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Supplemental Figure S1. Characterization of models representing biases in R0. Methods to 
asses the ability of the Markov model approach of Slattery, et al. (1) and the improved bias 
model from this work to accurately parameterize biases in R0 at the level of the entire probe. 
Both models are trained and tested on R0 data from Slattery, et al. (1). (A) Probes are binned 
according to their model predicted sequencing rate (x-axis), allowing the computation of the 
observed probe count mean (blue circles) and variance (red dots) in each bin. Expected mean 
and variance (grey dashed line) assumes Poisson statistics. (B) Probes are binned according to 
their model predicted sequencing rate (x-axis), allowing the computation of the number of times 
every probe within a bin was observed (n0: no counts, n1: one count, n2: two counts); error bars 
are indicated by vertical lines. Expected ratios (dashed lines) assume Poisson statistics. (C-D) 
Idem, for the improved bias model used in this work. 
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Supplemental Figure S2. Model predictions vs. MITOMI derived ∆∆G’s for human MAX. 
Comparison between MITOMI-derived binding free energies (y-axis) for 255 different DNA 
ligands and the same values as predicted by NRLB models (x-axis) (A-E) or by a DeepBind 
model trained on R1 HT-SELEX data from (2) (F). MITOMI binding free energy predictions 
made by NRLB models trained on R1 SELEX-seq data using (A) mononucleotide features and 
excluding nonspecific binding, (B) mononucleotide features including nonspecific binding, and 
(C) mono- and di-nucleotide features with nonspecific binding. MITOMI binding free energy 
predictions made by NRLB models with nonspecific binding trained on R1 HT-SELEX data 
using (D) mononucleotide features and (E) mono- and di-nucleotide features. In panels A-E, the 
energy logo representation (3) of the NRLB model is inset. Color denotes the number of 
substitutions relative to the optimal sequence. Model predictions are made using the full 
sequence used in the MITOMI assay. MITOMI sequence and binding free energy data from (4). 
In panels A-C, the R1 SELEX-seq data for human MAX was generated as part of (5) but 
sequenced as part of the present study. In panels D-F, the R1 HT-SELEX data for human MAX 
from Jolma, et al. (6). Pearson (r) and Spearman rank correlation (ρ), along with the number of 
data points (n), are indicated in panels B-F. 
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Supplemental Figure S3. Relationship between NRLB performance and the number of reads 
in the R1 library. (A) Agreement between MITOMI-derived binding free energies and relative 
affinities predicted by mononucleotide (black) and dinucleotide (red) NRLB models trained on 
R1 SELEX-seq data for human MAX at varying degrees of subsampling from the original 
dataset (22M reads). The area between mononucleotide and dinucleotide curves is shaded 
green if the difference between the mononucleotide and dinucleotide R2 is statistically significant 
(p < 0.05). (B) Root-mean-square deviation (RMSD) between MITOMI-derived binding free 
energies and relative affinities predicted by the models in A. The R1 SELEX-seq data for human 
MAX was generated as part of (5) but sequenced as part of the present study. 
 
 
 

 
 
Supplemental Figure S4. NRLB model fit to ∆30 p53. (A) Energy logo representation for an 
NRLB model with dinucleotide features trained on R1 SELEX-seq data for C-terminally 
truncated (∆30) p53. (B) NRLB model parameters for full-length p53 (cf. Figure 2D) are similar 
to those of the ∆30 model. 
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Supplemental Figure S5. NRLB models succinctly capture information within oligomer tables. 
(A) Comparison of 12mer affinities as predicted by truncated versions of the Exd-Scr and Exd-
UbxIVa NRLB models in Figure 3A. Points are colored by the presence of known Exd-Hox 8mer 
binding sites from (1) and reveal similar differences in binding preferences for the two proteins 
which were originally uncovered in the same study. (B) Comparison of Exd-Scr 12mer affinities 
as predicted by the same truncated model in panel A and by an oligomer enrichment table built 
on the same data using the method of Slattery, et al. (1). All 12-mers for which oligomer 
enrichment table predictions exist are shown; 12-mers are shown in grey if they contain a match 
to the Exd-Scr 8-mer (WRATWDAT) and in red if the match occurs at the correct offset 
(NWRATWDATNNN). The comparison highlights the inconsistent offsets and biased affinity 
estimates associated with oligomer enrichment tables. R1 Exd-Hox SELEX-seq data from 
Slattery, et al. (1) was used in the construction of the enrichment table. 
 
 
 

 
 
Supplemental Figure S6. Competitive EMSAs confirm additional flanking specificity in Exd-
UbxIVa. (A) Competitive EMSA used to confirm the additional flanking specificity outside the 
12mer core in Exd-UbxIVa with probe relative affinities predicted by our NRLB model for Exd-
UbxIVa (cf. Figure 3A). (B) Binding curves fit to quantified competitive EMSA data (panel A and 
Table S2) confirm the contribution of flanking basepairs outside the 12mer core in Exd-UbxIVa 
predicted by the NRLB model. 
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Supplemental Figure S7. Multiple suboptimal sites contribute to the binding affinity of low-
affinity probes. Density plot showing the relationship between model-predicted total affinity 
(specific and non-specific) and the fraction of this affinity contributed by the highest specific 
affinity site in the probe (y-axis) for all observed R1 probes using a dinucleotide NRLB model for 
Exd-UbxIVa (cf. Figure 3A). R1 SELEX-seq data for Exd-UbxIVa from Slattery, et al. (1). 
 
 
 
 
 
 

Figure shown on Subsequent Pages 
 
 
 

 
Supplemental Figure S8. Overview of NRLB models for Hox monomers and Exd-Hox 
heterodimers. Hox monomer motifs are derived from 13 bp dinucleotide single-mode models fit 
on R1 Hox monomer data from Slattery, et al. (1). R1 Exd-Hox heterodimer data also from 
Slattery, et al. (1) (except Pb, which is from this work) was used to build either two or three 
mode dinucleotide models of varying footprint sizes based on heuristic criteria (see Methods). 
Single-mode dinucleotide model for Exd monomers was built using R1 Exd monomer data from 
this work.  
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Supplemental Figure S9. Performance of single mode and multiple binding mode models. (A) 
Density plot of observed 10mer counts with 100 or more observations (n = 299k) in R1 SELEX-
seq data for Exd-Pb as predicted by a single-mode dinucleotide NRLB model fit to the same 
data (c.f. Figure 4A). The model accurately represents the observed data except for a sparse 
cloud of off-diagonal points. (B) Idem, for a three-mode dinucleotide NRLB model fit to the same 
data (c.f. Figure 4A). This model resolves the discrepancy in Panel A, explaining the data with 
higher, statistically significant accuracy (p < 1x10-16, Fischer's r-to-z transform).  
 
 
 

 
 
Supplemental Figure S10. ATF4 and CEBP/β motifs. (A) (Top) Comparison between NRLB 
model parameters for an ATF4 homodimer model built from R1 SELEX-seq data for ATF4 only 
(x-axis and energy logo representation below) and parameters from an ATF4 homodimer model 
built using SELEX-seq data from a mixture of ATF4 and C/EBPβ (cf. Figure 4B). (B) Idem, for 
C/EBPβ homodimer model built from R1 SELEX-seq data for C/EBPβ only. 
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Supplemental Figure S11. Contaminants detected in HT-SELEX data. (A) (Top) The best 
symmetric single-mode model and (Bottom) the primary mode of the best two-mode symmetric 
model fit to R1 HT-SELEX data for MAFK (6). Single-mode NRLB models can discover motifs 
that appear to represent sequence biase rather than the binding specificity of the TF in question. 
In some cases, additional binding modes can account for these biases. (B) (Top) Best single-
mode model fit and (Middle) the primary mode of the best three-mode model fit to R1 HT-
SELEX data for ETS1 (6). (Bottom) Best single-mode model fit on R2 of the same dataset. In 
line with other analyses (2), some HT-SELEX datasets appear to contain contaminants or 
display poor enrichment, which forced us to use later-round data to build models that capture 
the binding specificity of the TF in question. To ensure that the correct motif was discovered, the 
primary mode of each model was checked to see if it matches a known consensus sequence for 
the TF. (C) (Top) The best single-mode model and (Bottom) primary mode of the best two-mode 
model fit to R1 HT-SELEX data for NR2C2 (6) that matches its consensus (AGGTCA). In some 
cases, NRLB models contain modes that match the expected consensus sequence for the given 
TF but display unusually low specificity. In such cases, multiple binding modes can rescue the 
model. In the above analyses, only mononucleotide models trained on HT-SELEX data were 
used, and “best” refers to the highest-likelihood model from a collection trained with different 
hyperparameters (see Methods).  
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Supplemental Figure S12. ChIP-seq classification performance of NRLB and DeepBind 
models trained on HT-SELEX data. Each point represents the performance of models 
constructed using the respective algorithms when classifying ENCODE ChIP-seq peaks, as 
measured by the appropriate area under the curve (AUC) metric for the particular method used 
to construct positive and negative sets (see Methods). (A) Area under the receiver operating 
characteristic curve (AUROC) comparison using the “DeepBind method”. (B) Area under the 
precision-recall curve (AUPRC) comparison using the “ENCODE Top 500 method.” (C) Similar 
analysis using the “ENCODE Bottom 500 method.” Statistical significance was assessed using 
a Mann-Whitney U-test. NRLB models match DeepBind model performance when classifying 
ENCODE ChIP-seq peaks using models trained on HT-SELEX data, regardless of the AUC 
metric and method used to construct positive and negative sets.  
 
 
 

 
 
Supplemental Figure S13. Quantitative performance of NRLB and DeepBind models trained 
on HT-SELEX data. Each point represents the performance of models constructed using the 
respective algorithms on HT-SELEX data from (7) in explaining the observed R1 probe 
frequencies from a more deeply sequenced technical replicate of the same dataset (8), as 
measured by different metrics. (A) Root-mean-square deviation (RMSD) between the observed 
and predicted enrichment of probe counts from R0 to R1. (B) RMSD between observed and 
predicted R1 probe sequencing rate. In panels A and B, NRLB predictions were made only with 
the binding model, ignoring R0 bias. (C) The same analysis in panel B using the full NRLB 
model for predictions. See Methods for more details.  
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Figure Shown on Subsequent Pages 
 
 
 

 
Supplemental Figure S14. NRLB models trained on HT-SELEX data. Collection of 
mononucleotide NRLB fits to HT-SELEX datasets used in the ChIP-seq peak classification 
analyses in Figures 2E and S12. Here, “round” refers to the HT-SELEX enrichment round used 
to train either model. “DeepBind Detectors” lists the number of motif detectors used in the 
corresponding model as reported by (2). “NRLB Modes” lists the number of binding modes used 
to learn the NRLB model. “NRLB Motif” displays the primary binding mode of the NRLB model 
trained on the HT-SELEX data. “ROC”, “Top PRC”, and “Bottom PRC” display the individual 
area under the curve (AUC) performance metric for both DeepBind and NRLB models using the 
“DeepBind Method,” the “ENCODE Top 500 Method,” and the “ENCODE Bottom 500 Method,” 
respectively.  
  



