and Drosophila (Dro) LN domain sequences. Mutated residues indicated below mouse γ 1 sequence (mouse sequence number designations used in experimental labels). Patch (red) corresponds in location to the PLENGE polymerization patch described in Lm α 5 and located on the "front" face of the LN domain [35, 36].