
SUPPLEMENTAL INFORMATION

S1 Supplemental Methods

S1.1 Specimen Imaging Details

Table S1 provides demographic data and imaging parameters for each specimen. The protocol for handling
and imaging tissues evolved over the course of the project. Prior to 2011, specimens (n = 9) were imaged
using coils with a 70 mm inner diameter, without submersion in a MRI-neutral �uid. From 2011 onward
(n = 23), specimens were imaged using a custom-made coil with a 35 mm inner diameter and a long
(80 mm) z-�eld. These 23 specimens were scanned in a cylindrical container �lled with an MRI-neutral
industrial lubricant. Specimens were cut down to the size necessary to �t in the coil and/or container.
During cutting, the hippocampal formation was kept intact, while also attempting to preserve as much of
the extrahippocampal MTL cortex as possible. All MRI scans were obtained using a multi-slice spin echo
sequence. Sequence parameters varied slightly between specimens, with TR ranging between 4 s and 5 s and
TE ranging between 21 and 23 ms. Scans had resolution of 200× 200× 200µm3, with the exception of one
specimen that was scanned at 160× 160× 160µm3 resolution.

Following acquisition and reconstruction, images were corrected for bias �eld non-uniformity using the
N4ITK algorithm [24] and normalized to a common intensity range by clipping the intensities below the
0.1 and above the 99.9 percentile, and scaling the intensity range to [0, 1000]. An error in scanner gradient
calibration was discovered towards the end of the study and a 3D printed phantom similar to the one
described in [20] was used to derive linear scaling factors between the scanner coordinate frame and the
physical coordinate frame. These linear factors (6% in x, 3% in y, 11% in z) were applied to the MRI scans
as part of postprocessing.

S1.2 SRLM and Hippocampus Segmentation

Segmentations of the SRLM and the hippocampus were used to guide groupwise registration. These seg-
mentations were initialized using automatic and semi-automatic approaches and completed using extensive
manual editing in ITK-SNAP software [31]. In the 20 NDRI cases, the hippocampus was labeled manually
to provide �rough� quality masks required by our earlier approach to atlas-building [29]. These masks were
re�ned (i.e., adjusted to better match image features) using leave-one-out automatic segmentation using a
multi-atlas label fusion segmentation method [27], followed by manual editing in ITK-SNAP. To segment the
SRLM in the 20 NDRI cases, a Hessian-based �lter [13]was used to detect thin sheet-like structures inside
of the hippocampus mask, followed by random forest classi�cation of SRLM vs. non-SRLM voxels, then
followed by extensive manual correction.

In the 12 cases from CNDR, an initial outline of the hippocampus was generated by interpolating outlines
traced manually every 13 slices and used as input to guide multi-atlas label fusion segmentation [27], with
NDRI images and segmentations serving as atlases. The resulting segmentations of the whole hippocampus
and SRLM were manually corrected. Examples of hippocampus and SRLM segmentations from this multi-
step procedure are in Figure S1.

S1.3 MRI Atlas Generation

S1.3.1 Atlas Generation Overview

The algorithm for constructing an atlas from ex vivo MRI scans consists of three stages, which are summarized
brie�y below.

1. Shape matching via minimum spanning tree (MST). Approximate correspondences between
the SRLM and hippocampus segmentations of all specimens are computed by (1) constructing an MST
on a fully connected graph in which nodes represent specimens and edges are weighted by anatomical
similarity between specimens; and (2) registering each specimen to the specimen located at the root
of the MST using a sequence of di�eomorphic registrations along the path between that specimen and
the root specimen in the MST. The MST-based approach reduces the amount of anatomical di�erence
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Table S1: Subject demographic data and MRI acquisition parameters. Group column gives the subject's
clinical diagnostic group (AD:Alzheimer's disease; NC: Non-dementia control; OD: Other Dementia). See
text for full details. Specimen NDRI12-R (marked with ∗) was excluded after the initial building of the atlas
because of the registration failures in the atlas building procedures caused by the unusually large tail of the
caudate nucleus. This specimen is not considered in any of the morphometric analyses in the paper and is
excluded from Main Table 1.