-4

-3

-2

-1

0

1

2

3

4

∆
∆

G
/R

T

1

X
A
C

G

T

2

X
T
C

G
A

3

X
G
A
C
T

4

X
C
A
G
T

5

X
C
T
A
G

6

X
A
G
T

C

7

X
T
C
A

G

8

X
G
A
T
C

9

X
G
T
C
A

1
0

X
C
T
G
A

1
1

X
A
G

C
T

1
2

X
T
G

C

A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.9724
NRLB, 0.9781

CEBPB

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.9411
NRLB, 0.9531

CEBPB

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.7730
NRLB, 0.8064

CEBPB

-4

-3

-2

-1

0

1

2

3

4

∆
∆

G
/R

T

1

X
C

A

T

2

X
C
A

G
T

3

X
T
C

G
A

4

X
G
C
T

5

X
C
A
G
T

6

X
C
T
A
G

7

X
G
A
T
C

8

X
C
T
A
G

9

X
G
A
T
C

1
0

X
G
T
C
A

1
1

X
C
G
A

1
2

X
A
G

C
T

1
3

X
G
T

C
A

1
4

X
G

T

A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.8290
NRLB, 0.7910

CEBPD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.7552
NRLB, 0.7427

CEBPD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.5764
NRLB, 0.5424

CEBPD

-4

-3

-2

-1

0

1

2

3

4

∆
∆

G
/R

T

1

X
C

A

2

X
G

C

T

3

X
C
G
A
T

4

X
C
G
A
T

5

X
C
G

T

6

X
T
A
C

G

7

X
A
T
C
G

8

X
A
G
T
C

9
X
T
C
A

G

1
0

X
A
T
G
C

1
1

X
A
T

G

C

1
2

X
G
C
A

1
3

X
G
C

T
A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate
Tr

ue
 P

os
iti

ve
 R

at
e

DeepBind, 0.6571
NRLB, 0.6829

E2F1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.6263
NRLB, 0.7240

E2F1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.6152
NRLB, 0.6919

E2F1

-4

-3

-2

-1

0

1

2

3

4

∆
∆

G
/R

T

1

X
G
C

A
T

2

X
C
T

G

A

3

X
C
A
G
T

4

X
G
A
C
T

5

X
A
T
G
C

6

X
G
A
C

7

X
A
T
G
C

8

X
G
A
T

9

X
C
T
A

1
0

X
T
A
C
G

1
1

X
C
T
G

1
2

X
T
A
C
G

1
3

X
C
T
G
A

1
4

X
G
T
C
A

1
5

X
G
A

C

T

1
6

X
C
G

T
A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.9169
NRLB, 0.9462

EBF1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall
Pr

ec
is

io
n

DeepBind, 0.8908
NRLB, 0.9579

EBF1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.7158
NRLB, 0.8260

EBF1

-5

-4

-3

-2

-1

0

1

2

3

4

5

∆
∆

G
/R

T

1

X
C

G

A

2

X
C
T

G

3

X
G
A

C

T

4

X
C
T
A

G

5

X
G
A
T

C

6

X
T
A
C

G

7

X
C
A
G
T

8

X
C
T
A
G

9

X
A
C
T

G

1
0

X
C
A
T
G

1
1

X
G
A
T
C

1
2

X
T
C
A
G

1
3

X
A
C
G
T

1
4

X
C

G

1
5

X
C

A

G

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.9748
NRLB, 0.9723

EGR1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.9617
NRLB, 0.9562

EGR1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall
Pr

ec
is

io
n

DeepBind, 0.6972
NRLB, 0.7944

EGR1

-4

-3

-2

-1

0

1

2

3

4

∆
∆

G
/R

T

1

X
C
T
G

A

2

X
A
G
T
C

3

X
C
G
A
T

4

X
C
G
A
T

5

X
A
T
G
C

6

X
A
G
T

C

7

X
A
C
T
G

8

X
A
T

C

G

9

X
C

G

1
0

X
G
C

A

T

1
1

X
G
T

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.9646
NRLB, 0.9706

ELF1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.8784
NRLB, 0.8972

ELF1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.5546
NRLB, 0.5542

ELF1

-4

-3

-2

-1

0

1

2

3

4

∆
∆

G
/R

T

1

X
A

T

2

X
A

3

X
G

C

4

X
A

T

C

5

X
A

6

X
T
C

A

7

X
C
T
A

8

X
T
G
A

C

9

X
T
G
A

C

1
0

A
C
T
G

1
1

X
C
A
T
G

1
2

X
C
T
G
A

1
3

X
C
G
T
A

1
4

X
T
C
A
G

1
5

X
A
G
C

T

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.9278
NRLB, 0.9171

ELK1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.9197
NRLB, 0.9246

ELK1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.9101
NRLB, 0.9097

ELK1

-7

-5

-3

-1

1

3

5

7

∆
∆

G
/R

T

1

X
C
T
A

2

X
T
A

C

3

X
T
G
A
C

4

X
C
T
A
G

5

X
C
T
A

G

6

X
G
C
T
A

7

X
G
C
T
A

8

X
T
C
A
G

9

X
G
A
C
T

1
0

X
C

T

A

G

1
1

X
T
G

A

C

1
2

X
G

A

1
3

X
G

C

T

1
4

X
T

G

C

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DeepBind, 0.6927
NRLB, 0.6766

ETS1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.4469
NRLB, 0.4729

ETS1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

DeepBind, 0.5395
NRLB, 0.5921

ETS1

Protein Family DeepBind 
Round

DeepBind
Detectors
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Round

NRLB
Modes NRLB Motif ROC Top PRC Bottom PRC

C/EBPβ bZIP 4 10 1 1

C/EBP� bZIP 2 7 1 2

E2F1 E2F 3 11 2 2

EBF1 bHLH 3 9 2 3

EGR1 C2H2 ZF 2 11 1 2

ELF1 Ets 6 9 1 1

ELK1 Ets 2 16 1 2

ETS1 Ets 3 16 2 1
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Protein Family DeepBind 
Round

DeepBind
Detectors

NRLB
Round

NRLB
Modes NRLB Motif ROC Top PRC Bottom PRC

GABPA Ets 4 15 3 3

GATA3 GATA 4 11 2 2

IRF4 IRF 3 16 1 2

MAFF bZIP 4 9 3 1

MAFK bZIP 5 6 1 2

MAX bHLH 4 3 1 1

MEF2A MADS 4 10 2 2

NFATC1 Rel 4 9 1 2
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RFX5 RFX 4 6 2 2
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Modes NRLB Motif ROC Top PRC Bottom PRC

SP1 C2H2 ZF 6 6 1 1

TFAP2A AP-2 3 7 2 1

TFAP2C AP-2 3 10 1 2

USF1 bHLH 2 8 1 1

YY1 C2H2 ZF 3 8 1 3

ZNF143 C2H2 ZF 4 15 3 3
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Supplemental Figure S15. Quantitative metrics for NRLB and DeepBind models trained on HT-
SELEX data. Detailed plots underlying the analyses in Figures 2F and S13. The models used 
here are trained on the HT-SELEX dataset (7); NRLB models are shown in S13. Here, 
"DeepBind Round" and "NRLB Round" refers to the HT-SELEX enrichment round used to train 
either model. From left to right for each protein and model, the columns are: (i) the density of 
states for the given model, as estimated using the Wang-Landau method (9); (ii) a comparison 
of the observed and predicted enrichment of probe counts from R0 to R1; (iii) and (iv) a 
comparison of the observed and predicted R1 probe frequency. For columns (ii) and (iii), NRLB 
predictions were made only with the binding model, ignoring R0 bias. For columns (ii-iv), points 
are colored blue if they have at least 100 observations in each bin; if the number of observations 
is lower, the point's color follows the color scale. Root-mean-square deviation (RMSD) is 
computed only for points with at least 50 observations. 
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CEBPD; DeepBind Round: 2, NRLB Round: 1
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EGR1; DeepBind Round: 2, NRLB Round: 1
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ELK1; DeepBind Round: 2, NRLB Round: 1
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ETS1; DeepBind Round: 3, NRLB Round: 2
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GATA3; DeepBind Round: 4, NRLB Round: 2
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MAFF; DeepBind Round: 4, NRLB Round: 3
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MAX; DeepBind Round: 4, NRLB Round: 1
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NFATC1; DeepBind Round: 4, NRLB Round: 1
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NFE2; DeepBind Round: 4, NRLB Round: 3
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NR2C2; DeepBind Round: 3, NRLB Round: 1
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0

1

2

3

−4 −3 −2 −1 0

Score

De
ns

ity

DOS
R0 Counts
R1 Counts

NRLB  (Affinity−Only Model) Densities

RMSD: 0.244

e−5

e−4

e−3

e−2

e−1

e0

−5 −4 −3 −2 −1 0

Score

En
ric

hm
en

t

0
25
50
75
100

Counts

NRLB  (Affinity−Only Model) Enrichment

RMSD: 0.403

10−13

10−12

10−11

10−10

10−13 10−12 10−11 10−10

Predicted Sequencing Rate (per probe)

O
bs

er
ve

d 
Se

qu
en

cin
g 

Ra
te

 (p
er

 p
ro

be
)

0
25
50
75
100

Counts

NRLB  (Affinity−Only Model) Sequencing Rate

RMSD: 0.125

10−14

10−12

10−10

10−8

10−14 10−12 10−10 10−8

Predicted Sequencing Rate (per probe)

O
bs

er
ve

d 
Se

qu
en

cin
g 

Ra
te

 (p
er

 p
ro

be
)

0
25
50
75
100

Counts

NRLB  (Full Model) Sequencing Rate

0

1

2

3

−4 −2 0

Score

De
ns

ity

DOS
R0 Counts
R1 Counts

DeepBind  Densities

RMSD: 0.542

e−6

e−4

e−2

−6 −4 −2

Score

En
ric

hm
en

t

0
25
50
75
100

Counts

DeepBind  Enrichment

RMSD: 0.380

10−13

10−12

10−11

10−10

10−9

10−13 10−12 10−11 10−10 10−9

Predicted Sequencing Rate (per probe)

O
bs

er
ve

d 
Se

qu
en

cin
g 

Ra
te

 (p
er

 p
ro

be
)

0
25
50
75
100

Counts

DeepBind  Sequencing Rate



PAX5; DeepBind Round: 3, NRLB Round: 1
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RUNX3; DeepBind Round: 3, NRLB Round: 3
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TFAP2C; DeepBind Round: 3, NRLB Round: 1
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YY1; DeepBind Round: 3, NRLB Round: 1
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Supplemental Figure S16. NRLB models outperform consensus matching methods in 
identifying functional binding sites in enhancers. (A) Precision and (B) recall as a function of the 
relative affinity cutoff (threshold) for NRLB models for Hox and Exd-Hox (blue line) and 
consensus matching methods (grey dashed line) on the task of identifying 96 functionally 
validated binding sites across 21 curated D. melanogaster enhancer elements. Hox and Exd-
Hox models trained on data from Slattery, et al. (1) (cf. Figure S8). See Methods for details on 
the construction and identification of positive and negative sites within enhancers. See Table 4 
for a complete list of enhancers and sites.  
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Supplemental Figure S17.  Functional validation of ultra-low affinity sites in the svb enhancer 
element 7H as predicted by NRLB. (A) NRLB model predicted relative affinities for Exd-UbxIVa 
(y-axis) at all potential binding sites on the forward (grey) and reverse strands (red) within the 
shavenbaby (svb) enhancer element 7H in D. melanogaster as a function of position in the 
element (x-axis). Sites indicated by a green check mark were functionally validated in a previous 
study (10). Numbers correspond to the to the order in which sites were mutated. NRLB model 
was trained on R1 SELEX-seq data for Exd-UbxIVa from Slattery, et al. (1) and shown in Figure 
S8. (B) Expression (white) of 7H::lacZ reporter constructs where the binding sites identified in 
panel A were sequentially mutated. WT indicates the wild-type 7H enhancer element, while site 
1, site 1-2, etc. indicate the mutations of site 1, sites 1 and 2, etc. (C) Reporter expression level 
(y-axis) for every reporter construct (x-axis) as quantitated from panel B. Each point represents 
the reporter expression level of a single embryo (see Methods). Mutation of sites 3 and 4 
demonstrate statistically significant changes in reporter intensity (Mann-Whitney U Test). A 
decrease in expression level is observed after the top three sites are mutated, likely due to 
saturation. 
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Supplemental Figure S18. Nonlinear fits to reporter expression data for the svb enhancer 
elements E3N and 7H. Joint comparison between the NRLB predicted Exd-UbxIVa cumulative 
affinities for various E3N and 7H reporter constructs (x-axis) and reporter expression level (y-
axis) as quantitated from Figures 6C and S17B. Each point represents the reporter expression 
level of a single embryo (see Methods) for either an E3N (red) or 7H (blue) construct. Red and 
blue dashed lines and coefficients correspond to independent nonlinear least-square model fits 
between predicted cumulative affinity and reporter expression for E3N (red) and 7H (blue), 
respectively. Nonlinear fits assume a logistic model of expression saturation (equation). The F-
test for individual parameters was applied to test if the parameters learned from each fit 
independently were significantly different. While the fit parameters ϕ2 and ϕ3 are similar, the 
scale parameter ϕ1, corresponding to the overall intensity or brightness of the experiments, is 
significantly different. The NRLB model for Exd-UbxIVa was trained on R1 SELEX-seq data 
from Slattery, et al. (1) and shown in Figure S8. 
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1 Modeling Methodology

Here, we will introduce our general multinomial approach for modeling SELEX
reads and two adaptations: the R0 Bias model and No Read Left Behind, or
NRLB. The modeling philosophy of both will be exposed in great detail and
also cover the feature sets and fitting strategies used by them.

1.1 The Multinomial Representation of SELEX Data

A typical SELEX sequencing library consists of DNA probes isolated from mul-
tiple experiments, each with a unique set of barcodes that flank an l-bp long
region of random DNA. After sequencing, probes from a specific experiment
and enrichment round r can be filtered and aggregated via the unique barcode,
producing data with the structure in Table 1. The kmer counting method of [1]

Table 1: An Example of SELEX Data

Probe R1 Count

GTGATTTATTGTTATT 17
ATGATTTATGGTTTTT 16
GTTTTATGATTTATTA 15
GATGATTTATTATCTT 15
GATAATGATTTATTAT 15
AGATTTTGATTTATTA 15
TTTTTTTGATTTATTA 14

...
...

R1 Exd-UbxIVa SELEX-seq data from [1].

discussed in the previous chapter builds count tables based on data similar to
what is shown. Ideally, we would want a model that represents observed probe
counts rather than an intermediary such as kmer counts.

