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A. Directed Networks
We can easily extend the multiscale mixing measure rα described
in the main text to directed networks. The main change is to
incorporate two sets of marginals a and b that describe the pro-
portion of edges starting from and ending at each of the attribute
types. Then the directed global assortativity of a network with
respect to a particular categorical node attribute yi is

rglobal =

∑
g egg −

∑
g agbg

1−
∑

g agbg
, [S1]

where ag and bg represent the total number of outgoing and
incoming links of all nodes of type g ,

ag =
∑
h

egh , bh =
∑
g

egh . [S2]

Then we can update our definition of local assortativity
accordingly,

r(`) =
1

Qmax

∑
g

(egg(`)− agbg). [S3]

B. Scalar Attributes
For scalar attributes, we can simply calculate the Pearson’s cor-
relation across edges. Using xi and xj to indicate the scalar
attribute value of the nodes in edge Aij , then we can write the
global assortativity as

rglobal =
cov(xi , xj )

σiσj
[S4]

=

∑
ij Aij (xi − x̄ )(xj − x̄ )∑

i ki(xi − x̄ )2 , [S5]

where x̄ = 1/2m
∑

i kixi is the mean value of x weighted by
node degree k and σi is the SD of the attribute values. If we
standardize the scalar values using the linear transformation x̃i =
xi−x̄
σi

, then we can simplify this further as

rglobal =
∑
ij

Aij

2m
x̃i x̃j . [S6]

Then we can calculate the local assortativity rα(`) for scalar vari-
ables as

rα(`) =
∑
ij

wα(i ; `)
Aij

ki
x̃i x̃j . [S7]

Fig. S1 gives some examples of distributions of rmulti for scalar
attributes in the food web network.

C. Categorical Assortativity as a Correlation
The assortativity coefficient rglobal for categorical attributes can
be interpreted as a normalized Pearson’s correlation. To see this,
we start by observing that the Pearson’s correlation of two binary
variables is equivalent to the Phi coefficient for binary contin-
gency tables (31). Table S1 shows a contingency table using the
same notation as the directed assortativity, i.e., a and b give the
marginal proportions and e gives the joint proportions.

Then the Pearson product–moment correlation of these vari-
ables is known as φ, which we derive using the moments of a
Bernoulli distribution,

φ =
E[yi , yj ]− E[yi ]E[yj ]

σyiσyj

[S8]

=
e11 − a1b1√
a1a0

√
b1b0

. [S9]

Note that it is only necessary to calculate this in terms of e11,
since e11 − a1b1 = e00 − a0b0. We can see this using the identity
e00 = b0 − a1 + e11,

e00 − a0b0 = b0 − a1 + e11 − (1− a1)(1− b1) [S10]

= (1− b1)− a1 + e11− (1− a1− b1 + a1b1) [S11]

= e11 − a1b1. [S12]

A well-known issue with φ is that the extreme values of +1 and
−1 are typically unobtainable, which can cause issues with its
interpretation. In fact, φ = 1 can only occur if a1 = b1, e.g.,
when the network is undirected, while φ = −1 can only occur if
a1 = b2 = 0.5 (32, 33). To address this issue, there have been
a number of proposed normalizations to ensure the φ = 1 is
obtainable (34). One such normalization is the φ/φmax proposed
by Cureton (35),

φ

φmax
=

e11 − a1b1

β − a1b1
, [S13]

where β is the maximum possible value that e11 can take, i.e.,
min(a1b1). Note that, for undirected networks,

√
a1b1a2b2 =

√
a2

1a
2
2 [S14]

= a1a2 [S15]

= a1(1− a1) [S16]

= a1 − a2
1 , [S17]

which equals φmax when a1 ≤ a2.
Then we can generalize φ/φmax from binary to multicategory

variables by treating each distinct value as a binary variable and
taking their sum. If we set β = 1, then we obtain Eq. S1, and
thus we recover Newman’s assortativity (13). We also note that
Eq. S1 also corresponds to Cohen’s κ that is frequently used to
assess interrater agreement (36).

