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1 Supplemental Methods

1.1 Binding energy calculations

Using the model proposed by Djordjevic, et al. (1) that was refined by Stormo and colleagues
(2, 3), we consider the binding of DNA sequences Si among many Sj competitor substrates at
equilibrium with a transcription factor. The probability of being bound to the transcription factor
as a function of sequence identity, represented by P (bound | Sn), is given by:

P (bound | Sn) =
e−∆Gn

e−µ + e−∆Gn

Where ∆Gn is the binding free energy and µ is the chemical potential, equal to the natural log of
the transcription factor concentration. Both terms are in units of RT.

Sequencing of TF-bound substrates yields P (Si | bound), which is the inclusion probability of Si
among the bound substrate distribution. From the partition probability of substrates between
bound and unbound, P (Si | bound), application of Bayes’ theorem and the law of total probability
yields:

P (Si | bound) =
P (bound | Si)P (Si)∑
j P (bound | Sj)P (Sj)

Where P (Sn) describes the probability of a given species within the input substrate distribution.
The combination of these two equations returns P (Si | bound) as a function of binding energies
and input probabilities.

Next, we make the following assumptions:

• The transcription factor concentration is substantially lower than the total DNA concentra-
tion.

• As the TF concentration is minimized, µ approaches negative infinity. In effect, this causes
the denominator in equation 1 to be dominated by the e−µ term, which we can approximate
with a constant C ' e−µ + e−∆G.

• The sum of P (Sj) in a large population is ~ equal to one.

Applying these assumptions to equation 2, it becomes possible to isolate ∆Gi as a function of
P (Si | bound) and P (Si). This equality is given in equation 3, in units of RT:

∆Gi = −ln
(P (Si | bound)

P (Si)

)
+ ∆Gj

Where ∆Gj equals the total binding energy excluding contribution from Si. Setting this value to
zero yields the relative binding affinity of Si, represented by ∆∆Gi in units of RT, which is given
in equation 4:

∆∆Gi = −ln
(P (Si | bound)

P (Si)

)
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1.2 Monte Carlo assay simulations

The distribution of theoretical reference binding energies is assumed to be normal and symmetric
about ∆∆G = 0 kcal/mol. Representation of input substrate species is assumed to follow a
uniform distribution. We tested all combinations of the following conditions: affinity range =
0.25-5 kcal/mol, library size = 102–106 species, and total read counts = 103–108 reads equally
allocated between bound and input fractions. From these conditions, the bound species frequency
distribution was derived and randomly sampled. The simulated bound and input count ratio
for each substrate was used to calculate putative individual ∆∆G values. Each combination of
parameters was used to simulate ten replicate datasets, which were compared to the theoretical
∆∆G by Pearson’s correlation. Correlation coefficients (r) with Bonferroni-corrected p-values
above 0.05 were set to zero. Accuracy was defined as the product of r2 and the fraction of observed
species.

For datasets with large energetic ranges of 3–5 kcal/mol (160- to 4590-fold change in bound over
input), excellent correlation (Pearson’s r2) was observed despite comparatively low overall read
depths (Figure S1). However, under these conditions, only a narrow fraction of species, pri-
marily high affinity substrates, were observed relative to the input population (Figure S2). We
reasoned that sequencing such a population disproportionately samples the minority of strong
binding species, resulting in high measurement accuracy. For the majority of weaker binders that
are under-sampled, few reads are allocated to these substrates, yielding inaccurate measurements.
While the simulation explicitly assumes a normal energy distribution among species with uniform
input frequency, these assumptions are potentially violated in real systems, which would further
contribute to sampling imbalance.

For the simulations probing the effect of ∆∆G ranges and library size on equilibrium concentrations,
The following assumptions were made:

1. Each substrate in the library is present in the same initial concentration.
2. Since simulation of 1,000,000+ sequences is computationally intractable, we instead uniformly

sample 100 substrates across the energetic range and use one high concentration sequence
as a stand in for the remaining substrates present in the highest density portion of the
distribution.

