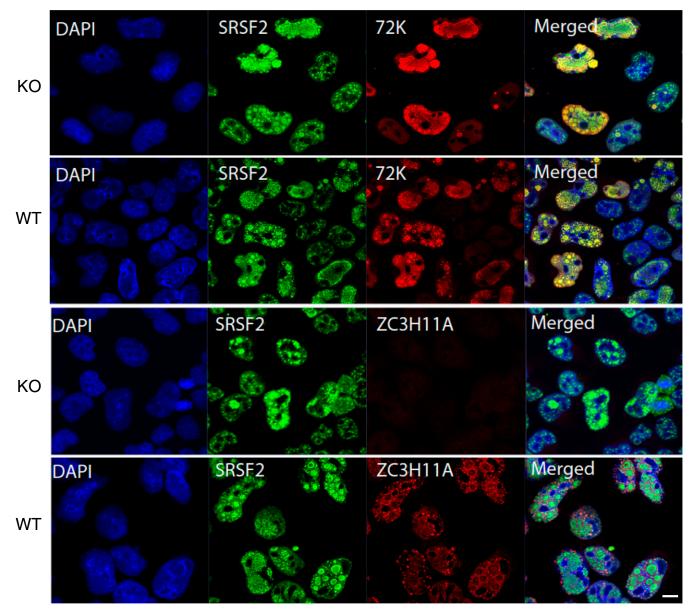
Supporting Information

Younis et al. 10.1073/pnas.1722333115

Α

WT human ZC3H11A

MPNQGEDCYFFYSTCTKGDSCPFRHCEAAIGNETVCTLWQEGRCFRQVCRFRHMEIDKKRSEIPCYWENQPTGCQKLNCAFHHNRGRYVDG LFLPPSKTVLPTVPESPEEEVKASQLSVQQNKLSVQSNPSPQLRSVMKVESSENVPSPTHPPVVINAADDDEDDDDQFSEEGDETKTPTLQPTP EVHNGLRVTSVRKPAVNIKQGECLNFGIKTLEEIKSKKMKEKSKKQGEGSSGVSSLLLHPEPVPGPEKENVRTVVRTVTLSTKQGEEPLVRLSLTE RLGKRKFSAGGDSDPPLKRSLAQRLGKKVEAPETNIDKTPKKAQVSKSLKERLGMSADPDNEDATDKVNKVGEIHVKTLEEILLERASQKRGELQ TKLKTEGPSKTDDSTSGARSSSTIRIKTFSEVLAEKKHRQGEAERQKSKKDTTCIKLKIDSEIKKTVVLPPIVASRGQSEEPAGKTKSMQEVHIKTLE EIKLEKALRVQQSSESSTSSPSQHEATPGARRLLRITKRTGMKEEKNLQEGNEVDSQSSIRTEAKEASGETTGVDITKIQVKRCETMREKHMQKQ QEREKSVLTPLRGDVASCNTQVAEKPVLTAVPGITRHLTKRLPTKSSQKVEVETSGIGDSLLNVKCAAQTLEKRGKAKPKVNVKPSVVKVVSSPK LAPKRKAVEMHAAVIAAVKPLSSSSVLQEPPAKKAAVAVVPLVSEDKSVTVPEAENPRDSLVLPPTQSSSDSSPPEVSGPSSSQMSMKTRRLSSA


ZC3H11A-KO clone #1, 13bp deletion of nucleotides ATAGGAAATGAAA

MPNQGEDCYFFFYSTCTKGDSCPFRHCEAALFAHYGKKGAVFDRCAGFGTWRLIKNAVKFLVIGKISQQDVKNStopTALSITIEDDMLMAFSYLR AKLCCPLCLSHQKRKStopRLANFQFSRTNCLSSPILPLSCGALStopKStopKVPKMFLAPRIHQLStopLMLQMMMKMMMISFLRKVMKPKHLPC NQLLKFTMDYEStopLLSGNLQSIStopSKVNVStopILEStopKLLRKLSQRKStopRKNLRSKVRVLQEFPVFYSTLSPFQVLKKKMSGLWStopGQ StopLSPPNKEKNPWLDStopVLLRDWGNENFQQAVTVILHStopSVAWHRGStopGRKLKLQKLTLTKHQRKLKFPSLLRSDStopACQLIQIMRMQ QIKLIKLVRSMStopRHStopKKFFLKEPVRNVENCKLNSRQKDLQKLMILLQEQEAPPLSVSKPSLRSWLKKNIGSRKQRDKKAKRIQLASSStopR LIVKLKKQStopFCHPLLPAEDNQRSLQVKQSLCRRCTSRRWKKLNWRRHStopGCSRALRAAPAPRLNTRPLQGQGGCCESPKEQGStopKKR RTFRKEMKLILRAVLEQKLKRLQVRPQELTSLKFKSRDVRPStopERSTCRNSRRGKNQSStopHLFGEMStopPLAIPKWQRNQCSLLCQESHGT StopPSGFPQSHPRRWRStopKRQGLETHYStopMStopNVQHRPWKKGVKLNPKStopTStopSHLWLKLCHPPNWPQNVRQWRCTLLSLPLSto pSHSAPAVSYRNPQPKRQLWLLSRLSLRTNQSLCLKQKILETVLCCLQPSPLQIPHPRRCLALPHPKStopAStopKLADSALPQQESPHSLWRMIL RNStopYGRFQEANWKLRLTWILGKMKMTFCLSYQKStopLIA