Sample ID Age Sex Group Fixation MRI Resolution Coil TR TE Scan Time Stitched Histology
(years) (days) (µm× µm× µm) (ms) (ms) (h)

NDRI01-R 89 F OD 108 160x160x160 Insight 70mm 5000 23 13.3 Y
NDRI02-R 76 M NC 256 200x200x200 M2M 70mm 4000 21 15.1 Y Y
NDRI03-L

89 F NC
130 200x200x200 Insight 70mm 5000 21 16.1

NDRI03-R 142 200x200x200 Insight 70mm 5000 23 13.3 Y
NDRI04-L 82 M NC 145 200x200x200 M2M 70mm 4000 21 15.1 Y
NDRI05-L 61 M AD 66 200x200x200 Insight 70mm 5000 23 16.7
NDRI06-L

72 M AD
580 200x200x200 M2M 35mm 4000 21 15.1 Y Y

NDRI06-R 517 200x200x200 M2M 35mm 4000 21 15.1 Y
NDRI07-L 75 M NC 292 200x200x200 M2M 35mm 4000 21 15.1 Y
NDRI08-R 75 M NC 523 200x200x200 M2M 35mm 4000 21 7.6 Y
NDRI09-L

78 F NC
284 200x200x200 M2M 35mm 4000 21 15.1 Y

NDRI09-R 217 200x200x200 M2M 35mm 4000 21 16 Y Y
NDRI10-L

78 F NC
521 200x200x200 M2M 35mm 4000 21 15.1 Y

NDRI10-R 132 200x200x200 M2M 70mm 4000 21 15.1 Y
NDRI11-L 70 F NC 142 200x200x200 M2M 70mm 4000 21 13.6 Y
NDRI12-L

81 F NC
527 200x200x200 M2M 35mm 4000 21 15.1 Y Y

NDRI12-R* 138 200x200x200 M2M 70mm 4000 21 15.1 Y
NDRI13-L

86 F AD
255 200x200x200 M2M 35mm 4000 21 15.1 Y

NDRI13-R 538 200x200x200 M2M 35mm 4000 21 15.1 Y
NDRI14-L 90 F AD 442 200x200x200 M2M 35mm 4000 21 15.1 Y Y
CNDR01-R 76 F OD 147 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR02-R 60 M AD 82 200x200x200 M2M 35mm 4000 21 13.5 Y
CNDR03-R 75 M OD 31 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR04-R 61 F OD 43 200x200x200 M2M 35mm 4000 21 15.1 Y
CNDR05-L 74 F AD 24 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR06-R 54 M AD 47 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR07-R 80 F NC 147 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR08-R 67 F OD 34 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR09-R 83 M OD 43 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR10-L 73 M OD 22 200x200x200 M2M 35mm 4000 22 15.1 Y
CNDR11-L 65 M OD 27 200x200x200 M2M 35mm 4000 22 15.9 Y
CNDR12-L 76 M OD 35 200x200x200 M2M 35mm 4000 22 15.9 Y

Figure S1: Example segmentation of SRLM and hippocampal formation (HF) in an ex vivo MRI scan. These
segmentations were used to guide groupwise registration for atlas building.
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between specimens involved in pairwise registrations. All registrations in this stage are applied to
SRLM/hippocampus label images.

2. Shape averaging via geodesic shooting (GS). Shape correspondences computed in the MST
stage are used to extract a set of landmarks on the SRLM and hippocampus surfaces in the MST root
specimen and corresponding sets of landmarks in each of the other specimens. Then a computational
anatomy algorithm by Vaillant et al. [25] is used to compute the mean SRLM/hippocampus shape
and a set of di�eomorphic transformations between the mean shape and each of the input shapes
that minimize a total deformation energy. Di�eomorphic transformations between the mean shape
and input shapes are computed using geodesic shooting algorithms [3, 28]. These transformations are
computed between landmark sets but can be interpolated to produce di�eomorphic transformations
between images.