3. The concentration of the total input material is 1 µM and the concentration of protein in
the assay is 30 nM.

4. The concentration of any individual species queried is 1µM
n where n is the total number of

species in the library (not just the number simulated).

Based on these simulations, we note that large energetic spreads and large libraries can cause
depletion of the unbound fraction (Figure S3), which causes systematic overestimation of the value
of ∆∆G for tightly bound species (Figure S4). When combined with the stochastic sampling
error simulations discussed above, we note that the input library serves as a good approximation
for unbound the unbound fraction in situations where the energetic range is relatively small (0–4
kcal/mol). Beyond this range, ligand depletion can cause inaccurate estimates for tightly bound
species (Figure S5).

The results from these simulations have broad implications for other sequencing-based binding
assays: (1) For de novo core motif discovery, in which the fraction of strong binders is small and
the difference in energy relative to weak binders is large, low read depth is sufficient to identify
the sub-population of very strong binders; and, (2) when the energetic range is narrow, as in
the flanking context library or for other motif refinement approaches, comprehensive sequence
coverage is attained at the expense of overall accuracy. While current NGS instruments have the
output necessary for high sequence diversity applications (e.g. flanking library), operational costs
scale with library size, which limits the libraries that can be probed. These general guidelines for
measuring accurate binding energies from sequencing-based assays can facilitate broader use of
thermodynamic metrics for assessing TF binding specificity.
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1.3 DNA substrate preparation (Compatible with Illumina NGS)

Synthesis of ssDNA oligos by IDT or Sigma:

• DNA substrate template:
– GATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTNNGTATCACGAG

NCAATACACTGTTATCNNNNNCACGTGNNNNNCTACTCGTTCGGTTANCAG
GAGAGCTNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

• Illumina Read 2 primer:
– GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Polymerase extension:

• 50 µL of Q5 Hot Start High-Fidelity 2x Master Mix (M0494S)
• 40 µL of 10 µM DNA substrate template
• 5 µL of 100 µM Illumina Read 2 primer
• 5 µL of DNase-/RNase-free water
• Zymo Clean and Concentrate - 25 column purification kit (D4005)

All components were allowed to equilibrate to 4◦C on ice. To a PCR strip tube, the following were
added in order: 50 µL of Q5 Hot Start High-Fidelity 2x Master Mix, 40 µL of 10 µM IDT synthetic
DNA substrate template, 5 µL of 100 µM Illumina Read 2 primer, and 5 µL of DNase-/RNase-free
water. The solution was incubated at the following thermocycler settings:

1. Initial melt: 98◦C for 30 sec
2. 4.0◦C/s ramp rate
3. 1 cycle:

(a) Cycle melt: 98◦C for 10 sec
(b) 0.1◦C/s ramp rate
(c) Cycle anneal: 30◦C for 1 min 15 sec
(d) 0.1◦C/s ramp rate

4. Final extension: 65◦C for 5 min
5. Store at 4◦C

The extended product was purified using a Zymo Clean and Concentrate - 25 column purification
kit using a 5:1 ratio of binding buffer to extended product solution as specified in the user manual.
The purified eluent was quantified using a low-volume UV/Vis spectrometry and adjusted to 1 µM
in elution buffer (EB). This solution was stored for several weeks at -20◦C.
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1.4 Protein expression using n vitro transcription and translation (IVTT)

PHO4 and CBF1 open reading frames were sub-cloned into a pTNT vector (Promega/Genscript)
with a C-terminal monomeric enhanced green fluorescent protein (meGFP) tag using Golden Gate
Assembly, as previously reported (4, 5).