One way to represent the observed SELEX counts is through a multinomial
distribution over the entire universe of 4l probes. While this appears to place
an unnecessary burden on the model (especially for large l ), a typical SELEX
library contains only a fraction of all a�nity-selected probes – therefore, it is
possible that some probes are unobserved in the dataset due to stochastic e↵ects.
With a multinomial distribution, the observed count c

i

in round r can be related
to a model-predicted observation frequency p

i

for all sequences S
i

as follows:

P (data) /
Y

i

pc

i

i

(1)

If multiple rounds of selection and sequencing were performed, we can simulta-

38



neously model all rounds:

P (data) /
Y

r 2{rounds}

Y

i

p
c

i,r

i,r

(2)

We would like the model-predicted frequencies p
i

in (1) to correspond to
biophysically relevant measures of TF-DNA interaction such as the equilibrium
association constant K

a

. The total count of sequence S
i

after r � 1 rounds of
selection is given by

c
i,r

= N
r

(S
i

)c
i,r�1

(3)

where N
r

(S
i

) is the the occupancy of sequence S
i

in round r. The probability
of observing sequence S

i

after r rounds of selection is then

p
i,r

=
c
i,rX

i

0

c
i

0
, r

=
N

r

(S
i

)c
i,r�1X

i

0

N
r

(S
i

0)c
i

0
, r�1

(4)

Recursively applying (3), we see that

c
i,r

=
rY

r=1

N
r

(S
i

)c
i, 0

and

p
i,r

=

rY

r=1

N
r

(S
i

)c
i,0

X

i

0

rY

r=1

N
r

(S
i

0)c
i

0
, 0

In the low free protein concentration limit, N(S) ⇡ [P ]K
a

(S) [2]. Additionally,
if we make the mild assumption that the association constant K

a

(S
i

) is identical
for all rounds, the above reduces to

p
i,r

=
K

a

(S
i

)rc
i,0X

i

0

K
a

(S
i

0)rc
i

0
, 0

=
p

i,0

(
i

)r

Z
(5)

for round r. Without loss of generality, we can represent c
i,0

as p
i,0

, or the
probability that sequence S

i

will be found in the initial pool – this bias can be
represented either by the Markov model method described previously or any
other suitable approach. Letting 

i

= K
a

(S
i

) and Z =
P

i

p
i,0

r

i

(also known
as the partition function), SELEX data in round r can be modeled as

P (data |~) /
Y

i

✓
p

i,0

r

i

Z

◆
c

i,r

(6)


i

in (5) represents the selection rate of the probe. While many models can
be used to represent 

i

, fundamentally, it represents the biophysical activity of
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the TF in question. To accurately infer this activity, we need to know where
the TF is bound. In most SELEX-seq experiments, the overall probe (including
the fixed flank regions) is significantly larger than the protein-DNA interface.
As there are no physical constraints forcing the protein to bind at a specific
location within the probe, let alone the variable region, the binding interface
could lie anywhere on the sequence S

i

. In general, if we are considering a binding
interface of length k, there are l � k +1 potential binding sites, or views, on the
forward strand alone. Additionally, as the protein does not view any physical
separation between the variable region and the fixed flanking region, binding
sites that bleed into the fixed regions should also be considered. Lastly, as
binding can take place on either strand, potential binding sites on both strands
must be considered. Given this, we will restrict ourselves to parameterizations
where 

i

is represented by the sum of the a�nities of all potential views within
probe ([2, 3]). However, other models can be built within the same framework
and are discussed below.

1.2 R0 Bias Model

The multinomial framework presented in (1) can be used to directly model R0
SELEX data and create a representation for p

i,0

. Extending the kmer-based
Markov model from [1], we can relate the observed R0 count of a probe to its
predicted probability p

i,0

with a log-linear model w
i

over the probe’s k-mer
composition:

w
i

= exp

2

4
X

�2�0

�
�

X
i�

3

5 (7)

and
p

i,0

=
w

i

Z
0

=
w

iX

i

w
i

(8)

Here, � refers to one of the 4k possible k-mers, �
0

is the set of all kmer features
used, X

i�

is the number of observations of each k-mer in sequence S
i

, �
�

is the
contribution of every k-mer to the overall observation probability, and Z

0

is the
partition function. The feature set �

0

can be extended such that � covers all
kmers from length 1 through length k, however this made it di�cult to converge
on a solution (see Appendix A).

X
i�

represents the count of kmer � in the forward strand within the variable
region of the probe. However, it is possible that the large regions of fixed
DNA (barcodes, adaptors) flanking the random region contribute to biases in
the initial pool even though they remain unchanged throughout the SELEX
process. To account for their e↵ect, X

i�

can be computed by including the k�1
bases flanking the random region.

Incorporating p
i,0

with (1) results in a function of the parameters ~� given
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the observed data, or the likelihood, which is given by

L(~� | data) = P (data | ~�) /
Y

i

p
c

i,0

i,0

=
Y

i

✓
w

i

Z
0

◆
c

i,0

, (9)

Given this statistical model and our observed data, we can find the optimal
parameter values that maximize the likelihood - this optimization process is
called Maximum Likelihood Estimation (MLE). When trying to find the optimal

parameters ~�, it is easier to work with the log of the likelihood:

log L =
X

i

c
i,0

log w
i

� n
0

log Z
0

, (10)

where n
0

=
P

i

c
i,0

is the total number of reads. Lastly, the gradient of the log
likelihood is useful for gradient-based optimizers such as L-BFGS (see Appendix
B), and is given by

@ log L
@�

�

=
X

i

c
i,0

X
i�

� n
0

Z
0

X

i

X
i�

exp

2

4
X

�2�0

�
�

X
i�

3

5 (11)

Cross validation methods are used to select the optimal k and whether or not
flanking regions should be considered. Cross validation is performed either with
another R0 dataset (generally part of the same series of experiments, but with
a di↵erent barcode) or by holding out half of the data.

1.3 NRLB

Model Description

We can couple the framework of (6) with a biophysical feature-based model for


i

to understand the impact of sequence variation on binding a�nity in terms
of interpretable features [2, 3]. We called this model No Read Left Behind, or
NRLB, for its ability to build these feature based models on all SELEX data
without filtering probes.1 In NRLB, the free energy of a particular view (binding
interface) v within the probe is modeled as a series of linear contributions from
DNA sequence derived features �. Additionally, we can simultaneously consider
the impact of nonspecific binding interactions and multiple binding modes m
on the overall selection rate of the probe. In general, 

i

is modeled as follows:

A�nity for one binding
interface v

exp

2

4
X

�2�

�
�

X
i�

3

5 (12)

1
It should be noted that this is a property of the framework itself, rather than this specific

model; however the selection model was named NRLB.
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Total a�nity for one
mode, all views v

X

v

exp

2

4
X

�2�

�
�

X
iv�

3

5 (13)

Total a�nity for one
mode, all views v and
nonspecific binding �

NS

X

v

exp

2

4
X

�2�

�
�

X
iv�

3

5 + e�

NS (14)

Total a�nity for multiple
modes m, all views v and
nonspecific binding �

NS

X

m

X

v 2V

m

exp

2

4
X

�2�

m

�
�

X
imv�

3

5 + e�

NS (15)

Henceforth, we will continue to use the general case (15) for all derivations. The
quantities used above are defined as follows:

m the binding mode.

v the position of the k-bp view (binding interface) in the probe. As dif-
ferent modes within a model can have di↵erent k’s, the total number
of views per mode could vary. V

m

represents the set of all views in
mode m.

� a feature. �
m

represents the set of all features in mode m, while the
function m(�) represents the mode feature � belongs to.

�
�

contribution of feature � to the binding free energy in units of ��G/RT .

X
iv�

value of feature � in interface v for mode m(�) in S
i

. Also called the
data.

�
NS

Nonspecific binding for the overall model. While there is a nonspecific
binding contribution for every view in every mode, it is possible to
combine all these terms into a single, global term:

X

m

X

v 2V

m

⇣
e
P

�2�
m

�

�

X

iv� + e�

m,NS

⌘
!

X

m

X

v 2V

m

e�

m,NS = e�

NS

It must be stressed that alternative binding modes, including nonspecific bind-
ing, may not represent actual modes of binding. It is very likely that the addi-
tional modes might act as ‘garbage collectors,’ cleaning up unwanted sequence
biases accumulated through excessive PCR amplification or other contaminants
introduced through the experimental process.

In a multiple binding mode model, every mode has an e↵ective scaling pa-
rameter, or a ‘mode relative a�nity’ �

m

, that is useful in understanding its
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Table 2: Binding Mode Relative A�nities

Binding Mode Optimal Sequence �
m

Normalized �
m

Mode 1 ACCTGC 105.42 0.28
Mode 2 ATGAAT 371.85 1.00

Nonspecific N/A 1.92 5.17 ⇥ 10�3

Hypothetical mode relative a�nities �
m

for a model with two binding modes
and nonspecific binding. Mode 2 is the primary mode.

contribution to 
i

relative to the other modes. E↵ectively, �
m

represents the
di↵erence in the optimal a�nities for each mode - for example, consider a model
with two binding modes and nonspecific binding as given in Table 2. �

m

is
then the a�nity contribution (12) of the optimal sequence for the given mode.
The mode with the highest possible a�nity contribution is called the ‘primary
mode.’ Normalizing the �

m

values results in a standardized representation of
mode strength.

Similar to the R0 bias model, we will work with the log likelihood

log L =
X

i

c
i,1

log(p
i,0


i

) � n log Z. (16)

and its gradient
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where
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The Hessian is a useful tool for functional analysis and forms a critical compo-
nent of the gradient-based minimizers used to optimize NRLB (Appendix B).
It can be evaluated with
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where the gradients are the same as before and where

@2
i
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Table 3: Data Matrix X
N,o

for ATGGATC

1 2 3 4 5 6 7

A 1 0 0 0 1 0 0
C 0 0 0 0 0 0 1
G 0 0 1 1 0 0 0
T 0 1 0 0 0 1 0

Description of Features

So far, our discussion of NRLB has remained agnostic with regards to the types
of features � used, with the one caveat that all features must map sequence iden-
tity to a numeric ‘data’ value X

�

. However, features must be carefully selected
in order to maximize model interpretability without sacrificing computability
(Chapter 2.2). To this end, two major feature classes will be considered: those
with discrete nucleotide identities and those with continuous physical and geo-
metric parameters.

Nucleotide Identities
Transcription factor binding is primarily driven by direct readout, or the ‘recog-
nition’ of nucleotide-specific hydrogen bond donors, acceptors, and nonpolar
groups by protein amino acid residues [4]. In direct readout, the amino acid
residues recognize specific nucleotide bases at consistent positions relative to
the binding interface. Features utilizing this position-specific nucleotide infor-
mation can be used to construct simple models with straightforward biophysical
and structural interpretations [2, 3]. In the following discussion, � denotes the
number of interacting nucleotides, or the order, of the feature.

The simplest such features consist of the nucleotide (� = 1) identity at
every position within the protein binding interface [5, 6, 7, 2]. Along with the
nucleotide identity, these features have an additional position parameter o that
represents the o↵set of the nucleotide within the binding interface. For example,
consider the 7 bp binding interface below:

ATGGATC
o = 01 2 3 4 5 6

At each position o, there are a set of four nucleotide parameters {A, C, G,
T}, each with its own �

�

. Di↵erent nucleotide parameters �
�

and data X
�

can be uniquely addressed using a combination of nucleotide identity N and
position o, and can be conveniently represented as a matrix (Tables 3 and 4).
As the �

�

parameters in NRLB constitute free energies, the matrix of nucleotide
parameters can be visualized as an energy logo [2]. The complexity of position-
specific nucleotide features can be extended by accounting for the interaction
of amino acid residues with bases at two di↵erent locations within the binding
interface (� = 2). The simplest features within this class account for nucleotide
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Table 4: PSAM �
N,o

1 2 3 4 5 6 7

A �
A,1

�
A,2

�
A,3

�
A,4

�
A,5

�
A,6

�
A,7

C �
C,1

�
C,2

�
C,3

�
C,4

�
C,5

�
C,6

�
C,7

G �
G,1

�
G,2

�
G,3

�
G,4

�
G,5

�
G,6

�
G,7

T �
T,1

�
T,2

�
T,3

�
T,4

�
T,5

�
T,6

�
T,7

identity at adjacent positions o and o + 1, and are called nearest neighbor or
‘dinucleotide’ interactions [8, 3, 9]. As such, there are a total of 16 dinucleotides:

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT

As each feature spans two consecutive positions, there are a total of k � 1
dinucleotide positions within a binding interface of length k.

Non-nearest neighbor features further generalize dinucleotides to account for
longer range interactions at positions o and o + s, where s > 1. Significantly,
non-nearest neighbor interactions have the same dimensionality per position as
dinucleotide features despite spanning a longer physical range. For example,
consider the non-nearest neighbor features for s = 2:

ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT
GNA, GNC, GNG, GNT, TNA, TNC, TNG, TNT

Here, N represents aNy base. As such, there are only k�s positions for any non-
nearest feature set included in the model. Despite the statistical and numerical
advantages a↵orded by a compact parameterization, such features have not been
properly explored by other methods [10], which favor far more complex higher-
order feature sets.

Higher-order features account for the interaction between three or more adja-
cent nucleotides within the binding interface. Previously used features include
trinucleotides (� = 3; [11]) and tetranucleotides (� = 4; [12]). Unlike the
non-nearest neighbor features, the dimensionality of these higher order features
grows exponentially (4�) - possibly resulting in a significant overparameteriza-
tion of the feature space (Appendix A), introducing both convergence issues
and error-prone parameter estimates. For the remainder of this study, we will
focus on nucleotide and dinucleotide features and leave the implementation of
non-nearest neighbor features for the future.