3. Groupwise intensity-based registration (INT). In this stage, specimen MRI scans are matched to
a population mean image on the basis of intensity similarity. This stage uses the unbiased population
atlas construction approach, which alternates between intensity averaging to obtain the mean image and
intensity-based di�eomorphic registration to the mean [15, 5, 14]. This algorithm is applied to the MRI
specimens after they have been transformed into the shape average space by transformations computed
in the GS stage; in other words, MST and GS stages serve to provide a high-quality initialization for
the groupwise intensity-based registration algorithm in the INT stage. The �nal output of this three-
stage algorithm consists of an average or �template� image of the hippocampal formation, and a set of
di�eomorphic transformations between this template and each of the input MRI scans.

Each of the three stages plays a critical role in atlas construction. Without the �rst stage, groupwise
registration fails to match up corresponding locations between specimens, due to the complexity of the
image and varying context. Without the second stage, the atlas has the shape of one of the specimens (root
specimen), thus failing to capture the anatomical properties of the population. Without the third stage,
the atlas is based purely on SRLM/hippocampus segmentations and does not take into account intensity
features. In the Supplemental Section S2.1 we demonstrate the contribution of each stage of the atlas
generation algorithm to the �nal atlas.

The following sections de�ne the mathematical notation used to describe registration and provide details
of the MST, GS and INT stages.

S1.3.2 Registration Notation

Atlas construction involves multiple image registration steps, for which we adopt the following conventions.
We let indices i, j refer to specimens. We use Υj to denote the MRI for specimen j, and Sj to denote
the two-component hippocampus/SRLM segmentation, with its component images denoted SHj and SSj . In
the general discussion of registration below, we use Ij to denote some k-component image associated with
specimen j, i.e., Ij : Ωj ∈ R3 → Rk, where Ωj is the image domain. For example, Ij may denote the
three-component image formed by combinng Υj and Sj .

The expression �to register specimen j to specimen i� refers to performing registration with Ii as the
��xed� image and Ij as the �moving� image, yielding a transformation Ti→j : Ωi → R3 that assigns a new
coordinate Ti→j(x) to each point x in the �xed image domain Ωi. We refer to the image Ij ◦ Ti→j as the
�resliced� moving image, where ◦ denotes function composition. The resliced moving image is de�ned in the
�xed image domain Ωi, and at each point x ∈ Ωi has the intensity Ij(Ti→j(x)). Registration minimizes some
metric of dissimilarity between the �xed image Ii and the resliced moving image Ij ◦ Ti→j . In most general
terms, registration is expressed as

T ∗i→j = arg min
Ti→j

µ(Ii, Ij ◦ Ti→j) + λρ(Ti→j) ,

where µ is the image dissimilarity metric, ρ is an optional regularization term, and λ is a scalar parameter.
Registration in this paper is performed using an e�cient implementation of the greedy di�eomorphic

algorithm described by [15] provided in an open-source software �Greedy�1. This software package is mod-

1https://github.com/pyushkevich/greedy
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eled after the Symmetric Normalization (SyN) in the ANTS software package [4], but is optimized for
computational speed, foregoing the symmetric registration model and implementing highly optimized image
resampling and metric computation. Greedy implements common image similarity metrics including patch
normalized cross-correlation (NCC) and sum of squared di�erence (SSD) metrics. Di�eomorphic registration
is computed iteratively using the following update equation [15, 4]:

ψγ = Id+εγ ·
[
Gσs
∗DφT

i→j
µ(Ii, Ij ◦ φγi→j)

]
φγ+1
i→j = Gσt

∗ (φγi→j ◦ ψ
γ)