Promega Wheat Germ Extract IVTT kit:

• 50 µL of Promega TNT Wheat Germ Extract (L411A)
• 4 µL Promega TNT Reaction Buffer (L462A)
• 0.66 µL of Promega Amino Acid Mixture Minus Methionine, 1 mM (L996A)
• 0.66 µL of Promega Amino Acid Mixture Minus Leucine, 1 mM (L995A)
• 0.66 µL of Promega Amino Acid Mixture Minus Cysteine, 1 mM (L447C)
• 2 µL of Promega Recombinant RNasin Ribonuclease Inhibitor (N251A)
• 2 µL of Promega TNT T7 Wheat Germ Polymerase (L516A)
• 1-2 µg of expression plasmid

All components were allowed to equilibrate to 4◦C on ice. To a PCR strip tube, the following
were added in order: 50 µL of Promega TNT Wheat Germ Extract, 4 µL of Promega TNT
Reaction Buffer, 0.66 µL of 1 µM Promega Amino Acid Mixture Minus Methionine, 0.66 µL of 1
µM Promega Amino Acid Mixture Minus Leucine, 0.66 µL of 1 µM Promega Amino Acid Mixture
Minus Cysteine, 2 µL of Promega Recombinant RNasin Ribonuclease Inhibitor, 2 µL of Promega
TNT T7 Wheat Germ Polymerase, and 50 µL of DNase-/RNase-free water. Then, 1–2 µg of
expression plasmid was added and incubated at 30 ◦C for 3 hours. After incubation, the solution
was clarified by benchtop centrifugation set to 15,000 RPM for 10 minutes at room temperature.
The supernatant was collected and loaded directly onto a MITOMI device.
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1.5 MITOMI-seq assay

1.5.1 Microfluidic device operation

MITOMI PDMS devices were attached to a custom pneumatic control system to pressurize valves
and control fluid flows (6). Input flow lines were pressurized to 4.25 PSI and the control lines
were pressurized to 32 PSI. The device was degassed by introducing a 1x phosphate-buffered saline
(PBS) into the main channels with the output valve closed. Using MATLAB scripts, the following
automation steps were performed:

Automation step A - Surface chemistry

• 200 µL of 2 mg/mL biotinylated bovine serum albumin in 140 nM citrate, pH 6.8 + 50 µL
of 250 µg/mL of poly(deoxyinosinic-deoxycytidylic) acid in EB (bBSA),

• 100 µL of 1 mg/mL neutravidin in 1x PBS (NA),
• 50 µL of 0.04 mg/mL biotin-conjugated antibody specific to green fluorescent protein (αGFP),
• 500 µL of PBS

1. For each input, 15 sec purge to waste followed by 15 sec PBS
2. 20 min bBSA
3. 6 min 40 sec PBS
4. 20 min NA
5. 6 min 40 sec PBS wash
6. Close BUTTON valves
7. 5 min PBS wash
8. 20 min bBSA
9. 6 min 40 sec PBS
10. 1 min 20 sec αGFP
11. Open BUTTON valves
12. 11 min 40 sec αGFP
13. 6 min 40 sec PBS
14. Increase flow line pressure to 8.50 PSI
15. Increase control line pressure to 35 PSI

Automation step B - TF-DNA equilibration

• 40 µL of 1 µM DNA substrate in 1x Tris-EDTA buffer (DNA)
• 100 µL of IVTT protein expression solution (PROT)

1. For each input, 15 sec purge to waste followed by 15 sec PBS
2. 20 min PROT
3. 6 min 40 sec PBS
4. 4 min DNA
5. Close OUT valve
6. Equilibrate for 1 hr
7. Close BUTTON valves
8. 5 min PBS

Automation step C - Device wash

• 250 µL of freshly-prepared 2 mg/mL bovine trypsin in 1x PBS (TRYP)

1. For each input, 15 sec purge to waste followed by 15 sec PBS
2. 30 min TRYP
3. 5 min PBS
4. 10 min bBSA
5. 10 in PBS

Automation step D - Elution
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1. 300 x 3 sec BUTTON cycle under constant PBS
2. Collect bound fraction eluent in pipette tip attached to OUT port

1.5.2 Sequencing library preparation

• 35 µL of Q5 Hot Start High-Fidelity 2x Master Mix (M0494S)
• 5 µL of 10 µM P5 indexed adapter primer [Table S7]
• 5 µL of 10 µM P7 indexed adapter primer [Table S8]
• ThemoFisher GeneJET Cleanup Kit (K0851)