Physical and Geometric Parameters
Studies have shown that nucleotide interactions can impact DNA conformation
[4, 13]. The recognition of this sequence-dependent 3D structure of DNA, or
shape readout, has been shown to contribute to binding [14] and used to build
more complete models of transcription factor a�nity [11, 15]. In shape readout,
protein residues recognize modulations to DNA structure at specific positions
within the binding interface. Position-specific shape features can be used in
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Table 5: DNA Shape Table from [16]

Pentamer MGW [Å] Roll [�] Helical Twist [�] Propeller Twist [�]

...
...

AGCTC 4.63 -3.25 37.66 -0.83
AGCTG 4.8 -2.49 37.48 -1.38
AGCTT 4.14 -3.24 32.14 -1.56

...
...

conjunction with nucleotide features to construct models with direct structural
interpretations.

Recently, a high-throughput, in silico method was developed to estimate lo-
cal DNA shape parameters using pentamer DNA sequences [16]. This method
relates DNA shape parameter values at a given o↵set o to the local pentamer se-
quence context centered at o through pre-computed lookup tables. For example,
consider the sequence below:

GACTCAGCTGGTTCC
"
o

The pentamer sequence highlighted in red, starting at o�2 and ending at o+2,
can be used to extract values for DNA minor groove width (MGW), roll, helical
twist, and propeller twist at position o from the shape table (Table 5). For
every shape feature, k DNA shape parameters �

�

can be added for a binding
interface of length k and data X

�

is the shape value at a given position within
the interface. However, knowledge of two additional bases flanking the interface
is required to extract shape values at its edge, owing to the unique configuration
of the pentamer table. While NRLB was designed to incorporate shape features,
their impact will not be explored in this work.

Minimization and Model Selection

In designing NRLB, we wanted a method that builds maximally interpretable
binding models with minimal prior information about the protein’s binding pref-
erences. The latter goal is especially relevant in de novo motif discovery set-
tings where there is no knowledge of a protein’s binding preferences. Ideally,
experimental data should guide the inference and selection of these models; the
most natural framework for achieving this goal given our model (6) is maximum
likelihood estimation (MLE) and its associated metric of success, the log like-
lihood. However, due to the non-convexity of NRLB ’s likelihood (Chapter 2.3,
Appendix B), models with the best likelihood may not be physically accurate or
relevant, especially when constructed on low-quality data (Figure 1). To further
complicate matters, model performance and interpretability can be sensitive to
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Figure 1: Energy logos of the primary modes and the negative log-likelihood
per read of two TFAP2C NRLB models. Both models were fit with two reverse
complement symmetric modes of length k = 15 with nonspecific binding. (Left)
l
f

= 2 (Right) l
f

= 4; this model corresponds to the known TFAP2C recognition
mode.

Table 6: NRLB Hyperparameters

Symbol Definition

m
t

Total number of recognition modes
k
0

Length of kmer features used in R0 Bias model
k or k

m

Binding interface length for mode m
l
f

Length of flanking region
M Symmetry configuration
NS Is nonspecific binding used?
Di Are dinucleotide features included?

For Multiple Binding Mode Models Only:
k0

m

Starting binding interface length for mode m
kf

m

Final binding interface length for mode m

hyperparameter settings (Table 6) and the random initialization used by the
minimization algorithms.

To address these issues, special minimization methods were developed to
‘lead’ the L-BFGS optimization algorithm (Appendix B) to consistently pro-
duce models concordant with our biological (heuristic) understanding of binding
activity with minimal post hoc analysis. Each methodology addresses a unique
pathology of both the model and SELEX data, and are combined to produce a
robust and powerful inference framework.

Single Mode Hyperparameter and Shift Search
We readily find acceptable single mode models when training on high-quality
datasets; however, multiple selection modes may required if contamination or
biases exist within the data. Surprisingly, even in the simplest case where a sin-
gle mode, nucleotide-only model is fit to high quality data, there is no guarantee
that the first converged model (or solution) is either the most optimal or in-
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terpretable. In fact, most initial solutions inadequately capture the preferences
within the protein binding interface. Generally, a sweep over the hyperparame-
ters l

f

and k
m

must be performed in order to identify optimal settings (Figure
2).

In theory, for a given set of hyperparameters, the minimization methods will
find a binding model that captures a majority of the sequence specificity con-
tained within the true protein binding interface. However, in practice, NRLB
can represent the true binding interface at any o↵set within the binding mod-
els it learns, and therefore ignore significant binding preferences. Additionally,
there is no way to ‘anchor’ the appropriate o↵set without providing prior infor-
mation. This complication arises from the non-convexity of the NRLB objective
function (Appendix B), and traditionally would require an exhaustive and com-
putationally expensive search for all possible solutions to identify the model
with the appropriate o↵set. Fortunately, the optimal o↵set can be discovered
by ‘hopping’ from one solution to another by shifting the position specific pa-
rameters to the left and right. Starting from an initial solution found from an
unseeded fit, the parameters can be cycled to the left and right by one base and
used as a seed for a new fit. This process can be repeatedly applied, increment-
ing or decrementing a ‘shift o↵set’ with every application (Figure 3), and allows
us to rapidly explore the space of all solutions. Once a series of solutions have
been found, the model with the highest likelihood is selected.

Fitting Dinucleotide Parameters
Adding dinucleotide features to the optimal nucleotide-only model found from a
single mode hyperparameter and shift search (described above) can be used to
seed a nucleotide and dinucleotide model fit. This seed contains nonzero values
only for nucleotide and nonspecific binding parameters. Seeding in this manner
not only speeds up convergence, but attempts to find a model that corresponds
to the best (and hopefully most concordant) nucleotide-only model fit. After
the initial solution with nucleotide and dinucleotide features is found, the same
shift search described above can be used to identify additional, related models.

Iterative Mode Discovery
When building models with multiple recognition modes, we rely on the meth-
ods described above to iteratively add and ‘discover’ additional modes. The
methodology is outlined in detail below.

1. Fit Nucleotide Only Models Regardless of the desired feature set,
all multiple mode fits begin by learning nucleotide-only models using the
following process.

(a) A single mode fit with length k0

1

(the starting length of the first mode)
is fit using the shift search method described above. The shift with
the highest likelihood is selected.

(b) The nucleotide parameters for the previous fit are frozen and an
additional mode with length k0

2

is added. The model is fit using the
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Figure 2: Energy logos for various single mode nucleotide-only Exd-Scr mod-
els with nonspecific binding. As k

m

is increased from 8 bp to 18 bp in 2 bp
increments, l

f

is increased from 0 bp to 6 bp in 1 bp increments.
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Figure 3: Energy logos for di↵erent shift o↵sets for single mode nucleotide-only
Exd-UbxIVa models with nonspecific binding. Red and blue brackets indicate
positions used to seed fits.

shift search symmetry method applied only to this new mode. The
shift that yields the highest likelihood is selected.

(c) The model is refit after all nucleotide parameters from the previous
modes in the model are unfrozen.

(d) The process returns to step (b) for each additional mode until the
desired number of modes is reached.

2. Expand Binding Interface Once the desired number of modes is reached,
the binding interface of each mode m can be iteratively increased to the
desired maximum length kf

m

. In each step, a new nucleotide fit is seeded
by adding one additional position to the left and right of the model learned
in the previous step. This ‘growth’ step is simultaneously performed for
all modes until all modes have achieved their target length.

3. Add Dinucleotide Features If dinucleotide features are necessary, each
mode’s nucleotide parameters can be used as seeds for a nucleotide and
dinucleotide fit as described above.

All steps throughout this process maintain the symmetry status M.

Seeding
In some instances, it may be useful to see if the data supports any hypotheses
regarding particular recognition modes. These hypotheses can be easily tested
by initializing the optimization algorithm with a best guess for the hypothesis
(a parameter seed) and comparing it with the final converged solution. This
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seeding-and-converging process is straightforward when dealing with a single
recognition mode, but requires an intermediate step to work e↵ectively with
multiple mode models. Each mode’s relative a�nity parameter �

m

defines the
relative contribution of each mode to the overall selection rate 

i

. The con-
tribution of each mode is somewhat dataset dependent, and can vary based
on TF concentration and other experimental factors. As such, these scaling
parameters must be set appropriately when seeding a multiple mode model to
prevent the solver from drifting to another solution; however, it is not possible
to know the relative scaling between seeded modes beforehand. This di�culty
can be addressed with ‘mode regression,’ an inference methodology where only
the mode relative a�nities �

m

are learned while the seeded feature parameters
remain frozen for every recognition mode. Mode regression e↵ectively optimizes
(6) over �

m

, with the selection rate given by


i

=
X

m

�
m

X

v 2V

m

e
P

�2�
m

�

�

X

iv� + �
NS

e�

NS (19)

Once the appropriate �
m

values are learned, they can be absorbed into the
nucleotide parameters of mode m (Chapter 2.3) and all feature parameters can
be unfrozen and fit as before.

2 Numerical Methods

We will focus on elucidating numerical methods for evaluating the likelihoods
and their derivatives for both the R0 Bias model and NRLB here. Dynamic
programming methods used to evaluate partition functions for both models, as
well as techniques to condition NRLB parameters and compute their errors, will
be discussed at length. In addition, we will explore the implications of NRLB ’s
various symmetries and invariances.

2.1 Model Evaluation

R0 Bias Model

We begin with methods for evaluating the log likelihood for an R0 Bias model
with k

0

-mer features:

log L =
X

i

c
i,0

log w
i

� n
0

log Z
0

Here, n is simply the total number of reads in the R0 library. We can split up
the evaluation of the log likelihood into two components: one which deals with
the ‘data’ term c

i,0

log w
i

, and the other which deals with the partition function
Z

0

. Substituting the definition of w
i

(7) into the data term gives

X

i

c
i,0

log w
i

=
X

i

c
i,0

log
⇣
e
P

�2�0
�

�

X

i�

⌘
=

X

i

c
i,0

X

�2�0

�
�

X
i�
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Swapping the summation order gives
X

i

c
i,0

X

�2�0

�
�

X
i�

=
X

�2�0

�
�

X

i

c
i,0

X
i�

| {z }
~

D

= ~� · ~D (20)

The data term reduces to a dot product between the parameter vector ~� and
the ‘data’ vector ~D that represents the total k-mer counts within the dataset.
As ~D is constant for any dataset, (20) can be computed rapidly. The partition
function can be evaluated using dynamic programming techniques (see below).

The gradient of the log likelihood of the R0 Bias model is then given by

@ log L
@�

�

= D
�

� n
0

Z
0

X

i

X
i�

e
P

�2�0
�

�

X

i�

| {z }
r

�

Z0

(21)

The first term is simply element � of the data vector from before, while the
second term is the weighted average of feature � of the partition function Z

0

, or
r

�

Z
0

. Once again, dynamic programming techniques will be used to evaluate
r

�

Z
0

.

NRLB

We begin by discussing the log likelihood:

log L =
X

i

c
i

log(p
i,0


i

) � n log Z.

As before, the evaluation of the data and partition function terms can be sepa-
rated; however, unlike the R0 Bias model, brute force must be used to compute
the data term for all observed S

i

(where c
i

6= 0). The ‘sliding window’ sums
over all windows in 

i

can be e�ciently computed using bit-shifting techniques.
Dynamic programming will be used to evaluate the partition function:
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Swapping the summation order and applying p
i,0

= w
i

/Z
0

and
P

i

p
i,0

= 1
gives
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The evaluation of Z
mv

by dynamic programming methods will be discussed
later.
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Applying similar simplifications to the gradient of the log likelihood (17)
gives

@ log L
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The particular form of (24) is useful for reducing precision error during compu-
tation. Similar to the R0 Bias model, rZ

mv�

is the feature weighted average of
the partition function.

Simplifying the Hessian reduces its complexity and surfaces significant com-
monalities with the function and gradient evaluation of the log-likelihood. The
(�,  ) component of the Hessian is given by
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The four terms above can be classified as either second derivatives or outer
products of gradients. The second derivative terms are block diagonal in the
modes:
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This block structure decouples the second derivative of each mode from the rest,
simplifying the the partition function term:
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r2Z
mv� 

is zero if m(�) 6= m( ). The outer product terms can be written as
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Table 7: Shared NRLB Functional Elements

Function 
i

Z r
i

rZ r2
i

r2Z

log L X X
r log L X X X X
r2 log L X X X X X X

where
rZ

�

=
X

⌫ 2V

m(�)

rZ
mv�

Functional elements shared between the log likelihood, its gradient, and its
Hessian can exploited to compute lower-order functions at virtually no cost.
For example, computing the Hessian implicitly requires the computation of all
the elements required to evaluate both the log likelihood and its gradient, and
as such, each component only has to be evaluated once (Table 7).

2.2 Dynamic Programming Techniques

Both the R0 Bias model and NRLB require the evaluation of partition functions
and their derivatives for all 4l probes in the universe. Unfortunately, brute force
evaluation of these sums would consume significant computational resources
and make iterative optimization algorithms (Appendix B) prohibitively expen-
sive to use. Alternative approaches involving sampling can drastically reduce
computational time, but run the risk of introducing biases. However, dynamic
programming approaches dramatically reduce the computational complexity of
evaluating Z from exponential to linear in probe length by leveraging the struc-
ture of the models. As the selection rate 

i

in NRLB involves the R0 frequency
as predicted by the R0 Bias model, the approaches for evaluating Z will build
upon those developed for Z

0

.