φ0
i→j = Id

where γ is the iteration number, Dφµ is the gradient of the metric with respect to φ, εT is the step size, Gσ ∗φ
denotes convolution of φ with an isotropic Gaussian kernel with standard deviation σ, and Id is the identity
transformation. For su�ciently small εT and su�ciently large σs, ψ

T is smooth and has positive Jacobian
determinant for all x ∈ Ωi, hence is di�eomorphic. Since di�eomorphisms form a group under composition,
φT+1
i→j is di�eomorphic also. As in [4], parameters σs and σt serve to regularize the registration; larger values

of σs result in smoother segmentations, and larger values of σt result in less total deformation. Registration
is typically performed in a multi-resolution scheme, starting with images subsampled by factors of 2k, then
re�ned on images subsampled by factors of 2k−1, etc., and at the end re�ned at full resolution.

In what follows, we use the following notation to describe di�eomorphic registration of specimen j to
specimen i:

φi→j = Rdiff(Ii → Ij ;µ,w, σs, σt, N) , (1)

where the �rst part of the expression (• → •) gives the �xed and moving images matched by the registration
and the second part of the expression gives the parameters of the registration, which include the choice of
metric µ (SSD or NCC, the latter with patch size, e.g., NCC[5x5x5]), the k-component vector w of weights
assigned to the di�erent image components when computing the dissimilarity metric, the regularization
parameters σs and σt, and the number of iterations of greedy registration at each level of the multi-resolution
pyramid (e.g., N = {100, 40, 0} means 100 resolutions at 4x subsampling; 40 at 2x subsampling; and none
at full resolution).

Greedy can also perform a�ne (and rigid) registration using gradient descent optimization of the dissim-
ilarity metric. This is denoted

Ai→j = Raff(Ii → Ij ;µ,w,A0) , (2)

where A0 is the initial a�ne (or rigid) transformation between the images, and the other parameters have
the same meaning as in (1). Lastly, Greedy can be used to match the moments of inertia (MOI) between
two images. This produces a rigid transformation that matches the centers of mass of the two images and
matches the eigenvectors of their second moment tensors. The latter is ambiguous with respect to negation
of each eigenvector. To resolve this ambiguity, the image dissimilarity metric is evaluated for all possible
matchings of the eigenvectors and the one with the minimal metric is taken. When matching specimens from
di�erent hemishpheres, a �ip is applied to the moving image as part of the MOI matching. MOI matching
is denoted:

Ai→j = Rmoi(Ii → Ij ;µ,w) .

S1.3.3 Stage 1: Shape Matching via Minimum Spanning Tree (MST)

As the �rst step, we construct an undirected complete graph G, in which each specimen corresponds to a
node, and each pair of specimens corresponds to a directed edge. Each edge (i, j) is assigned a weight ηij
that describes the degree of anatomical similarity between specimens i and j. To obtain the weights, we �rst
perform rough, i.e., highly regularized, deformable registration between the hippocampus/SRLM segmenta-
tions of the two specimens, and then measure residual di�erence between the co-registered segmentations.
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The registration is performed as follows:

A0
i→j = Rmoi(Si → Sj ;µ = SSD,w = {1, 5}) ,

Arough
i→j = Raff(Si → Sj ;µ = SSD,w = {1, 5}, A0 = A0

i→j) ,

φrough
i→j = Rdiff(Si → Sj ◦Arough

i→j ;µ = SSD,w = {1, 5},
σs = 2 mm, σ = 0.1 mm, N = {50, 50, 20, 0}).