To respective PCR strip tubes, approximately 25 µL of bound fraction eluent and 25 µL of 100
pM input was added. The following reagents were equilibrated to 4◦C and added in order: 35 µL
of Q5 Hot Start High-Fidelity 2x Master Mix, 5 µL of 10 µM P5 indexed adapter primer and 5 µL
of 10 µM P7 indexed adapter primer. The solution was incubated at the following thermocycler
settings:

1. Initial melt: 98◦C for 30 sec
2. 4.0◦C/s ramp rate
3. 11-14 cycles:

(a) Cycle melt: 98◦C for 10 sec
(b) 4.0◦C/s ramp rate
(c) Cycle anneal and extend: 65◦C for 1 min 15 sec
(d) 4.0◦C/s ramp rate

4. Final extension: 65◦C for 5 min
5. Store at 4◦C

The PCR product was purified using a ThemoFisher GeneJET Cleanup Kit following user manual
Protocol B for adapter removal. The purified library DNA quality was analyzed using a fluorogenic
assay (e.g. Qubit) to determine concentration and using a electrophoretic migration assay (e.g.
Bioanalyzer) to determine size. Libraries were sequenced at Stanford Protein and Nucleic Acid
Facility, Stanford Functional Genomics Facility or Chan-Zuckerberg Biohub Core using Illumina
MiSeq and NextSeq instruments with 2 x 75 cycle reagent kits.

1.5.3 Sequencing read count analysis

Sequencing reads were demulitplexed using unique paired index sequences. For each indexed
set, paired-end reads were merged using the Paired-End reAd mergeR (PEAR) algorithm (7).
Resultant merged sequences were filtered as follows: (1) average PHRED scores greater than 30
(i.e. > 99.9% base call accuracy), (2) PHRED score greater than 30 at functional positions (UMI,
variable flank, and core motif), and (3) matched constant region sequence identity adjacent to
variable flank regions (i.e. ATCNNNNNCACGTGNNNNNCTA). Total counts per flank sequence
were determined by the de-duplicated frequency of associated unique molecular identifier (UMI)
sequences.
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1.6 MITOMI Titration Binding

1.6.1 Library Preparation

DNA sequence libraries were normalized to a concentration of 100 µM in water [Tables S3, S6].
A “universal” AlexaFluor647-functionalized primer was diluted to 100 µM in water (“Universal
primer” sequence: 5’- /5Alexa647/ GTC ATA CCG CCG GA-3’) [Table S6]. DNA oligos were
provided by IDT. Prior to use, plates were defrosted overnight at 4◦C and centrifuged. To generate
the dNTP solution, 20 µL of dNTP mixture (25 mM of each dNTP) was combined with 480 µL of
Milli-Q water and kept on ice.

To generate libraries of fluorescently-labeled double-stranded DNA, the primer and library DNA
were first annealed and then extended with recombinantly expressed Klenow exo− (New England
Biolabs). The annealing reaction recipe was as follows:

• 6 µL library DNA substrate (100 µM stock)
• 2 µL NEBuffer 2
• 6 µL dNTPs
• 6 µL “universal” Alexa647-labeled primer (100 µM stock)

The library DNA substrate was added to a 96-well PCR plate using a Liquidator 96-channel pipette
(Rainin). NEBuffer2, dNTPs, and the “universal” oligo were combined into a master mix scaled
for 100 reactions, and 14 µL of mastermix was transferred into wells of the 96-well plate using a
multichannel pipette. The plate was sealed and placed in a thermocycler for annealing using the
following protocol:

1. 95◦C for 3 min
2. Anneal to 37◦C over 45 min

The Klenow mix was prepared as a master mix scaled to 100 reactions as follows and stored on ice
until use. Per reaction:

• 1 µL Klenow exo−
• 1 µL NEBuffer 2 (B7002S)
• 8 µL Milli-Q water

After annealing the primer to the DNA, the PCR plate was centrifuged at 4◦C and placed back
into the thermocycler at 37◦C. To this plate, 10 µL of the Klenow mastermix was added using a
multichannel pipette. The extension protocol was as follows:

1. 37◦C for 60 min
2. 72◦C for 20 min
3. Anneal to 10◦C over 45 min

The prepared library was then serially diluted into a sterile-filtered print solution formulated as
follows:

• 12.5 mg/mL D-(+)-trehalose dihydrate (Sigma Life Science T9531-25G)
• 1% bovine serum albumin (Sigma Life Science B4287-25G)
• 3x saline-sodium-citrate (SSC) Buffer

The serially diluted library was then transferred into 384-well plates for printing onto 2” x 3” Su-
perChip epoxysilane coated glass slides using with a custom-built robotic microarrayer. MITOMI
devices were aligned to these printed libraries and bonded for 12 hours at 95◦C.
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1.6.2 Equilibrium binding protocol

Briefly, MITOMI experiments were run as previously described (4) with minor modifications. After
the initial biotinylated-BSA passivation, printed DNA was solubilized using wheat germ extract
(formulated as 30 µL extract and 30 µL Milli-Q water) before the experiment continued. Secondly,
meGFP-tagged Pho4 or Cbf1 expression reactions were prepared as described above and incubated
at 30◦C on an orbital shaker (300 RPM) for 3 hours before clarification by centrifugation and
introduction into the device. Finally, after deposition of protein onto the device, button valves
and neck valves were opened to allow DNA to diffuse throughout the protein chamber for 20
minutes. Afterwards, button valves were opened and neck valves were shut to allow the protein-
DNA interaction to equilibrate for 60 minutes.

1.6.3 Equilibrium binding analysis

Prior to analysis, all images were flat-field corrected (8) and stitched using the Grid/Collection
Stitching plugin (9) available on FIJI. Protein and DNA binding were quantified from images
using a MATLAB script that automates feature detection and data extraction. The concentration
of DNA in the chamber was quantified using the background subtracted median intensity of Cy5
signal in “prewash” images in which solubilized DNA is in the device protein chambers. The amount
of DNA bound to protein was quantified using the background-subtracted median Cy5 signal
underneath the buttons of the device in “postwash” images. In order to calculate the DNA/Protein
ratio, the intensity of the Cy5 signal was normalized by the median meGFP signal underneath the
button. Kd values from binding isotherms were estimated using a global nonlinear fit (4, 10).
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2 Supplemental Tables

Protein Replicate Bound reads Input reads
Pho4 #1 6,203,398 7,190,687
Pho4 #2 8,704,634 8,330,396
Pho4 #3 54,959,850 24,275,485
Pho4 #4 50,430,034 24,275,485
Cbf1 #1 6,059,502 4,501,445
Cbf1 #2 14,277,898 24,275,485
Cbf1 #3 5,725,019 24,275,485

Table S1: Sequencing read depths.

Replicate set A Replicate set B Pearson’s r2

Pho4 #1 Pho4 #2 0.00
Pho4 #1 Pho4 #3 0.01
Pho4 #1 Pho4 #4 0.01
Pho4 #2 Pho4 #3 0.07
Pho4 #2 Pho4 #4 0.08
Pho4 #3 Pho4 #4 0.67
Cbf1 #1 Cbf1 #2 0.02
Cbf1 #1 Cbf1 #3 0.02
Cbf1 #2 Cbf1 #3 0.18