Z
0

and its Derivative

Partition functions can be evaluated either in their ‘natural’ free energy space
as an exponentiated sum of parameters or in the more awkward a�nity space
as a product of a�nities:

Z
0

=
X

i

w
i

=
X

i

e
P

�2�0
�

�

X

i� =
X

i

Y

�2�0

↵
X

i�

�

An example of how w
i

can be represented as a product of terms is shown in
Table 8 for the first eight sequences for a model where l = 3 and k

0

= 2.
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ATCGATTGGTSequence

Window � 1

Sub-kmer

Base

ATT
+ GATT
+ GAT

Figure 4: Sequence indices used in the partition function recursion relations.

Table 8: Explicit w
i

Expansion

Sequence w
i

Expansion

AAA ↵
AA

↵
AA

AAC ↵
AA

↵
AC

AAG ↵
AA

↵
AG

AAT ↵
AA

↵
AT

ACA ↵
AC

↵
CA

ACC ↵
AC

↵
CC

ACG ↵
AC

↵
CG

ACT ↵
AC

↵
CT

...
...

Summing over these expansions highlights a factorization for Z
0

:

Z
0

=
X

i

w
i

= w
AAA

+ w
CAA

+ w
GAA

+ w
TAA

+ · · ·

= ↵
AA

↵
AA

+ ↵
CA

↵
AA

+ ↵
GA

↵
AA

+ ↵
TA

↵
AA

+ · · ·
= (↵

AA

+ ↵
CA

+ ↵
GA

+ ↵
TA

) ↵
AA

+ · · ·

This factorization provides insight into a recursive scheme for calculating Z
0

; in
the expansions above, the identity of the second feature is dependent only on
the second base of the first feature:

AAA: ↵
AA

↵
AA

ACA: ↵
AC

↵
CA

As such, only ‘sub-kmers’ of length k�1 need to be tracked in the recursion. The
following quantities and indices will be used to describe the recursion relations
(Figure 4):

j index of the current ‘window’ o↵set within a probe sequence being
evaluated; a window consists of k-bp starting at position j within
the sequence. There are l�k+1 windows in any sequence on the
forward strand, and more if the flanks are considered. For exam-
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ple, tetramer (k = 4) windows in the sequence ATCGATTGGT
are

j kmer

1 ATCG
2 TCGA
3 CGAT
4 GATT
...

...

f the sub-kmer currently in question. Sub-kmers are the set of
kmers of length k � 1.

b identity of the nucleotide being added. b + f refers to the kmer
� obtained by concatenating b with f on the right. b + f refers
to the sub-kmer one gets by considering the leftmost k � 1 bases
of f + b. For example, let f = ATT and b = G. Then b + f =
GATT and b + f = GAT.

Z
0

(f, j) the partial partition function at window j for sub-kmer f .

Z
0

(f, j, �) the partial partition function at window j for sub-kmer f and
feature �.

The recursion relation for Z
0

is then

Z
0

(f, j) =
X

b

Z
0

(b + f, j � 1) · ↵
b+f

8 f (28)

Z
0

=
X

f

Z
0

(f, final) (29)

Using the example in Figure 4, the expansion in (28) for f = ATT is

Z
0

(ATT, j) =Z
0

(AAT, j � 1) · ↵
AATT

+ Z
0

(CAT, j � 1) · ↵
CATT

+

Z
0

(GAT, j � 1) · ↵
GATT

+ Z
0

(TAT, j � 1) · ↵
TATT

When flanking sequences are not considered, the recursion can be initialized
with

Z
0

(f, 1) =
X

b

↵
b+f

8 f

When considering flanking sequences, the initialization is even simpler:

Z
0

(f, 0) =

(
1, f = flank

0, otherwise

where flank refers to the k � 1 rightmost bases of the left flanking sequence.
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r
�

Z
0

is the sum of w
i

weighted by the presence of feature �:

r
�

Z
0

=
X

i

X
i�

w
i

=
X

i

X
i�

e
P

�2�0
�

�

X

i� =
X

i

X
i�

Y

�2�0

↵
X

i�

�

The sum above only counts those sequences where X
i�

6= 0; consequently, any
systematic recursion method must account for the existence of feature � at any
window j in the sequence. One approach isolates all sequences containing �
for a given j. For example, consider all sequences containing the kmer feature
� = AA for the previous model where l = 3 and k

0

= 2:

j Sequences

1 AAA AAC AAG AAT
2 AAA CAA GAA TAA

Summing over these sequences and factorizing gives

r
AA

Z
0

=
X

i

X
i,AA

w
i

= ↵
AA

(↵
AA

+ ↵
AC

+ ↵
AG

+ ↵
AT

) +

(↵
AA

+ ↵
CA

+ ↵
GA

+ ↵
TA

) ↵
AA

Given this sum, the gradient for a given � can be viewed as a restricted par-
tition function expansion. These restricted expansions can be computed with
additional recursion relations designed to track specific features:

Z
0

(f, j) =
X

b

Z
0

(b + f, j � 1) · ↵
b+f

8 f

Z
0

(f, j, �) =
X

b

Z
0

(b + f, j � 1, �) · ↵
b+f

8 f (30)

Z
0

(f, j, b + f) = Z
0

(b + f, j � 1) · ↵
b+f

8 f, b (31)

Z
0

=
X

f

Z(f, final)

r
�

Z
0

=
X

f

Z
0

(f, final, �) (32)

The paired recursion relations (30) and (31) represent two simple operations:
the first updates the total sum for feature � at window j�1, or Z

0

(f, j�1, �), to
its new value at window j; this is similar to the recursion relation for computing
Z

0

(28). The second relation updates the total sum Z
0

(f, j, �) with sequences
that contain � at j. As before, the relations need be evaluated for all f , with
(31) requiring an additional evaluation over all bases b. Additionally, the order
in which the recursions are performed is crucial; for every iteration j, (28) must
be evaluated first, then (30), and (31) last. Initialization is straightforward
when flanking sequences are not considered:

Z
0

(f, 0) = 1, Z
0

(f, 0, �) = 0 8f, �
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Figure 5: Average log10 run times for Z
0

(A) and r
�

Z
0

(B) for various probe
lengths and feature orders k

0

, using both brute-force ‘sliding-window’ sums
(SW) and dynamic programming (DP) approaches. To conserve time, sliding
window evaluations were not performed for probe lengths greater than 11. The
dynamic programming evaluation for k

0

= 1 frequently took less than 1 µs per
run, resulting in significant measurement error.

If flanking sequences are used, the previous initialization method can be used
for Z(f, 0). Figure 5 compares the run times for both brute-force and dynamic
programming approaches for evaluating Z

0

and r
�

Z
0

, demonstrating near linear
time complexity for the dynamic programming approach.

Z
mv

and its Derivatives

NRLB partition functions contain two models: the R0 Bias model and the
biophysical model of the selection rate 

i

. Fortunately, as both models are
amenable to factorization, NRLB recursion relations can be built upon the
R0 Bias model methodology. However, the feature sets employed by NRLB
pose unique challenges for recursive evaluation. The following section is largely
concerned with addressing these issues.

We begin by noting that the partition functions (22), (23), and (25) do not
contain cross-mode terms; therefore, without loss of generality, the mode index
m can be dropped. The log likelihood, gradient, and Hessian partition functions
can be written as

Z
v

=
X

i

Y

�2�0

↵
X

i�

�

Y

�

0 2�

↵
X

iv�

0

�

0

rZ
⌫�

=
X

i

X
iv�

Y

�

0 2�0

↵
X

i�

0

�

Y

�

00 2�

↵
X

iv�

00

�

00

r2Z
v� 

=
X

i

X
iv�

X
iv 

Y

�

0 2�0

↵
X

i�

0

�

Y

�

00 2�

↵
X

iv�

00

�

00

58



Secondly, it should be noted that the partition functions have a specific view v
over which the specific binding terms are ‘active’ (i.e. X

iv�

6= 0 only for features
within v). For example, consider a SELEX library with a 16 bp variable region
and a model with a 10 bp binding interface; then, for an arbitrary sequence, the
active region for v = 4 is highlighted below:

active region for bias modelz }| {
GGA CTCAGCTGGT| {z }TCC

active region for selection model

Given this structure, NRLB recursion relations are identical to those for Z
0

when not in the active region.
The recursion relations for Z

0

required the usage of and iteration over kmer
windows j and sub-kmers f , which were simply kmer features of length k

0

� 1.
The selection model will require the extension of the kmer windows and sub-
kmers to ensure that all sequence-based features are represented. Consequently,
the size of the kmer windows j and f must reflect the length of the longest
sequence required to represent any R0 Bias or selection model feature. For
example, in the case where the selection model incorporates nucleotide (1 bp),
dinucleotide (2 bp), and k

0

= 6 bp, the NRLB recursion relations will use kmer
windows j of length 6 bp and sub-kmers f of length 5 bp. However, if k

0

= 3 bp,
the NRLB recursion relations need to use 3 bp windows j and 2 bp sub-kmers
f . A model with this feature set applied to the sample sequence and active
region above will have the following kmer windows (indicated in red) contribute
specific binding features:

GGACTCAGCTGGTTCC

If DNA shape features are used, a second active region can be added to reduce
the length of j. This second ‘shape’ active region has the same binding inter-
face length but is shifted 2 bp upstream to account for the unique pentamer
configuration employed by the DNA shape tables (Chapter 1); this o↵set active
window configuration keeps j to a minimum of 5 bp in length and creates an
e↵ective window o↵set of j � 2 (see example below).

Given these considerations, the following quantities will be used to describe
the recursion relations, in addition to those described earlier:

X
v,�

(b + f, j) a complex function that returns the value of feature � 2 �
given the current window j and sequence b + f for the ac-
tive view v. For sequence features, X

v,�

(b+ f, j) acts as an
indicator variable, returning either 0 or 1. For geometric
features such as DNA shape, it returns a continuous value.
For example, consider a NRLB model with nucleotide, din-
ucleotide, and MGW features using a length k

0

= 4 bias
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model with a 10 bp binding interface. Consequently, the
recursion relations must use 5 bp windows j and 4 bp sub-
kmers f . Then, for the random 16 bp sequence discussed
earlier, the sequence at j = 7 is underlined below (the active
region is in red, for v = 6):

GGACTCAGCTGGTTCC

Then, X
6,�

equals one for the nucleotide feature G at po-
sition 6 within the binding interface and the dinucleotide
feature TG at position 6, and equals the value of the MGW
for the pentamer AGCTG for the MGW feature at position
4. X

6,�

is zero for all other features. Note that the DNA
shape feature window is o↵set by 2 bp within the binding
interface.

u
v

(b + f, j) the update function representing the contribution of the se-
lection model at current window j for sequence b + f :

u
v

(b + f, j) = ↵
b+f

Y

�2�

↵
X

v,�

(b+f, j)

�

(33)

where ↵
b+f

is a contribution from an R0 model feature.
u

v

= ↵
b+f

when not in any selection model active region.

Z
v

(f, j) the partial partition function at window j for sub-kmer f at
view v.

Z
v

(f, j,�) the partial partition function at window j for sub-kmer f
and feature � at view v.

Z
v

(f, j,�, ) the partial partition function at window j for sub-kmer f
and features � and  at view v.

The recursion relations are

Z
v

(f, j) =
X

b

Z
v

(b + f, j � 1) · u
v

(b + f, j) (34)

Z
v

(f, j,�) =
X

b

Z
v

(b + f, j � 1,�) · u
v

(b + f, j) (35)

Z
v

(f, j,�) = Z
v

(b + f, j � 1) · u
v

(b + f, j) · X
v,�

(b + f, j) (36)

Z
v

(f, j,�, ) =
X

b

Z
v

(b + f, j � 1,�, ) · u
v

(b + f, j) (37)

Z
v

(f, j,�, ) = Z
v

(b + f, j � 1) · u
v

(b + f, j) · X
v,�

(b + f, j) · X
v, 

(b + f, j)

(38)

Z
v

(f, j,�, ) = Z
v

(b + f, j � 1,�) · u
v

(b + f, j) · X
v, 

(b + f, j) (39)
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Figure 6: Average log10 run times for Z
v

(A) and rZ
v�

(B) for various probe
lengths using both brute-force ‘sliding-window’ sums (SW) and dynamic pro-
gramming (DP) approaches. In both panels, k = 4, f = 4, and k

0

= 3.

The relations above need to be evaluated for all f and b (when applicable). The
partition functions can then be found by summing

Z
v

=
X

f

Z
v

(f, final) (40)

rZ
v�

=
X

f

Z
v

(f, final,�) (41)

r2Z
v� 

=
X

f

Z
v

(f, final,�, ) (42)

The previously described initialization schemes can be used for the NRLB recur-
sion relations, however care must be taken when selecting the starting window
j – the starting window is entirely dependent on the combination of features,
views v and flanks f used. Figure 6 compares the run times for both brute-force
and dynamic programming approaches for evaluating Z

v

and rZ
v�

, demon-
strating significant improvement in computational performance for the dynamic
programming approach.