ZC3H11A-KO clones #2 and #3, 323bp insertion of random nucleotides

MPNQGEDCYFFFYSTCTKGDSCPFRHCEAAKAGFKGTNSVDWIRYQGRAGRGPISHDSFIFAYTIQGCStopRDNStopNStopFDCKHKDISTKY VTStopKVIISWVVCSFKIMFStopNGLSYAYRNLKVFRFLGFIYLVERTKHRSLStopQStopEMKLFAHYGKKGAVFDRCAGFGTWRLIKNAVKFLVI GKISQQDVKNStopTALSITIEDDMLMAFSYLRAKLCCPLCLSHQKRKStopRLANFQFSRTNCLSSPILPLSCGALStopKStopKVPKMFLAPRIHQL StopLMLQMMMKMMMISFLRKVMKPKHLPCNQLLKFTMDYEStopLLSGNLQSIStopSKVNVStopILEStopKLLRKLSQRKStopRKNLRSKVRVL QEFPVFYSTLSPFQVLKKKMSGLWStopGQStopLSPPNKEKNPWLDStopVLLRDWGNENFQQAVTVILHStopSVAWHRGStopGRKLKLQKLTL TKHQRKLKFPSLLRSDStopACQLIQIMRMQQIKLIKLVRSMStopRHStopKKFFLKEPVRNVENCKLNSRQKDLQKLMILLQEQEAPPLSVSKPSL RSWLKKNIGSRKQRDKKAKRIQLASSStopRLIVKLKKQStopFCHPLLPAEDNQRSLQVKQSLCRRCTSRRWKKLNWRRHStopGCSRALRAPA PRLNTRPLQGQGGCCESPKEQGStopKKRRTFRKEMKLILRAVLEQKLKRLQVRPQELTSLKFKSRDVRPStopERSTCRNSRRGKNQSStopHL FGEMStopPLAIPKWQRNQCSLLCQESHGTStopSGFPQSHPRWRStopKRQLWLSRLSRTNQSLCLKQKILETVLCCLQPSPLQIPHPRRCLALPHP KStopAStopKLADSALPQQESPHSLWRMILRNStopYGRFQEANWKLRLTWILGKMKMTFCLSYQKStopLIA

Fig. S1. (*A*) Sequence of the gRNA expression fragment. The specific *ZC3H11A* gRNA sequence is shown in bold. (*B*) Schematic description of the ZC3H11A protein showing the location of the three zinc fingers. The arrow indicates the corresponding location of the gRNA in the ZC3H11A protein. (*C*, *Top*) Amino acid sequence of the WT human ZC3H11A protein. (*C*, *Middle* and *Bottom*) Amino acid sequences of the ZC3H11A proteins expressed in KO clones 1–3. The red-highlighted sequences represent the WT ZC3H11A sequence, whereas the yellow-highlighted sequences represent the short out-of-frame added peptide sequences caused by the deletion of 13 bp or the insertion of 323 bp. "Stop" indicates a translational stop codon in the ORF.

Fig. S2. Immunofluorescence staining using anti-SRSF2 and anti-72K antibodies in HeLa WT and ZC3H11A-KO cells infected with HAdV-5 virus showing that the formation of viral replication centers is not affected by *ZC3H11A* knockdown. (Scale bar: 5 μm.)