The normalization of the assortativity coefficient means that
rmin ≤ r ≤ 1 and

rmin = −
∑

g agbg

1−
∑

g agbg
, [S18]

which lies in the range −1 ≤ rmin < 0.

D. Assortativity as Autocorrelation of a Time Series
Assume a scalar attribute xi on each node i of an undirected net-
work. As mentioned in the main text, the probability of being at
node i is stationary and proportional to the degree, πi = ki/2m .
Given that a random walker is currently at node i , it moves to
node j with probability Aij/ki .

We define a random time series, using the simple random
walker, as the sequence of attributes of the nodes visited in the
random walk, i.e., the value of the time series at time t is the
attribute value x of the node visited at time t in the random
walk. Asymptotically, the average value observed by the ran-
dom walker is x̄ =

∑
i πixi =

∑
kixi/2m , and the variance is

σ2 =
∑

i πix
2
i − x̄2.
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Likewise, the autocovariance between the attribute observed
at two consecutive steps (time lag of 1) is Rx =

∑
ij πiAij/kixixj−

x̄2. Replacing x by x̃ = x−x̄
σ

, we obtain the autocorrelation
Rx̃ =

∑
ij πiAij/ki x̃i x̃j , which coincides with rglobal as defined

in Eq. S6.
When faced with categorical data, we proceed as in SI Text,

section C. We consider, for each type g of nodes, the scalar
attribute xg valued at 1 for nodes with type g and zero elsewhere.
The modularity Q is therefore the sum for each type g of the
autocovariance, Q =

∑
g Rg . As in SI Text, section C, this can

be normalized in various ways, one of which is Newman’s global
assortativity as used in this article, which therefore represents a
sort of categorical autocorrelation of the time series process of
the categorical attributes observed by the stationary simple ran-
dom walker.

E. Disconnected Networks
By using the personalized PageRank as a neighborhood function,
it means that only nodes within the same connected component
contribute to rmulti. Consequently, rmulti for each node is insensi-
tive to whether multiple connected components are included.

F. Missing Values
It is common, when dealing with real datasets, that some values
may be missing. This is the case for the Facebook 100 data, where
a number of node attributes are missing. When considering the
global assortativity, previous work has simply ignored contribu-
tions from missing data values (3). That is, only edges that con-
nect nodes for which both the attribute values are known are
considered when calculating egh . This treatment works fine for
the global assortativity, because each edge counts equally. How-
ever, simply omitting missing values when calculating the local
assortativity can cause a bias in the distribution. For example,
consider the case when node ` and its immediate neighbors have
missing values but, beyond those, the attribute values are known.
For small values of α, the weight wα(i ; `) is largest for nodes
with missing attribute values. Simply ignoring their edges would
mean reassigning more weight to edges farther away from ` when
normalizing to ensure that

∑
gh egh(`) = 1, a necessary step in

calculating the assortativity. Then, when we examine the distri-
bution of r(`) across all nodes in the network, the resulting dis-
tribution will be a biased representation. To deal with this issue,
we calculate each of the local assortativities as normal, but assign
each a weight z` =

∑
gh egh(`), i.e., the sum of local edge counts

before normalization. The weight z` describes our confidence in
the local assortativity estimate from z` = 0, indicating no confi-
dence, to z` = 1 when all node attributes within the neighbor-
hood are known. We adjust for these weights when plotting the
histograms in the main text.

G. Calculating the Personalized PageRank Vector
The personalized PageRank vector is the stationary distribution
of a random walk with restarts. We calculate it by direct simula-
tion of the random walk process using the power method:

wα(i ; `)s+1 = α
∑
j

Aij

ki
wα(j ; `)s + (1− α)δi,`, [S19]

and, at convergence, yields a distribution w(i ; `) with a mode at `.