2.3 Invariances and Symmetries of the Likelihood

The value of NRLB ’s log likelihood (16) does not always change when its pa-

rameters ~� change; in fact, there are permutations and transformations T of the
parameters ~� that leave its value unchanged:

log L(~�) = log L
⇣
T (~�)

⌘
(43)

NRLB is said to be invariant under T if it satisfies the above equality. This
section will discuss transformations T (~�) ! ~�⇤ satisfying this equality and how
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they can be used to produce a ‘standardized’ representation of NRLB parame-
ters.

Reverse-Complement Symmetry

In this basic symmetry, the transformation T
RC

permutes �
�

of a specific mode
in a binding model by taking their ‘reverse complement.’ For a sequence-based
feature � at position o, the reverse complement operation is

�
�, o

= �⇤
¯

�, k�o

(44)

where �̄ denotes the reverse complement of � and k is the length of the binding
interface. For all other features (such as DNA shape), the reverse complement
operation is

�
�, o

= �⇤
�, k�o

(45)

This symmetry arises from the evaluation of views on both strands, resulting
in every view having a paired reverse complement. As such, computing the
likelihood with ~beta or ~�⇤ is equivalent.

Nucleotide and Dinucleotide Invariances

At a given position o, data for nucleotide features must obey

X

b

X
b, o

= 1

where b 2 {A, C, G, T}. We can define a transformation T
N

where the param-
eters �

b, o

are uniformly shifted by �
o

:

X

b

(�
b, o

+ �
o

)
| {z }

�

⇤
b, o

X
b, o

= �
o

+
X

b

�
b, o

X
b, o
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Applying T
N

at a specific o↵set to a single mode model without nonspecific
binding gives

p
i

=

p
i,0

X

v

e
P

�2�⇤ �

⇤
�

X

iv�

+

P
� /2� �

�

X

iv�

X

i

p
i,0

X

v

e
P

�2�⇤ �

⇤
�

X

iv�

+

P
� /2� �

�

X

iv�

=

e�

o · p
i,0

X

v

e
P

�2� �

�

X

iv�

e�

o ·
X

i

·p
i,0

X

v

e
P

�2� �

�

X

iv�

=

p
i,0

X

v

e
P

�2� �

�

X

iv�

X

i

p
i,0

X

v

e
P

�2� �

�

X

iv�

demonstrating the invariance. Here, �⇤ refers to the set of features transformed
by T

N

. T
N

can be repeatedly applied at all o↵sets o within the mode; in such
a case, there is a global shift given by

� =
X

o

�
o

When the model contains multiple binding modes and/or nonspecific binding,
all modes must be rescaled by e�. For instance, consider an overall shift of � for
one mode in a model with two modes and nonspecific binding:

p
i

=

p
i,0

"
X

m

X

v 2V

m

e
P

�2�
m

�

�

X

imv� + e�

NS

#

X

i

p
i,0

"
X

m

X

v 2V

m

e
P

�2�
m

�

�

X

imv� + e�

NS

#

=

p
i,0

"
X

v 2V1

e
P

�2�1
�

⇤
�

X

i1v� + e�

X

v 2V2

e
P

�2�2
�

�

X

i2v� + e�

NS

+�

#

X

i

p
i,0

"
X

v 2V1

e
P

�2�1
�

⇤
�

X

i1v� + e�

X

v 2V2

e
P

�2�2
�

�

X

i2v� + e�

NS

+�

#

While the rescaling factor e� clearly shifts �
NS

, there are many ways to absorb
it into the parameters �

�

of a given mode. We will maintain the convention
where only the nucleotide parameters at the first o↵set (o = 1) of every mode
are shifted.
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Next, consider dinucleotide features at position o. Let B 2 {A, C, G, T},
and let X

B+b, o

and �
B+b, o

denote the data and the parameter, respectively,
for the dinucleotide feature B + b at o↵set o. + is the concatenation operation
defined earlier. If X

B, o

= 1, then data for dinucleotide features must obey

X

b

X
B+b,o

= 1 and
X

b

X
b+B,o�1

= 1

Given this, the sum
P

�2�

�
�

X
iv�

for any mode is invariant under transforma-
tions T

D

of the type

�
B,o

X
B,o

+
X

b

�
B+b,o

X
B+b,o

= (�
B,o

+ �
o

)
| {z }

�

⇤
B,o

X
B,o

+
X

b

(�
B+b,o

� �
o

)
| {z }

�

⇤
B+b,o

X
B+b,o

�
B,o

X
B,o

+
X

b

�
b+B,o

X
b+B,o�1

= (�
B,o

+ �
o

)
| {z }

�

⇤
B,o

X
B,o

+
X

b

(�
b+B,o�1

� �
o

)
| {z }

�

⇤
b+B,o�1

X
b+B,o�1

For any given o↵set o, there are only 7 unique dinucleotide invariances. We can
see this by representing T

N

and T
D

as vectors:

~�⇤ = ~� + � · ~T (46)

All invariant transformations can then be combined into a single transformation
matrix T. T for a single dinucleotide o↵set o is
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T =

~T
N

~T
N

~T
D

~T
D

~T
D

~T
D

~T
D

~T
D

~T
D

~T
D2

666666666666666666666666666666666666666664

3

777777777777777777777777777777777777777775

A
1

1 0 �1 0 0 0 0 0 0 0
C

1

1 0 0 �1 0 0 0 0 0 0
G

1

1 0 0 0 �1 0 0 0 0 0
T

1

1 0 0 0 0 �1 0 0 0 0
A

2

0 1 0 0 0 0 �1 0 0 0
C

2

0 1 0 0 0 0 0 �1 0 0
G

2

0 1 0 0 0 0 0 0 �1 0
T

2

0 1 0 0 0 0 0 0 0 �1
AA

1

0 0 1 0 0 0 1 0 0 0
AC

1

0 0 1 0 0 0 0 1 0 0
AG

1

0 0 1 0 0 0 0 0 1 0
AT

1

0 0 1 0 0 0 0 0 0 1
CA

1

0 0 0 1 0 0 1 0 0 0
CC

1

0 0 0 1 0 0 0 1 0 0
CG

1

0 0 0 1 0 0 0 0 1 0
CT

1

0 0 0 1 0 0 0 0 0 1
GA

1

0 0 0 0 1 0 1 0 0 0
GC

1

0 0 0 0 1 0 0 1 0 0
GG

1

0 0 0 0 1 0 0 0 1 0
GT

1

0 0 0 0 1 0 0 0 0 1
TA

1

0 0 0 0 0 1 1 0 0 0
TC

1

0 0 0 0 0 1 0 1 0 0
TG

1

0 0 0 0 0 1 0 0 1 0
TT

1

0 0 0 0 0 1 0 0 0 1

The rank of this matrix, which is equivalent to the number of unique invariances,
is 9, implying that there are only 7 dinucleotide invariances. The vector repre-
sentation of T

N

and T
D

used above will prove useful for defining a standardized
representation of NRLB models.

Standardized Representations

The invariant transformations described above define directions that form the
null space of the Hessian (18) and represent an over-parameterization of our
model. Movement along these ‘null vectors’ does not contribute to a change in
the log likelihood (16) - in other words, we can arbitrarily add any number of
null vectors to the model parameters � without changing our predictions (46).
We can remove this degeneracy by orthogonalizing � relative to the orthonormal
basis computed by the QR Decomposition of T. Removing this degeneracy is
critical for the comparison of di↵erent models (Figure 7).
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Figure 7: (A, B) Comparison of two ATF4 models trained on di↵erent datasets.
(A) Unnormalized nucleotide and dinucelotide parameters show no agreement,
suggesting that the two models represent alternative binding modes. (B) Nor-
malized parameters show that the models are fairly similar and represent the
same binding mode. (C, D) Comparison of two models trained on data from
di↵erent p53 variants. (C) Unnormalized nucleotide and dinucleotide parame-
ters show no agreement, suggesting that the two variants have di↵erent DNA
binding specificities. (D) Normalization shows that the models trained on the
two variants have nearly identical binding specificities.
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Figure 8: Energy logos for Max corresponding to an unconstrained (� = 0)
and a regularized (� = 1 ⇥ 10�6) fit shown in Figure 9. The unconstrained
model contains parameters with extremely large values (note scale), while the
regularized model displays more rational parameter values.

2.4 Parameter Conditioning

For some SELEX-seq datasets, we discovered that NRLB consistently discovered
models with extremely large parameter values, inconsistent with the known
range of relative a�nities of the transcription factor in question (Figure 8). This
behavior is indicative of the model overfitting to data-specific biases [17]. Ideally,
we should penalize these ‘run-away’ parameters from growing too large while
ensuring that the predictions of the remaining parameters remain unchanged.
Regularization is a commonly used statistical technique to achieve these aims
[17]. Of the many penalty functions used as regularizers, the L

2

norm (also
known as ridge regression) is the most appealing for us; it is easy to implement
and is both smooth and convex, fitting perfectly within our existing optimization
framework [[18]; Appendix B]. The modified likelihood is then

L0(~� | data) = L(~� | data) + n�
X

�

�2

�

(47)

where the parameter � is a per-read weight used to control the strength of the
regularization term.

In order to understand the impact of the L
2

penalty on NRLB models, we
compared �

�

and Hessian eigenvalues for di↵erent values of � on three di↵erent
datasets: the previously discussed dataset that produced models with run-away
parameters (Figure 9A) and two where no such issues were found (Figure 9B,
C). Our results suggest that adding a very weak L

2

norm - 1⇥10�6 per read - is
su�cient to control parameter values without fundamentally altering the other
parameter values, or even the local structure of the function.

From a Bayesian perspective, the L
2

penalty is equivalent to the addition of
a Gaussian prior [17], and can appear to violate our modeling goals. However,
it should be noted that the impact of the penalty on log likelihood is roughly
7 orders of magnitude smaller than that of the data (for a typical SELEX
library design). As such, this ‘prior’ can be considered highly uninformative
and be viewed more as a perturbation that aids in convergence and prevents
the occurrence of unreasonable parameter values.
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Figure 9: Parameter values and eigenvalues of the Hessian as a function of
regularization strength � for various fits. (A) Models for Max; unconstrained
model (� = 0) contains parameters with extremely large values. Regularization
with the desired weight (black dashed line) does not significantly alter eigenvalue
structure yet e↵ectively controls parameter values. PSAMs for both cases shown
in Figure 8. (B) Models for Exd-Labial; regularization at the desired weight
(black dashed line) does not alter either the parameters or the eigenvalues in
a significant way. (C) Models for Exd-Scr; once again, regularization at the
desired weight does not alter the parameters or eigenvalues in a significant way.
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2.5 Parameter Error

We can use the Hessian (18) to estimate the standard errors of the maximum
likelihood estimates. We rely on the convergence of maximum likelihood esti-
mates �̂

�

, in distribution, to the normal distribution:

�̂
�

⇡ Normal(�
�

, [J(~�)]�1

��

)

where J�1

��

is (�, �) element of the inverse of the expected Fisher Information
matrix. However, we will use the observed Fisher Information matrix J0 instead,
as it is easier to compute and is preferred over the expected Fisher Information
matrix [19]. J0 is given by

J0(�̂) = �r2 log L(~�)|
~

�=

ˆ

�

= �H|
~

�=

ˆ

�

where H is the Hessian. The standard error for �̂
�

is given by

Var(�̂
�

) =
q

[J0(�̂)]�1

��

(48)

Due to the overparameterization of NRLB and the existence of a null space,
the inverse of its Hessian is not defined.2 From our earlier discussion (Chapter
2.3), these null directions carry no useful information and can be ignored by
computing the pseudoinverse. Alternatively, the Hessian can be inverted in the
true parameter space via Jacobian transformations - this method was not pur-
sued as it is less flexible. Unfortunately, the standard pseudoinverse fails when
L

2

regularization and symmetrization are used in learning an NRLB model.
It is relatively straightforward to deal with symmetrization - if they exist,

the inversion operation should take place in the reduced space. Handling the
addition of the L

2

norm is more involved, as it breaks the invariance relations
discussed in Chapter 2.3 and results in a full-rank Hessian. As the smallest
diagonal entries are no longer zero, the error estimates are completely dominated
by the highly uninformative contribution of the L

2

norm. Given that it is a weak
perturbation, the null directions of the original likelihood are still irrelevant and
should be removed. In fact, the value of � was chosen to avoid altering the
functional landscape near the solution. Expressing the inverse of the Hessian of
the augmented likelihood, H0�1, in terms of H informs a strategy for removing
the impact of the L

2

norm on estimating parameter errors:

H0 = H + 2�I = VDV| + 2�I = VDV| + 2�VV|I = V(D + 2�I)V|

H0�1

= V(D + 2�I)�1V|

Here, V is a unitary matrix that diagonalizes H and D is a diagonal matrix
consisting of the eigenvalues of H. This relation suggests that the original null
vectors can be identified by subtracting 2� from the eigenvalues of H0. The
modified pseudoinverse is outlined in Algorithm 1.