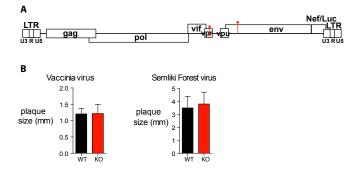
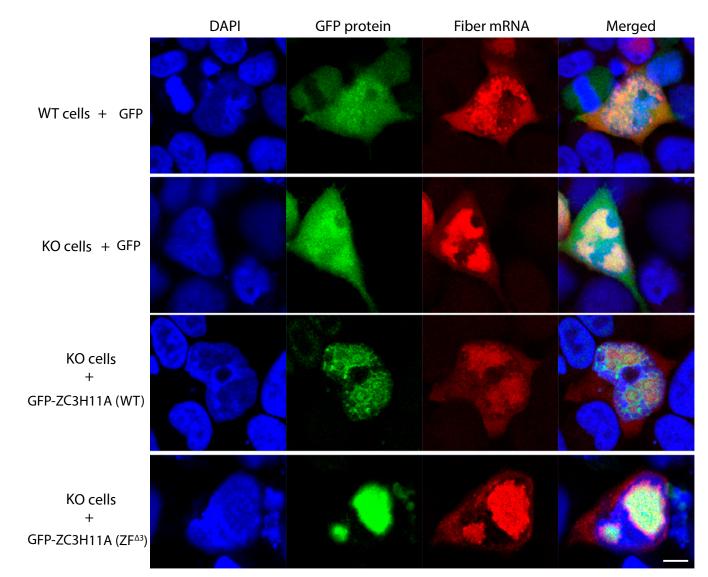
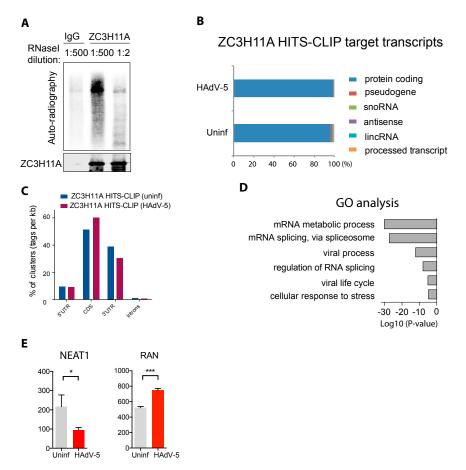
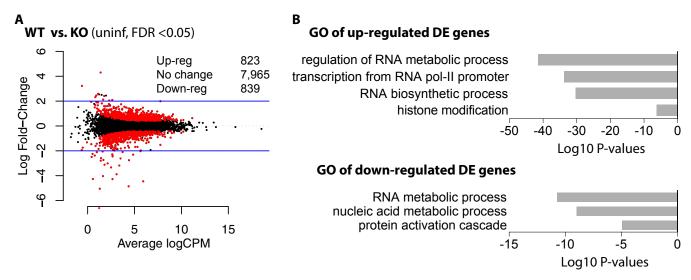


Fig. S3. (A) Schematic diagram of the HIV-1 pNL4-Luc. The firefly luciferase gene was inserted into the pNL4-3 Nef gene. Two frameshift mutations in the Env and Vpr coding sequences (indicated with a red line) render this clone Env^- and Vpr^- (13). (B) Plaque sizes (mean \pm SEM) formed by vaccinia virus Western Reserve strain and Semliki Forest virus infections in HeLa WT and ZC3H11A-KO cells.

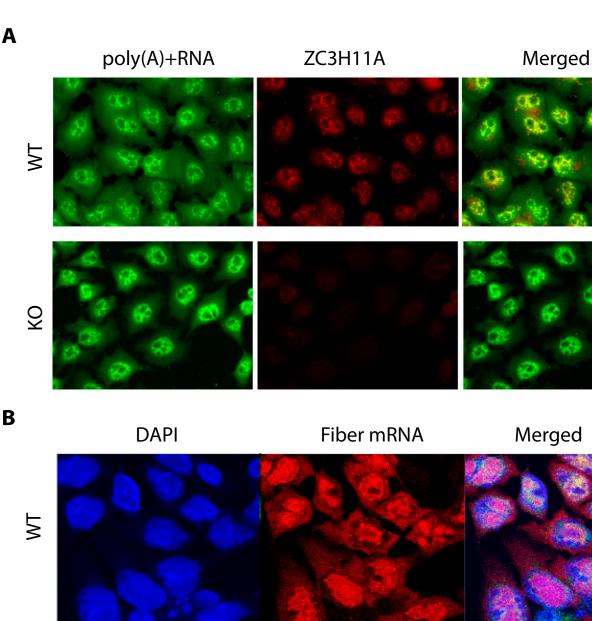

Fig. S4. RNA-FISH of fiber mRNA in WT and ZC3H11A-KO cells transfected with plasmids expressing full-length GFP-ZC3H11A or the mutant GFP-ZC3H11A protein lacking zinc fingers ($ZF^{\Delta 3}$). The GFP-expressing plasmid construct was used as a control. GFP expression was measured by fluorescence microscopy. (Scale bar: 6 μ m.)