The weight factors w = {1, 5} (i.e., weight 1 for the hippocampus and 5 for the SRLM) were chosen
a priori based on the observation that the ratio of SRLM to hippocampus volume in the specimens was
approximately 1 : 5. By setting σs = 2 mm, i.e., 10 voxels, we obtain a highly regularized deformation with a
very smooth deformation �eld. This deformation matches the overall shape of the specimens but signi�cant
residual di�erences in shape remain. The weight ηij is then assigned as

ηij = 1− 1

2
GDSC(Si,Sj ◦Arough

i→j ◦ φ
rough
i→j )− 1

2
GDSC(Si ◦Arough

j→i ◦ φ
rough
j→i ,Sj) ,

where GDSC is the generalized Dice similarity coe�cient [8], a measure of total overlap between multi-label
segmentations. GDSC lies in the range [0, 1], with 1 being perfect overlap and 0 being no overlap. Smaller
values of ηij indicate greater anatomical similarity between specimens i and j.

We then use Prim's algorithm [22] to compute the minimum spanning tree (MST) in the graph G. The
MST is a tree that includes all nodes of G and has minimum total edge weight. We then de�ne the root
node of the MST as follows:

R = arg min
r∈[1...N ]

N∑
q=1

dmst(r, q) ,

where dmst is the edge length of the path in the MST between two nodes.
Lastly, we perform a sequence of deformable registrations between each specimen j and the root specimen

R, following the path between j and R in the MST. An important property of this registration sequence is
that it involves smallest possible deformations between pairs of specimens, where smallest refers to having
the least shape di�erence. Indeed, if edge (a, b) is an edge in a path from j to R in the MST, then by the
cycle property of the MST, any other path in G that connects a to b contains an edge with weight greater
than ηab.

The sequence of registrations is performed as follows. Let {i0, . . . , ip} be the sequence of specimens on
the path from j to R, with i0 = j and ip = R. Then we perform a sequence of registrations for m = 1, . . . , p:

Amst
im→im−1

= Raff(Sim → Sj ◦ Tmst
im−1→j ;µ = SSD,w = {1, 5}, A0 = Arough

im→im−1
) ,

φmst
im→im−1

= Rdiff({Sim ,Υim} → {Sj ,Υj} ◦ Tmst
im−1→j ◦A

mst
im→im−1

,

µ = SSD,w = {1, 5, εΥ},
σs = 0.6mm, σt = 0.1mm, N = {100, 50, 40, 20}).

Tmst
im→j = Tmst

im−1→j ◦A
mst
im→im−1

◦ φmst
im→im−1

.

In this sequence of registrations, Tmst
im→j represents the combined transformation between specimen im and

specimen j (with Tmst
i0→j = Id). Note that the deformable registration above includes the MRI with a very

small weight εΥ. This is done in order to slightly improve the registration outside of the hippocampus mask.
We set the weight empirically to 6 · 10−8 (the MRI scans are normalized to the range [0, 1000], whereas
the segmentation images have range [0, 1]). The registrations are also performed with a smaller smoothing
parameter σs = 0.6mm, which results in less regularization.

The �nal output from Stage 1 consists of a set of transformations Tmst
R→j between the root MST node and

each specimen, which closely match up the hippocampus and SRLM boundaries, as shown in Figure S10.
The average of the transformed MR images is shown in the �rst row of Figure S9.
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S1.3.4 Stage 2: Shape Averaging via Geodesic Shooting (GS)

A set of L point landmarks XR = {XR
1 , . . . , X

R
L } is sampled from the SRLM and hippocampus surfaces of

the root specimen R. These point landmarks are extracted with roughly uniform sampling using the Poisson
Disk sampling algorithm [7] implemented in the VCG Library2. For each specimen j, the corresponding
landmarks in its native space are obtained by applying the transformations from Stage 1:

Xj = {Xj
1 , . . . , X

j
L} = {Tmst

R→j(X
R
1 ), . . . , Tmst

R→j(X
R
L )} .

These sets of corresponding landmarks are input to the shape averaging algorithm implemented following
the theoretical framework of [25]. Over iterations m = 1, . . . ,M the algorithm iteratively updates the shape
average X̄m and a set of di�eomorphic transformations between X̄m and Xj . The algorithm alternates
between registering Xj to X̄m for each j using the geodesic shooting algorithm [3, 28] and updating the
shape average X̄m+1. These two steps are summarized below.