2
For a square matrix H, the inversion operation is not defined if null vectors exist, as they

have zero eigenvalues.
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Algorithm 1 Psuedoinverse with Symmetry and the L
2

Norm

function Psuedoinverse (H)
✏ 1⇥ 10�14 . Define tolerance limit
[V, D] eig

�
1

2

(H + H|)
�

. Eigendecomposition of H
⇠  diag(D)� 2� . Remove L

2

component
for i = 1 to length(⇠) do . Set null vectors to 0

if ⇠
i

< ✏ · max(|⇠|) then
D

ii

 0
end if

end for
[V, D] eig(MVDV|M|) . Eigendecomposition in reduced space
D0  D
⇠  diag(D)
while true do . Compute psuedoinverse

for i = 1 to length(⇠) do . Invert the diagonal matrix D
if ⇠

i

< ✏ · max(|⇠|) then
D0

ii

 0
else

D0
ii

 1/D
ii

end if
end for
H�1  VD0V|

if H�1

ii

> 0 8 i then . Test if pseudoinverse succeded
return M|H�1M . Return inverse in full space

else
✏ 10 · ✏ . Decrease tolerance otherwise

end if
end while

end function
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Table 9: Parameter Settings for R0 Synthetic Data

l k
0

KM

9 3, 4, 5
100 to 1, 000 in steps of 100

2, 000 to 10, 000 in steps of 1, 000
10 3, 4, 5, 6
11 4, 5, 6

3 R0 Bias Model Validation

This chapter is concerned with demonstrating the ability of our models to ac-
curately parameterize variation in SELEX and other experimental datasets.
Synthetic data will be used to verify the ability of the R0 Bias model to reliably
infer model parameters. Cross-platform validations and new experimental data
will be used to show that NRLB models generalize well to other datasets and
match or exceed the performance of other methods. Lastly, we will show that
NRLB provides reliable models even under adverse conditions.

3.1 Synthetic Data

The ability of the R0 model to reliably infer parameters was characterized using
synthetic data simulating the initial pool of SELEX probes, assuming it follows
the distribution defined by (9) that does not go into the flanking region. The
synthetic data was generated by drawing a fixed number of reads from this
distribution using random parameter values �

�

that were first drawn from a
normal distribution with µ = 0 and � = 1 and then shifted so that the largest
value is 0. Numerous random parameter sets were generated for di↵erent l and
k
0

values given in Table 9. Sequencing depth (or the total number of draws
from the given distribution) was represented in terms of the ‘kmer multiplicity’
KM , or the expected k

0

-mer count of a uniformly random SELEX library with
probe length l. KM is a natural parameterization of the sequencing depth,
as the accuracy of inferred the parameters should increase with the number of
observations of every k

0

-mer in the dataset. Sequencing depth is then

# reads =
4k

l � k + 1
· KM

For every random parameter set, numerous synthetic datasets were gen-
erated for di↵erent values of KM shown in Table 9; this scheme allows us to
test the relationship between parameter accuracy and sequencing depth. Actual
parameter values were compared to those inferred from models fit to synthetic
data using coordinate search (Appendix B; Figure 10). Our results indicate
that the R0 Bias model accurately recovers parameter values, especially for
kmer multiplicities is near 10000. Practically, this result is promising, as it
is easy to achieve such kmer multiplicities from real data - for example, it is
fairly inexpensive to sequence the roughly 3.7 million reads required to achieve
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Figure 10: Selected comparisons of actual and inferred parameter values for
the R0 Bias model using synthetic data constructed for di↵erent l = 9 (A),
l = 10 (B), and l = 11 (C). In each panel, the same set of �

�

values are used to
generate the synthetic datasets. k

0

= 5 in all panels.

KM = 10, 000 when building a model with k
0

= 6 on a SELEX library design
where l = 16.

In these experiments, the k
0

value used to generate the synthetic data was
provided to the model. However, the true value of k

0

will not be known for
experimental data a priori ; rather, the cross-validation method described in
Chapter 1.2 must be used. To verify that cross-validation can correctly iden-
tify the appropriate k

0

, paired test and training synthetic data with identical
sequencing depth was generated for l = 9 and k

0

= 1, 2, or 3 using the process
described above. Every synthetic dataset was fit with models using k

0

values
ranging from 1 through 6. Performance on the test datasets was measured using
the log likelihood; the model exhibiting the highest cross-validated likelihood
was selected. The method successfully identifies the correct k

0

value for these
test cases (Figure 11), although it is easier to do so for smaller KM .

3.2 Real Data

Next, we wanted to understand if the fixed flanking regions introduce biases in
the initial pool of reads. As we are attempting to understand the properties
of real data, it would be inappropriate to use synthetic data to address this
question. Instead, we used real experimental data in the mplex library from [1];
this dataset contains two identically prepared and multiplexed initial pools with
and form natural test and training datasets (see Table 10 for more information).
Using the L-BFGS minimizer (Appendix B), we fit models to the training data
that either included or ignored the fixed flanking regions for k

0

ranging from 1
to 7. We evaluated model performance on the test data (Figure 12) and found
that the fixed flanking regions bias predictions and noted similar behavior in
other datasets. Consequently, we decided to only use models that consider the
fixed flanking region.

Next, we wanted to assess and compare the ability of the Markov model from
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Figure 11: Plots of the test log likelihood using models trained on synthetic data
with di↵erent k

0

values. Cross-validation selects the k
0

value that produces the
lowest test log likelihood. For all cases, the lowest log likelihood values are
achieved when the train k

0

equals the actual k
0

value. In each panel, the same
set of �

�

values are used to generate the synthetic datasets. l = 9 in all panels.

Table 10: mplex Initial Pool Metadata

Type Barcode Total Reads Length Highest Count

Train CCAGCTG 6, 973, 386 16 4
Test CCACGTC 8, 428, 267 16 3
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Figure 12: Test log likelihood of models that include (black line) or ignore (red
line) the fixed flanking regions while training on data from [1].
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[1] and the R0 Bias model to accurately parameterize biases in the initial pool.
While the Markov model was able to accurately represent biases at the level of
8-mers [1], NRLB requires initial round models to represent the biases of all
probes. To quantify this, we assumed that the observed probe counts followed
a Poisson distribution and used either model to predict the frequency of all 4l

probes. Probes were then binned by expected frequency and their counts were
aggregated. The observed counts were used to compute mean and variance in
every bin (mean-variance method); in addition, the number of probes observed
twice (n

2

), once (n
1

), or not at all (n
0

) was recorded and used to compute
the ratios n

1

/n
0

and n
2

/n
0

for each bin (ratio method). For data following a
Poisson distribution with mean µ, the expected value of these ratios is given by

n
1

n
0

=
Pois (1, µ)

Pois (0, µ)
= µ and

n
2

n
0

=
Pois (2, µ)

Pois (0, µ)
=

µ2

2

We used a previously described method [1] to build a 5th order Markov
model on the training dataset discussed earlier (Table 10). Applying either the
mean-variance or count ratio method to this model shows no agreement between
the observed and expected values (Figure 13A). Surprisingly, the same analysis
applied to a k

0

= 6 R0 Bias model trained on the same data shows near-perfect
agreement between observed and expected frequencies for nearly 2.5 orders of
magnitude (Figure 13B). The more stringent ratio method highlights mild over-
dispersion at the extreme frequency ranges; this is to be expected, as fewer
observed counts in that regime lead to noisier estimates. We observed similar
trends with other datasets as well, firmly establishing the ability of our model
to accurately quantify biases within the initial pool.
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Figure 13: (A) Assessing the ability of Markov models constructed using the
approach of [1] to accurately parametrize biases in R0 at the level of the entire
probe. (Left) Probes are binned according to expected frequency; the mean
(blue circles) and variance (red dots) of observed values deviate significantly
from expectation (grey dashed line). (Right) A more sensitive analysis of the
same Markov model using the count ratio method. Probes are binned according
to expected frequency and the number of times each probe was observed; error
bars are indicated by vertical lines. The observed ratios of these count values
deviate significantly from expectation (dashed lines) assuming Poisson statistics.
(B) (Left) Mean-variance analysis as in panel A for the improved bias model
used in this work. Mean and variance are in near perfect agreement over the
entire range. (Right) Count ratio analysis for the improved bias model. There
is mild over-dispersion at extreme points.
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A R0 Bias Model Feature Selection

The model presented in Eq. 9 uses the kmer composition of each probe to
infer sequence biases in the initial R0 pool. We originally used kmer features
� consisting of all kmers of length 1 through k. For example, a bias model
considering up to 3-mer features would learn on the nucleotide, dinucleotide,
and trinucleotide kmer counts for all probes.

As a first test, we attempted to learn the model parameters used to generate
synthetic data, evaluating Eq. 9 using coordinate search (Appendix B) and
the numerical methods in Chapter 2.1. Unfortunately, we found that the MLE
estimates were unable to converge on the right model parameters, even with a
significant amount of data (the expected count of all probes > 1). We tried the
following to identify the source of the failures:

Vary probe lengths: We tested the probe length l was tested for a va-
riety of lengths (4, 6, 8, 9, and 10); this did not enable convergence to the
appropriate model parameters.

Vary feature order: We varied the feature order (or maximum k) with
which the synthetic data was generated and inferred on from 1 to 4, and found
that order 1 (nucleotide only) features resulted in consistent convergence,
regardless of probe length.

Seeding fits: Surprisingly, coordinate search was unable to converge to
the right parameters even after seeding. However, this did not occur when
nucleotide only features were considered.

From these results, it appeared that feature orders greater than 1 introduced
tight correlations between kmer features. For example, every dinucleotide fea-
ture has nucleotide feature components; AA will necessarily contain contribu-
tions from A features, GC will contain contributions from G and C features,
etc. As another example, Table 11 highlights the disproportionate contribution
of A and CG when considering feature order = 3 for the sequence ACGA. As
in the case with NRLB (Chapter 2.3, we believe this correlation results in a a
large null space and creates a continuum of optima. From these conclusions, we
restricted the feature set to only k-mers.
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Table 11: Kmer Feature Counts for ACGA

Feature Counts

A 2
C 1
G 1
AC 1
CG 1
GA 1

ACG 1
CGA 1

B Minimization Methods

Given a statistical model with parameters and data, Maximum Likelihood Es-
timation (MLE) is used to find parameter values of the statistical model that
maximize the likelihood of observing the data. Ideally, we would like to find the
global maximum of the likelihood, or the point �⇤ where

L(�⇤) � L(�) 8 � 2 domain

Finding the global maximum is guaranteed in cases where the objective function
(in this case, the likelihood) is convex (Figure 14A). However, more often than
not, one encounters convex objective functions without analytical solutions for
the maxima or non-convex objective functions with multiple minima (Figure
14B). In most situations, finding the global optimum is further complicated by
our lack of a global perspective on the likelihood, as it is often computationally
expensive to evaluate L and its derivatives. Thus, our knowledge of the objective
function is confined to local values for a small set of points.

Thankfully, it is possible to use this limited information to explore the func-
tional landscape in an intelligent manner. Starting with a best guess of the
optimal set of parameters (also known as a seed), optimization algorithms ex-
ploit this localized information to iteratively refine this guess and ‘step’ closer to
an optimum. As most statistical models place few constraints on their parame-
ters, unconstrained optimization methods are often used for MLE. A variety of
these methods exist, each utilizing di↵erent analytical methods and functional
information. Some methods rely solely on function values, while others rely
on first and higher-order derivatives to understand the curvature of the func-
tion. Methods leveraging curvature information trade-o↵ the (generally) higher
computational cost of computing derivatives for fewer, more optimal iterations
towards the maximum. However, none of these methods can guarantee finding
a global optimum in a non-convex setting.

The fitness of an optimization algorithm can be measured in its ability to
accurately and e�ciently identify minima for a given objective function. Unfor-
tunately, there is no optimization method that is ‘uniformly superior’ for both
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A Convex Objective B Non-convex Objective

Figure 14: (A) For a convex objective function, the optimization algorithm will
always converge to a unique and global maximum (green star), regardless of
the starting point (or seed, grey star) and the path it takes (black dashed line).
(B) The same does not hold true for a non-convex objective function, where
the maximum found by an optimization algorithm is dependent on both the
starting point and the path taken.

goals for all objective functions. An optimizer must be selected on both these
metrics for the specific objective function at hand. We will briefly describe two
optimization methods used in this work - a non-gradient approach called co-
ordinate search and a gradient-based optimizer called Limited-Memory BFGS.
Additionally, modifications made to the ‘standard’ algorithm and other analyt-
ical methods used to increase algorithm robustness will be discussed. Further
information regarding optimization theory can be found in [20]. For the remain-
der of the discussion, we will follow convention and discuss the minimization of
the negative of objective function f(x), rather its maximization.

B.1 Optimization Algorithms

Coordinate Search

The coordinate search algorithm belongs to the direct search family of opti-
mization methods. Coordinate search was one of the earliest (and simplest)
iterative algorithms used for optimization; characterized as ‘slow but sure,’ it
was used by Enrico Fermi and Nicholas Metropolis to fit pion-proton scattering
data in the early 1950’s [21]. Its simplicity originates from the intuitive way it
explores parameter space by evaluating the objective function. An outline of
the algorithm is presented below, and a sample search trajectory is illustrated
in Figure 15 for the Broyden tridiagonal function.

1. Coordinate Search: Start with step size �. For each parameter i, see if
stepping forward’ x

i

+ � or backward’ x
i

� � improves the function value.
If it does, keep the value of the new position. If it does not, move to the
next parameter.

2. Reduce Step Size: If the searching process does not improve the func-
tion value for any parameter, then halve the step size and start again.
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(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic di↵erentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)
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(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic di↵erentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)
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390 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic di↵erentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)
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(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic di↵erentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)
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390 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic di↵erentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)
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390 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic di↵erentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)
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Figure 15: Five iterations of coordinate search when applied to the Broyden
tridiagonal function starting from A. Figure adapted from [21].