Table S2: Unprocessed binding energy Pearson’s correlation.
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Sequence Pho4 Kd, nM Pho4 std. error, nM Cbf1 Kd, nM Cbf1 std. error, nM
AGACC_TCGAG 61 1 139 7
AGACG_TCGAG 66 2 109 5
AGACA_CCGAG 74 2 104 5
AGACA_GCGAG 91 2 193 9
AGAGA_TCGAG 92 2 104 5
AGACA_TCTAG 107 3 168 8
AGACA_TCCAG 117 3 111 5
AGACA_TCAAG 117 3 145 7
AGAAA_TCGAG 120 3 110 5
AGACA_TCGAA 121 3 153 7
AGACA_TCGAC 121 3 155 7
CGACA_TCGAG 121 3 166 8
AGGCA_TCGAG 135 3 182 10
AGACA_TCGTG 135 3 220 10
AGACA_TTGAG 138 4 208 10
AGACA_TCGGG 138 4 213 12
AGACA_TCGAT 139 4 195 9
GGACA_TCGAG 139 3 217 12
AGACA_TCGCG 143 4 184 10
AAACA_TCGAG 150 3 204 13
AGACA_TCGAG 151 3 236 16
ACACA_TCGAG 152 3 222 17
TGACA_TCGAG 153 4 212 13
AGCCA_TCGAG 154 4 250 15
AGACA_ACGAG 162 4 30 2
AGATA_TCGAG 165 4 185 9
AGACA_TGGAG 166 4 387 22
ATACA_TCGAG 170 5 237 15
AGTCA_TCGAG 196 5 217 13
AGACA_TAGAG 197 8 364 24
AGACT_TCGAG 336 8 82 4
negative control 1230 112 2970 825

Table S3: Titration binding results. Standard error on the fit provided. The “_” represents the
E-box motif. The negative control sequence contains a weak binding CAGCTG mutated
consensus motif.

Protein Linear model Pearson’s r2

Pho4 mononucleotide 0.92
Pho4 nearest neighbor 0.98
Pho4 dinucleotide 0.99
Cbf1 mononucleotide 0.70
Cbf1 nearest neighbor 0.94
Cbf1 dinucleotide 0.99

Table S4: Interpretation of NN model features. Linear models trained on NN-derived
predictions were used squared Pearson’s correlation coefficient to determine the proportion of
variance explained by additive combinations of sequence features.
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Replicate set A Replicate set B Pearson’s r2

Pho4 #1 Pho4 #3 0.97
Pho4 #1 Pho4 #2 0.97
Pho4 #3 Pho4 #4 0.96
Pho4 #2 Pho4 #4 0.96
Pho4 #2 Pho4 #3 0.96
Pho4 #1 Pho4 #4 0.95
Cbf1 #1 Cbf1 #2 0.87
Cbf1 #2 Cbf1 #3 0.85
Cbf1 #1 Cbf1 #3 0.79
Cbf1 #2 Pho4 #4 0.03
Cbf1 #1 Pho4 #3 0.01
Pho4 #2 Cbf1 #3 0.01
Pho4 #1 Cbf1 #3 0.01
Cbf1 #1 Pho4 #4 0.00
Cbf1 #2 Pho4 #3 0.00
Cbf1 #3 Pho4 #4 0.00
Pho4 #1 Cbf1 #2 0.00
Cbf1 #1 Pho4 #2 0.00

Table S5: Cross-correlation of mononucleotide model coefficients from unprocessed replicates.
Pair-wise Pearson’s r2 from replicate mononucleotide model coefficient cross-correlation.
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Sequence
AGACA CACGTG TCGAG
GGACA CACGTG TCGAG
TGACA CACGTG TCGAG
CGACA CACGTG TCGAG
AAACA CACGTG TCGAG
ATACA CACGTG TCGAG
ACACA CACGTG TCGAG
AGGCA CACGTG TCGAG
AGTCA CACGTG TCGAG
AGCCA CACGTG TCGAG
AGAAA CACGTG TCGAG
AGAGA CACGTG TCGAG
AGATA CACGTG TCGAG
AGACG CACGTG TCGAG
AGACT CACGTG TCGAG
AGACC CACGTG TCGAG
AGACA CACGTG ACGAG
AGACA CACGTG CCGAG
AGACA CACGTG GCGAG
AGACA CACGTG TAGAG
AGACA CACGTG TGGAG
AGACA CACGTG TTGAG
AGACA CACGTG TCAAG
AGACA CACGTG TCTAG
AGACA CACGTG TCCAG
AGACA CACGTG TCGGG
AGACA CACGTG TCGTG
AGACA CACGTG TCGCG
AGACA CACGTG TCGAA
AGACA CACGTG TCGAT
AGACA CACGTG TCGAC
AGACA CAGCTG TCGAG

Table S6: Single nucleotide variant titration binding substrates. 5’ constant region =
CAATACACTGTTATC. 3’ constant region = CTACTCGTTCGGTTATCCGGCGGTATGAC.