Landmark Registration Using Geodesic Shooting This operation is performed in parallel for each
specimen j. First, the landmarks Xj are aligned to X̄m using the Procrustes algorithm [11], giving a linear
transform Aproc,m

j and a new set of landmarks X̂j . We then use the geodesic shooting algorithm [3, 28]

to �nd a spatial transformation φ that optimally matches the landmarks X̂j to X̄m under a regularization
constraint. We adopt the notation of [3] to describe the geodesic shooting method. Landmark deformation is
formulated as a dynamic system in which q(t) = {q1(t), . . . , qL(t)} describes the positions of the landmarks
as a function of time (t ∈ [0, 1]) and p(t) = {p1(t), . . . , pL(t)} describes the momentum of the landmarks
(pl(t) ∈ R3). The initial positions of the landmarks are given q(0) = X̄m, and the initial momenta of the
landmarks p(0) = αmj are an unknown that the geodesic shooting algorithm optimizes for. The evolution of
the system is formulated in terms of the Hamiltonian:

H(p, q) =< p,K(q)p > ,

where K(q) is a (3L)× (3L) with L×L diagonal blocks, with the (l, n)-th block equal to Gσgs
(‖ql−qm‖) · I3,

where Gσgs
is a Gaussian kernel and I3 is an identity matrix. The system evolves according the the system

of equations {
dq
dt = ∂H

∂p (q, p)
dp
dt = −∂H∂q (q, p)

. (3)

H(p, q) is the kinetic energy of the system and is constant over time when the system evolves according to
(3). The landmark matching problem is formulated as the optimization

α∗ = arg min
α∈R3L

H(X̄m, α) + λ · ‖q(1)− X̂j‖ . (4)

This minimization problem is discretized in time and solved using the gradient-based optimization [3]. Given
the optimal solution α∗, and the corresponding landmark trajectories q∗(t) and momenta p∗(t) the landmark
transformation can be interpolated over the entire spatial domain to yield a smooth velocity �eld

v(x, t) =

L∑
l=1

Gσgs
(‖q∗l (t)− x‖) · p∗l (t) , x ∈ R3. (5)

From which a di�eomorphic transformation φ(x, t) can be derived by solving the di�erential equation [28]{
dφ
dt (x, t) = v(φ(x, t), t)
φ(x, 0) = x

. (6)

The landmark trajectories q∗(t) are �embedded� in this di�eomorphic transformation, i.e. ql(t) = φ(ql(0), t).
For specimen j and iteration m, we denote the end-point di�eomorphic transformation φ(x, 0) as φgs,m

j .
In summary, the geodesic shooting algorithm yields a di�eomorphic transformation φgs,m

j that approxi-

mately matches landmarks X̄m to landmarks X̂j , subject to a regularization term that penalizes the kinetic
energy of the landmark transformation.

2http://github.com/cnr-isti-vclab/vcglib/
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Shape Averaging Following [25], we update the average con�guration X̄m by applying geodesic shooting
in the direction of the average initial momenta. Speci�cally, given the initial momenta αm1 , . . . , α

m
L obtained

by optimization (4) for each specimen, we compute the average initial momentum ᾱm = 1
L

∑L
l=1 α

m
j and

apply the Hamiltonian �ow (3) with p(0) = ᾱm and q(0) = X̄m. We then apply interpolation (5,6) to obtain
a di�eomorphic transformation φ̄m corresponding to the initial momentum ᾱm.

The transformation φ̄m may include global scaling, which can cause the mean landmark con�guration to
grow or shrink over time. To avoid this, we perform Procrustes alignment between φ̄m(X̄m) and X̄m, which
yields a transformation Āproc,m. Finally, we update the landmark positions as

X̄m+1 = Aproc,m
j (φ̄m(X̄m)) .