3. Declare Convergence: The algorithm terminates when the step size
goes below a preset threshold.

The implementation of coordinate search used in this work has modified this
algorithm, allowing it to randomly select the order in which the parameters are
varied and move in directions perpendicular to the null vectors of the objective
function.

L-BFGS

Limited-Memory BFGS, or L-BFGS for short, is a quasi-newton method that
uses gradients to find local minima for smooth functions. Broadly speaking, L-
BFGS falls under the line search family of optimization methods. These methods
transform a multi-dimensional unconstrained optimization problem into a series
of sequential 1D optimization subproblems. Each 1D subproblem optimizes the
objective function along a search direction p

k

, selecting the next iterate x
k+1

by finding a step size ↵
k

that reduces the function value. Here, k refers to the
current ‘step’ in the iterative process. While the ideal choice for ↵

k

for each
subproblem would be

min
↵>0

f(x
k

+ ↵
k

p
k

),

it is (in general) computationally expensive to find this value; instead, inexact
line search methods are used.
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40 C h a p t e r 3 . L i n e S e a r c h M e t h o d s

slope
desired

line of sufficient
decrease
l(α )

acceptable

α

φ (α ) = αpf(x + kk )

acceptable

Figure 3.5 Step lengths satisfying the Wolfe conditions.

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.
Suppose that f : IRn → IR is continuously differentiable. Let pk be a descent direction at

xk , and assume that f is bounded below along the ray {xk + αpk|α > 0}. Then if 0 < c1 <

c2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

Proof. Since φ(α) # f (xk + αpk) is bounded below for all α > 0 and since 0 < c1 < 1,
the line l(α) # f (xk) + αc1∇f T

k pk must intersect the graph of φ at least once. Let α′ > 0
be the smallest intersecting value of α, that is,

f (xk + α′pk) # f (xk) + α′c1∇f T
k pk. (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than α′.
By the mean value theorem, there exists α′′ ∈ (0,α′) such that

f (xk + α′pk) − f (xk) # α′∇f (xk + α′′pk)T pk. (3.9)

( + )

curvature
condition

40Chapter3.LineSearchMethods

slope
desired

line of sufficient
decrease
l(α)

acceptable

α

φ(α)=αp f(x+k k)

acceptable

Figure3.5SteplengthssatisfyingtheWolfeconditions.

with0<c1<c2<1.TheonlydifferencewiththeWolfeconditionsisthatwenolonger
allowthederivativeφ′(αk)tobetoopositive.Hence,weexcludepointsthatarefarfrom
stationarypointsofφ.

ItisnotdifficulttoprovethatthereexiststeplengthsthatsatisfytheWolfeconditions
foreveryfunctionfthatissmoothandboundedbelow.

Lemma3.1.
Supposethatf:IR

n
→IRiscontinuouslydifferentiable.Letpkbeadescentdirectionat

xk,andassumethatfisboundedbelowalongtheray{xk+αpk|α>0}.Thenif0<c1<

c2<1,thereexistintervalsofsteplengthssatisfyingtheWolfeconditions(3.6)andthestrong
Wolfeconditions(3.7).

Proof.Sinceφ(α)#f(xk+αpk)isboundedbelowforallα>0andsince0<c1<1,
thelinel(α)#f(xk)+αc1∇f

T
kpkmustintersectthegraphofφatleastonce.Letα′>0

bethesmallestintersectingvalueofα,thatis,

f(xk+α′p
k)#f(xk)+α′c

1∇f
T
kpk.(3.8)

Thesufficientdecreasecondition(3.6a)clearlyholdsforallsteplengthslessthanα′.
Bythemeanvaluetheorem,thereexistsα′′∈(0,α′)suchthat

f(xk+α′p
k)−f(xk)#α′∇f(xk+α′′p

k)
T
pk.(3.9)

sufficient decrease 
condition

acceptance 
region

acceptance region

Figure 16: Step lengths ↵
k

satisfying the Wolfe Conditions. Points below the
black dashed line satisfy the su�cient decrease condition. Regions with slopes
in between the grey lines satisfy the curvature condition and are highlighted by
the blue bar. The acceptance regions satisfy both conditions. Figure adapted
from [20].

Inexact line search methods find an ↵
k

that satisfies the Wolfe conditions:

Su�cient decrease f(x
k

+ ↵
k

p
k

)  f(x
k

) + c
1

↵
k

rf |
k

p
k

Minimum curvature rf(x
k

+ ↵
k

p
k

)|p
k

� c
2

rf |
k

p
k

Intuitively, the first condition enforces a minimum decrease in the objective
function proportional to the length of the step taken, while the second condi-
tion prevents the first condition from taking unacceptably small steps when the
gradient is still highly negative (Figure 16). Two inexact line search implemen-
tations are used in this work - Algorithm 3.2 from [20] or the one described in
[22].

For most line search methods, including the ones discussed above, p
k

must
be a descent direction:

p|
k

rf
k

< 0

The two most commonly used descent directions are the steepest descent di-
rection (�rf

k

), which relies on the gradient, and the Newton direction (p
k

=
�r2f�1

k

rf
k

), which relies on the Hessian. While the Newton direction gener-
ally results in faster convergence, especially near the minimum, the high cost
of computing the Hessian for large-scale multidimensional objective functions
limits its use.

Quasi-Newton methods compute the descent direction p
k

= �B�1

k

rf
k

using
an approximate Hessian B

k

that mimics the true Hessian and uses gradients to
compute cheap, low-rank updates. L-BFGS uses the rank-two update method
given by

B
k+1

= B
k

+
B

k

s
k

s|
k

B
k

s|
k

B
k

s
k

+
y

k

y|
k

y|
k

s
k

where s
k

= x
k+1

� x
k

and y
k

= rf
k+1

� rf
k

. The L-BFGS implementation
used in this work uses Algorithms 9.1 and 9.2 from [20].
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Convergence Performance

As mentioned earlier, the fitness of an optimization algorithm is measured by
its ability to accurately and e�ciently identify minima for a given objective
function. To understand how the di↵erent coordinate search and L-BFGS min-
imizers perform on these metrics, we tested them on five functions commonly
used to benchmark the performance of optimization algorithms [23]:

Beale’s f(x, y) = (1.5 � x + xy)2 + (2.25 � x + xy2)2 + (2.625 �
x + xy3)2

Goldstein-Price
f(x, y) =

⇥
1 + (x + y + 1)2(19 � 14x + 3x2 � 14y + 6xy + 3y2)

⇤
⇥
30 + (2x � 3y)2(18 � 32x + 12x2 + 48y � 36xy + 27y2)

⇤

Matyas f(x, y) = 0.26(x2 + y2) � 0.48xy

Rosenbrock f(x, y) = 100(y � x2)2 + (x � 1)2

Sphere f(x, y) = x2 + y2

We ran the algorithms on each function 104 times with a random seed within the
x-y plane (x, y 2 [�1, 1]). We recorded the number of steps taken and compared
the computed minimum with the actual minimum to determine success. The
results are presented in Table 12.

Convergence Tests

A point x⇤ is a strict local minimizer of �f(x) if the following conditions are
met [20]:

1. x⇤ is a stationary point: �rf(�⇤) = 0

2. The Hessian �r2f is continuous in an open neighborhood of x⇤

3. The Hessian �r2f |
x=x

⇤ is positive definite (eigenvalues �
i

> 0 8i )

For the functions discussed in this work, the Hessian is continuous (proof not
given). Therefore, we can guarantee that x⇤ is a true minimum by ensuring that
the eigenvalues of the Hessian are positive.

Unfortunately, L-BFGS routinely discovered NRLB models where the Hes-
sian eigenvalues had mixed sign, a hallmark of saddle points. This is expected,
as L-BFGS and other Newton and Quasi-Newton methods are known converge
at saddle points [24]. To address this issue, we designed a heuristic scheme to
test minima and escape from saddle points. The scheme is based on the ob-
servation that eigenvectors with negative eigenvalues point towards the nearest
(and more optimal) stationary point (Figure 17):

1. Compute Eigenvalues: Diagonalize the Hessian in the symmetrized
space, if applicable.
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Table 12: Convergence Performance of Various Minimizers

Coordinate
Search

Coordinate Search
+ Random Axis

L-BFGS
L-BFGS

+ MT Search

Beale’s
Successes 98.5 % 85.5 % 90.4 % 90.3 %
Steps 194.8 196.6 13.0 12.7
Function Calls 848.1 855.5 14.9 14.8

Goldstein-Price
Successes 52.3 % 60.7 % 33.3 % 34.9 %
Iterations 166.5 93.9 13.0 12.8
Function Calls 735.1 444.7 16.8 17.2

Matyas
Successes 100.0 % 100.0 % 100.0 % 100.0 %
Iterations 28.6 34.1 3.9 3.9
Function Calls 183.5 205.2 5.5 5.5

Rosenbrock
Successes 0.2 % 0.2 % 100.0 % 100.0 %
Iterations 19.6 27.0 25.2 25
Function Calls 147.4 176.8 30.5 30.6

Sphere
Successes 100.0 % 100.0 % 100.0 % 100.0 %
Iterations 12.8 12.8 2.0 2.0
Function Calls 120.1 120.1 3.2 3.2

Performance metrics for coordinate search (the standard version and one where
the parameter order was randomized) and L-BFGS (using either the [20] or [22]
line search algorithms). For every test function, all algorithms were evaluated on
104 random start points. Displayed values are averages across all runs; successes
refers to the number of functions where the true minimum was found.

Figure 17: The monkey saddle function near the origin, with the negative eigen-
vector direction at (0.1, 0.1) highlighted (blue arrow).
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Figure 18: (A) Various configurations of the monomer subunits in homodimer
complexes. Symmetry rules establish a relationship between the parameters
at di↵erent o↵sets o within the binding interface to enforce a known subunit
configuration. (B) The geometric configuration of the tumor suppressor p53
homotetrameric complex. Image from [28].

2. Find Negative Eigenvalues: Negative eigenvalues are those with a
value less than �10�12 of the largest positive eigenvalue; this cuto↵ was
selected from experience to ignore both precision errors and the null vec-
tors in the space (Chapter 2.3).

3. Escape Saddle Point: If negative eigenvalues exist, the following process
starts from the most negative eigenvalue:

(a) Perform a 1D line search in the eigenvector direction

(b) Accept first point that satisfies the convergence criteria used in L-
BFGS

(c) Set this point as the new starting point and repeat with the next
most negative eigenvalue

4. Restart L-BFGS: Restart minimization using the last point from the
process above

B.2 Jacobian Based Symmetries

Certain classes of TFs form polymeric complexes composed of several repeating
units in various spatial configurations. For example, homodimeric complexes
can be arranged in head-to-head, tail-to-tail, or other unique combinations [25];
specific examples include basic-leucine zipper domains (bZIPs), which form ho-
modimers with head-to-head symmetry [26], and the tumor suppressor protein
p53, which forms tetramers with both head-to-head and tail-to-tail symmetry
[Figure 18; [27]]. For this work, it would be useful to enforce known symmetries
of TF complexes on NRLB models.

A symmetry configuration enforces an equality relationship between two or
more parameters and can be represented by a set of symmetry rules (Figure
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18). Given that TF complexes can bind in a variety of combinations, a general
method for enforcing such rules while inferring models is required. The most
flexible approach constrains the optimizer rather than the model, forcing the op-
timization method to move in the symmetrized space. While this approach may
require more computational time, it can be easily implemented using elementary
matrix math.

The symmetry rules discussed above can be implemented in the form of a
coordinate transformation (or Jacobian) matrix M, which defines a linear map
from the the full parameter space F to the ‘reduced’ or symmetrized parameter
space R. For our symmetry rules, the Jacobian has a simple form: every row
in M corresponds to a particular symmetry rule. All entries in the row are
0, except those corresponding to the parameters mentioned in the rule, which
are 1. As an example, consider a model with six parameters in the full space
{x F

1

, x F
2

, x F
3

, x F
4

, x F
5

, x F
6

}. These parameters obey the following symmetry rules:

xR
1

= x F
1

= x F
6

xR
2

= x F
2

= x F
4

= x F
5

xR
3

= x F
3

where {xR
1

, xR
2

, xR
3

} represents the reduced space. Then we get

M =

2

4
1 0 0 0 0 1
0 1 0 1 1 0
0 0 1 0 0 0

3

5

M can be used to transform any quantity to the reduced space, other than the
parameter vector (see Table 13). Only a single set of parameter values needs to
be extracted when reducing the parameter vector; for this, we use a secondary
matrix M0. M0 is the same as M, except for every row, all parameters other
than the first nonzero parameter are set to zero. For the previous example, we
get

M0 =

2

4
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

3

5

M and M0 can be used by the minimizer to convert the parameter vector, gra-
dient, and Hessian from the full space to the reduced space using the operations
in Table 13.
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Table 13: Symmetry Transformations

Quantity Full Space Reduced Space

Position x F M0x F

Position M0|xR xR

Gradient G F MG F

Gradient M|GR GR

Hessian H F MH FM|

Hessian M|HRM HR
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