Name Index (5’ to 3’)
i501 TATAGCCT
i502 ATAGAGGC
i503 CCTATCCT
i504 GGCTCTGA
i505 AGGCGAAG
i506 TAATCTTA
i507 CAGGACGT
i508 GTACTGAC

Table S7: P5 indexed primers. 5’ constant region =
AATGATACGGCGACCACCGAGATCTACAC. 3’ constant region =
ACACTCTTTCCCTACACGACGCTCTTCCGATCT.
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Name Index (5’ to 3’)
i701 CGAGTAAT
i702 TCTCCGGA
i703 AATGAGCG
i704 GGAATCTC
i705 TTCTGAAT
i706 ACGAATTC
i707 AGCTTCAG
i708 GCGCATTA

Table S8: P7 indexed primers. 5’ constant region = CAAGCAGAAGACGGCATACGAGAT. 3’
constant region = GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT.
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3 Supplemental Figures

Figure S1: Monte Carlo simulations. Pearson’s r2, which describes the ability to recover
theoretical relative binding energies, as a function of binding energy range. Ten simulation
replicates shown as box plots [inner line = median, box edges (hinges) = bounds of interquartile
range (IQR), upper whisker = extends from upper hinge to largest value less than (1.5 × IQR),
lower whisker = extends from lower hinge to smallest value greater than (1.5 × IQR)]. Each set
of simulation replicates was derived from a unique combination of assay parameters: library size
(x-axis facets) and total sequencing depth (y-axis facets).
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Figure S2: Monte Carlo simulations. Fraction of observed species as a function of binding
energy range. Ten simulation replicates shown as box plots [inner line = median, box edges
(hinges) = bounds of interquartile range (IQR), upper whisker = extends from upper hinge to
largest value less than (1.5 × IQR), lower whisker = extends from lower hinge to smallest value
greater than (1.5 × IQR)]. Each set of simulation replicates was derived from a unique
combination of assay parameters: library size (x-axis facets) and total sequencing depth (y-axis
facets).
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Figure S3: Equilibrium binding simulations. Equilibrium concentrations in both the bound and
unbound fraction for each of the simulated species as a function of that species’ Kd. As the
affinity of the interaction becomes higher (Kd becomes lower), ligands are depleted from the
unbound fraction, causing the relative concentrations of the unbound fraction to differ from those
of the input library.
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Figure S4: Agreement between true ∆∆G and apparent ∆∆G calculated using [bound]
[input] .

Agreement between true ∆∆G and apparent ∆∆G values for different library sizes, ∆∆G ranges,
and high density positions within the distribution are shown when using [unbound] or [input] in
place of the reference concentration in the following equation: ∆∆G = −RT ln

(
[bound]

[reference]

)
. The

actual simulated ∆∆G range is shown by the green lines on the x-axis and the red lines on the
y-axis.

18



Figure S5: Accuracy of estimating true ∆∆G when approximating unbound concentrations by
sequencing the input library as a function of ∆∆G spread, library size, and sequencing depth for
5 replicate simulations. Accuracy (r2 × fraction of species observed) is shown for different
parameterizations of the assay. Generally, assays with highest read depth to library size ratio
perform the best. We also note that energetic resolution is highest when the energetic spread is
between 2–4 kcal/mol.
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Figure S6: Unprocessed ∆∆G distributions across replicates.