Output of Stage 2 The steps of landmark registration and shape averaging are repeated for several
iterations, until the shape average stabilizes. At each iteration, an average MRI intensity and average
hippocampus/SRLM segmentation are computed by applying the transformations T gs,m

j = φgs,m
j ◦ Aproc,m

j

to the images Υj and Sj and averaging their intensities, i.e.,

Ῡgs,m =
1

N

N∑
j=1

Υj ◦ T gs,m
j

S̄gs,m =
1

N

N∑
j=1

Sj ◦ T gs,m
j

The average images Ῡgs,M , S̄gs,M and the transformations T gs,M
j are the outputs of Stage 2. The average

MRI intensity Ῡgs,M is shown in the second row of Figure S9. A clear change in the shape of the hippocampus
in the average image is observed after the application of geodesic shooting (i.e., comparing row 1 to row 2
in Figure S9).

S1.3.5 Stage 3: Groupwise Intensity-Based Registration

This stage involves computation of a unbiased population template [15, 5] using MR images Υ1, . . . ,ΥN

after initializing by the transformations computed in Stage 2. This is done iteratively, alternating between
registration of the images to the current template, and updating the template. Let φint,0

j be the identity
transformation. We compute the template at iteration m as

Ῡint,m+1 = S ∗
N∑
j=1

Υj ◦ T gs,M
j ◦ φint,m

j

S̄int,m+1 =

N∑
j=1

Sj ◦ T gs,M
j ◦ φint,m

j ,

where, following [6], S is a Laplacian unsharpening operator used to enhance the edges in the intensity
template. Then, for each specimen j, the transformation to the template is updated using intensity-based
registration with the normalized cross-correlation metric:

φint,m
j = Rdiff(Ῡint,m → Υj ◦ T gs,M

j ,

µ = NCC[5× 5× 5],

σs = 0.6mm, σt = 0.2mm, N = {100, 100, 50}).

These steps are alternated until the template stabilizes. The �nal output of Stage 3 consists of the templates
Ῡint,M , S̄int,M and the transformations T int,M

j = T gs,M
j ◦ φint,M

j , which map the templates into the native
space of each specimen j.
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S1.4 Histology-MRI Alignment and Cytoarchitectural Annotation of Hippocam-

pal Sub�elds

S1.4.1 Histological Imaging

Nine specimens, each from a di�erent individual, underwent histological processing (Table S1). Blocking,
sectioning, staining and imaging followed the protocol derscribed in [2]. In brief, specimens were cut into
∼ 1cm thick blocks (46 in total). Blocks were scanned on the Varian 9.4 tesla scanner at 200×200×200µm3

resolution using the same multi-slice spin echo sequence as the intact specimens, but with fewer averages for
1-2 hour acquisition per block. After MRI, blocks were embedded in para�n, sectioned with 5µm thickness
at approximately 200µm intervals, stained using the Klüver-Barrera [16] method, and optically scanned at
0.5 × 0.5µm2 resolution. Further details of the histological imaging procedure are provided in [2], and a
visual summary is given in Figure 2 of that paper.

S1.4.2 Reconstruction

For each block, the scanned histology images are reconstructed in 3D and aligned to the MRI of the block.
Following the graph-theoretical framework described in [2], each histology slide undergoes linear and de-
formable registration to the neighboring slides and to the matched cross-section of the MRI scan. The
pipeline in the current paper makes several deviations from the approach in [2], as described below.