H. Integrating over α
To integrate over all values of α, we take advantage of the fact
that we can equivalently write the ηth approximation the power
method in Eq. S19 as the ηth degree truncation of the power
series (37),

wα(i ; `)η = δi,` +

η∑
s=1

αs

[(
Ai`

ki

)s

−
(
Ai`

ki

)(s−1)
]
. [S20]

By taking advantage of the relationship between α and the
sequence of approximations computed by the power method, we
can calculate the distribution wα(i ; `) for a given α = α0 and use
the sequence of approximations to calculate the distribution for
any other α (37),

wα(i ; `)η = δi,` +

η∑
s=1

αs

αs
0

(
w(i ; `, α0)s − w(i ; `, α0)s−1

)
. [S21]

We can then integrate over all possible values of α (23),

wmulti(i ; `)η =

∫ 1

0

wα(i ; `)η dα [S22]

= δi,` +

η∑
s=1

(
wα0(i ; `)s − wα0(i ; `)s−1

)
(s + 1)αs

0

. [S23]

I. Null Model Network Generation
We created a null model to generate networks with the same
global assortativity as the observed network to compare the
distributions of rmulti. For a fair comparison, we decided to
keep the node degree and metadata label fixed while randomly
rewiring the network. We do so using a modified version of
the Markov chain Monte Carlo (MCMC) sampling of the con-
figuration model for stub-labeled simple graphs (38) [for sim-
ple graphs, sampling from the space of stub-labeled graphs is
equivalent to sampling from the space of vertex-labeled graphs
(38)]. The modification is to ensure that we sample a graph with
(approximately) the same global assortativity as the observed
network. We achieve this by adding a rejection sampling step
based on the binomial likelihood of observing the number of
edges between nodes of the same type min = m

∑
g egg given the

proportion of edges required to maintain the global assortativity
ωin =

∑
g egg ,

L(Gi) = log

(
m

min

)
(ωin)min (1− ωin)m−min . [S24]

The modified MCMC algorithm is shown in Algorithm 1.

Algorithm 1: stub-labeled MCMC.
Require: initial simple graph G0, initial temp. t0
Ensure: sequence of graphs Gi

for i < number of graphs to sample do
choose two edges at random
randomly choose one of the two possible swaps
if edge swap would create a self-loop or multiedge then

resample current graph: Gi ← Gi−1

else
if Unif (0, 1) < exp (L(Gi)− L(Gi−1)/ti) then

swap the chosen edges, producingGi

else
reject Gi

ti+1 ← update(ti).

J. Datasets
Weddell Sea Food Web. The food web of the Antarctic Weddell
Sea (4) consists of 488 species and 15,885 consumer rela-
tions. For each of the nodes in this network, we have five
categorical attributes: Metabolic Category {Plant, Ectotherm
vertebrate, Endotherm vertebrate, Invertebrate}, Feeding Type
{Carnivorous/necrovorous, Herbivorous/detrivorous, Detrivorous,
Omnivorous, Primary producer, Carnivorous}, FeedingMode
{Pelagic predator, Predator/scavenger, Primary producer, Predator,
Deposit-feeder, Grazer, Suspension-feeder}, Mobility {1, 2, 3, 4},
Environment {Bathydemersal, Land-based, Resource, Pelagic,
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Benthopelagic, Benthic, Demersal}. For scalar attributes, we use
the mean mass of the species, mobility (although discrete, the
values are ordinal), and node degree.