Figure S7: Correspondence of unprocessed ∆∆G measurements as a function of sequencing
read depth. (left) Pho4 replicates #1 and #2. (right) Pho4 replicates #3 and #4.
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Figure S8: Training and validation dataset error curves for neural network training. Root mean
squared error curves are shown for both the neural network training on composite Pho4 data and
Cbf1 data. Red line represents error on the training (observed) dataset and blue line represents
error on the validation (unobserved) dataset.

Figure S9: Neural network ∆∆G distributions.
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Figure S10: Pho4 titration binding curves. Each point represents binding response as a
function of DNA concentration. Global nonlinear fitted line shown, representing binding
isotherms. The CACGTG E-box motif is represented by “_”. The negative control sequence
contains a weak binding CAGCTG mutated consensus motif.
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Figure S11: Cbf1 titration binding curves. Each point represents binding response as a function
of DNA concentration. Global nonlinear fitted line shown, representing binding isotherms. The
CACGTG E-box motif is represented by “_”. The negative control sequence contains a weak
binding CAGCTG mutated consensus motif.
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Figure S12: Distributions of ∆∆G measurements between flanking and core sequences. Core
binding energies measurements previously reported by Maerkl et al. (10).

Figure S13: Individual replicate binding preferences. DNA base letters corresponding relative
affinity, equal to normalized mean ∆∆G, as a function of flanking sequence position. Binding
preferences arranged by TF identity, replicate number, and sequencing read depth. The
CACGTG motif is located between flank positions -1 and 1.
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Figure S14: Cross-correlation of replicate mononucleotide model coefficients. Pair-wise
comparison of TF replicate mononucleotide model coefficients shown as points.
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Figure S15: TF-meGFP fusion negative control. DNA base letters corresponding relative
affinity, equal to normalized mean ∆∆G, as a function of flanking sequence position. The
meGFP tag alone (i.e. not fused to a corresponding TF) displayed overlapping mononucleotide
binding preferences with high variance. The CACGTG motif is located between flank positions -1
and 1. Error bars are standard error on the mean (SEM) among replicates.

Figure S16: Ten-fold cross-validation of LASSO regression models. The range of mean squared
error represented by bracketed vertical lines as a function of penalty coefficient.
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Figure S17: LASSO regression model coefficient magnitudes. (Top) Boxplots of mononucleotide
and dinucleotide model coefficients. (Bottom) Bars represent mean absolute model coefficient
values as a function of number of gapped positions in a given dinucleotide feature.

Figure S18: Cbf1 magnitude of individual sequence feature coefficients as a function of penalty
coefficient λ during LASSO regression for different flanking sequence features; blue and red
indicate negative and positive energetic contributions, respectively.
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Figure S19: Correlation of sequencing-based results compared to titration measurements.
Shown are both unprocessed and NN-predicted ∆∆G estimate compared to titration
measurements: substrates presented in this present work and previously reported values (10, 11).
All values have been recentered to account for reduced library size within the neural network
∆∆G estimates.
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Figure S20: Correlation of sequencing-based neural network model results compared to in vivo
activity. (Left) Points represent transcription rate with associated standard error on the fit as a
function of sequencing-based results (11). (Right) Points represent reporter induction as a
function of sequencing-based results (12). The standard deviation of sequencing-based ∆G values
for matched substrate species shown as horizontal lines.

Figure S21: Sequencing-based neural network ∆∆G landscapes. Points represent individual
∆∆G values as a function of Hamming distance from the highest affinity sequence. Sequences are
arranged alphabetically and clockwise from the top. Color code: blue = high affinity, red = low
affinity.
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Figure S22: Sequencing-based neural network ∆∆G landscapes summary. Distributions of
individual ∆∆G values for each Hamming distance population of sequences, relative to the
highest affinity sequence.
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Figure S23: Summary of sequencing-based neural network model results compared to ChIP-seq
enrichment. Bars represent the sum of ChIP enrichment as a function of Hamming distance from
highest affinity sequence (13). The corresponding mean ∆∆G values shown in color-coded labels:
blue = high affinity, red = low affinity.
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