Fig. S5. (A) SDS/PAGE of cross-linked ³²P-labeled RNA/protein complexes obtained after IgG or ZC3H11A immunoprecipitation and treatment with RNasel (dilutions: 1:500 and 1:2). (*B*) Distribution of ZC3H11A HITS-CLIP targets in uninfected (Uninf) and HAdV-5–infected cells. snoRNA, small nucleolar RNA. (*C*) Distribution of the proportion of ZC3H11A HITS-CLIP mapped reads (tags per kilobase) over the various elements of a gene in Uninf and HAdV-5–infected cells. (*D*) GO analysis of the endogenous gene targets of ZC3H11A shared before and after HAdV-5 infection. Gray bars, multiple testing corrected *P* values for enriched GO categories. (*E*) Expression of the *NEAT1* and *RAN* mRNAs in Uninf and HAdV-5–infected HeLa cells (****P* < 0.001, **P* < 0.05).

Fig. S6. Results of RNA-seq analysis of uninfected (uninf) WT and ZC3H11A-KO cells. (*A*) Smear plot of log-fold changes against expression levels measured as the log count per million (logCPM) of cytoplasmic mRNA in WT vs. ZC3H11A-KO cells. The lines indicate twofold changes, and red dots indicate significant fold change [false discovery rate (FDR) < 0.05]. reg, regulated. (*B*) GO analysis of significantly up- and down-regulated transcripts in uninf WT and ZC3H11A-KO cells. Gray bars, multiple testing corrected *P* values for enriched GO categories.

C Fiber probe sequence

<u>S</u>

TTGAAGGTATCTTCAGACGGTCTTGCGCGCTTCATTGCGACTG TGACTGGTTAGACGCCTTTCTCGAGAG

Fig. S7. (A) RNA-FISH detecting poly(A)⁺ RNA accumulation in WT and ZC3H11A-KO cells. (Scale bar: 15 μm.) (B) RNA-FISH of fiber mRNA accumulation in WT and ZC3H11A-KO cells. (Scale bar: 7 μm.) (C) Sequence of the FISH probe used to detect the fiber mRNA.

Table S1. List of antibodies

Antibody	Туре	Host	Dilution	Application	Source
ZC3H11A	Primary	Rabbit	1:3,000	WB	Abcam
ZC3H11A	Primary	Rabbit	1:500	IF	Human Protein Atlas
ZC3H11A	Primary	Rabbit	4–5 μg	IP	Human Protein Atlas
GFP	Primary	Rabbit	1:1,000	WB	Novus Biologicals
HAdV-5 capsid proteins	Primary	Rabbit	1:5,000	WB	Abcam
VP16	Primary	Rabbit	1:5,000	WB	Abcam
VP5	Primary	Rabbit	1:5,000	WB	Abcam
β-Actin	Primary	Goat	1:10,000	WB	Abcam
Influenza A M2 (14C2)	Primary	Mouse	1:200	WB	Abcam
Influenza A NP (5D8)	Primary	Mouse	1:200	WB	Santa Cruz Biotechnology
ZBED6	Primary	Rabbit	1:2,000	WB	In-house
HSP-70	Primary	Mouse	1:1,000	WB	Invitrogen
SUMO 2+3	Primary	Mouse	2–5 μg	IP	Abcam
HIV1 (p55 + p24 + p17)	Primary	Rabbit	1:1,000	WB	Abcam
Anti-mouse IgG Alexa Fluor-488	Secondary	Goat	1:500	IF	Invitrogen
Anti-rabbit IgG Alexa Fluor-594	Secondary	Goat	1:500	IF	Invitrogen
Fluorescent anti-rabbit IgG (green)	Secondary	Goat	1:10,000	WB	LI-COR
Fluorescent anti-mouse IgG (red)	Secondary	Goat	1:10,000	WB	LI-COR

IF, immunofluorescence; IP, immunoprecipitation; WB, Western blot.

Table S2. Primer sequences

ID	Primer	Sequences
1	ZBED6 (forward)	TCTTTCATGTTGACCCCCAGTA
2	ZBED6 (reverse)	CTGACGCTTTTCTCACAGAGGTT
3	ZC3H11A (forward)	AAGGAAGGACTTACCCATTTTGATATT
4	ZC3H11A (reverse)	TGGGTCAGATTTCCCTATGAGAA
5	β-Actin (forward)	GCAAAGACCTGACGCCAAC
6	β-Actin (reverse)	ACATCTGCTGGAAGGTGGAC
7	Gag/Pol (forward)	TTCTTCAGAGCAGACCAGAGC
8	Gag/Pol (reverse)	GCTGCCAAAGAGTGATCTGA
9	Tat1 (forward)	AGGGGCGGCGACTGAATTGGGT
10	Tat1 (reverse)	CTCGGGATTGGGAGGTGGGT
11	Renilla (forward)	GATGGATTGCACGCAGGTTC
12	Renilla (reverse)	CAGCCGATTGTCTGTTGTGC

Dataset S1. Results of HITS-CLIP analysis

Dataset S1

PNAS PNAS