Facebook 100. The Facebook 100 dataset (3) contains an anonymi-
zed snapshot of the friendship connections among 1,208,316

Fig. S1. Multiscale assortativity for different scalar attributes in the Weddell Sea Food Web: node degree, average species mass, and mobility. Note that
mobility is a discrete ordinal variable (taking integer values in Eqs. 1 and 4), and, in the main text, we treat it as an unordered discrete variable.

users affiliated with the first 100 colleges admitted to Face-
book. The dataset contains a total of 93,969,074 friendship
edges between users of the same college. Each node has a set of
categorical social variables: status {undergraduate, graduate stu-
dent, summer student, faculty, staff, alumni}, dorm, major, gender
{male, female}, and graduation year.
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Table S1. Binary contingency table

yj = 0 yj = 1

yi = 0 e00 e01 a0

yi = 1 e10 e11 a1

b0 b1

Table S2. List of schools ordered by global assortativity

No. School rglobal No. School rglobal

1 Amherst 41 0.081 51 William 77 0.203
2 Princeton 12 0.087 52 Emory 27 0.205
3 Trinity 100 0.106 53 UCLA 26 0.208
4 Stanford 3 0.109 54 Tennessee 95 0.209
5 Swarthmore 42 0.109 55 Wake 73 0.212
6 Johns Hopkins 55 0.110 56 MIT 8 0.219
7 Hamilton 46 0.113 57 UMass 92 0.222
8 Bowdoin 47 0.118 58 Berkeley 13 0.222
9 Harvard 1 0.120 59 USC 35 0.224

10 Brown 11 0.120 60 Temple 83 0.228
11 Dartmouth 6 0.126 61 UVA 16 0.230
12 Wellesley 22 0.127 62 Penn 94 0.231
13 Haverford 76 0.128 63 Northwestern 25 0.234
14 Wesleyan 43 0.128 64 Rutgers 89 0.235
15 UConn 91 0.129 65 UPenn 7 0.235
16 Tufts 18 0.130 66 Michigan 23 0.236
17 Williams 40 0.133 67 FSU 53 0.238
18 Reed 98 0.134 68 Cornell 5 0.238
19 Columbia 2 0.136 69 UC 64 0.251
20 BC 17 0.136 70 American 75 0.253
21 Duke 14 0.144 71 Notre Dame 57 0.255
22 Virginia 63 0.149 72 Rochester 38 0.256
23 Oberlin 44 0.151 73 Vassar 85 0.256
24 Villanova 62 0.158 74 Lehigh 96 0.258
25 Howard 90 0.159 75 Texas 80 0.261
26 WashU 32 0.162 76 USFCA 72 0.263
27 Georgetown 15 0.162 77 UC 61 0.265
28 Colgate 88 0.164 78 Syracuse 56 0.270
29 UF 21 0.165 79 Yale 4 0.273
30 BU 10 0.167 80 UCSB 37 0.277
31 Carnegie 49 0.171 81 Cal 65 0.279
32 GWU 54 0.171 82 Texas 84 0.291
33 Bingham 82 0.176 83 UChicago 30 0.291
34 NYU 9 0.182 84 Smith 60 0.292
35 UNC 28 0.185 85 Mississippi 66 0.297
36 Simmons 81 0.186 86 Baylor 93 0.297
37 USF 51 0.187 87 UIllinios 20 0.297
38 JMU 79 0.187 88 MU 78 0.306
39 UCF 52 0.187 89 Tulane 29 0.313
40 Santa 74 0.188 90 Mich 67 0.322
41 Northeastern 19 0.190 91 UGA 50 0.336
42 Maine 59 0.190 92 Wisconsin 87 0.338
43 Middlebury 45 0.190 93 UCSD 34 0.355
44 Brandeis 99 0.193 94 Indiana 69 0.356
45 Bucknell 39 0.194 95 UC 33 0.361
46 MSU 24 0.195 96 Auburn 71 0.370
47 Pepperdine 86 0.198 97 Oklahoma 97 0.397
48 Vermont 70 0.199 98 Caltech 36 0.426
49 Maryland 58 0.199 99 UCSC 68 0.480
50 Vanderbilt 48 0.201 100 Rice 31 0.504

The number given after each university name is the School Index and indicates the order
in which they joined Facebook.
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