The framework in [2] is fully automatic and consists of three stages: (1) histology slides are aligned
linearly to neighboring slices, with a graph-based approach used to skip over slices with missing content
or poor image quality; (2) the resulting 3D histology stack is aligned to the MRI using a�ne registration
in 3D; (3) histology slices are iteratively aligned and deformed to the corresponding MRI slice and to the
neighboring histology slices, providing a reconstruction that is both continuous across histology and matched
up with the MRI. In the present work, steps 1 and 2 are omitted, and instead, an interactive software tool
HistoloZee3 is used to perform the initial histology 3D reconstruction and alignment to the MRI. HistoloZee
is a multi-featured tool for histology reconstruction. It allows concurrent visualization of multiple histology
slices and MRI at full resolution and varying levels of zoom; rotation, translation and scaling of histology
slices in-plane; 3D rotation, scaling and translation of the MRI volume; and annotation of structures on
histology slides [1, Appendix A]. Although using HistoloZee to reconstruct histology stacks and align them
to MRI required considerable manual e�ort, interactive processing allowed us to account for presence of
gaps between sections, large di�erences in pose between adjacent slides, and better coped with slides with
poor staining. The alignment from HistoloZee was then used to initialize iterative histology-MRI alignment,
analogous to step 3 from [2].

Di�erently from [2], when registering histology images to MRI slices, we �rst remap the intensity of the
histology images to simulate MRI-like appearance, which allows us to use the NCC metric for deformable
registration, rather than the mutual information metric in [2]. Histology images have three color channels
(red, green and blue, RGB). We use non-linear least squares regression to predict MRI appearance given
histology RGB components. Let h1, h2, h3 be the random variables representing the RGB intensities of a
histology pixel and let Υ be the MRI intensity of the corresponding pixel. The we �t a �fth order polynomial
model

Υ = P5(h1, h2, h3; C) +N(0, σ),

where C are the coe�cients of the polynomial, to a set of 5000 pixels randomly sampled from a histology
slide and the corresponding set of pixels in the slice of the block MRI aligned to the histology slide in
HistoloZee. The �tted model is then applied to all pixels in the histology image, and the resulting simulated
MRI intensities are clipped to the range of the MRI slice. Figure S2 gives an example of a histology slice,
matched MRI slice, and the simulated MRI obtained by �tting this model.

Finally, as in [2], the block MRI is registered to the intact specimen MRI using highly constrained
deformable registration after rigid-body initialization with manually placed point landmarks, providing a
coordinate mapping between the intact specimen MRI and the reconstructed histology. The alignment
between histology and MRI in the space of block MRI (where all histology slices are parallel, and each
histology slice undergoes only an in-plane deformable registration) is illustrated in Figure S3. The alignment

3http://www.nitrc.org/projects/historecon

8

http://www.nitrc.org/projects/historecon


Histology Rigidly Aligned MRI

Simulated MRI-like Image Simulated Registered to MRI

Figure S2: Remapping of histology red, green and blue channels into a single-component �simulated� MRI
image. Intensity remapping makes it possible to use the normalized cross-correlation metric for deformable
registration between MRI slices and histology.

between the histology and MRI in the space of whole-specimen MRI, where histology slices are no longer
parallel to each other (due to block MRI to whole specimen MRI transformations) is shown in Figure S4.

S1.4.3 Histology Annotation

Hippocampal sub�elds were identi�ed on the basis of cytoarchitectural features in histology images. Sub�elds
were labeled in HistoloZee software following the anatomical rules described by Ding and Van Hoesen [10].
First, author JP annotated sub�eld boundaries on histology scans using line drawings and text labels in
Adobe Photoshop software. Annotations were drawn on histology slices downsampled to approximately
20 × 20µm2 resolution, but full-resolution histology scans loaded in HistoloZee were used to determine
the actual locations of cytoarchitectural boundaries (e.g., the transition between CA1 and CA2 marked
by increase in the density of pyramidal cell bodies and change in their shape from more ovoid to more
triangular [12, 10]). These annotated histology images were then reviewed by the �rst author of [10] and
edited as necessary. An example of an annotated histology slide is shown in Supplementary Figure S5. The
annotations denote boundaries between hippocampal sub�elds CA1, CA2, CA3, DG, and SUB. However,
SRLM is not separed from the CA and DG layers in the histological annotation. Instead, the atlas relies on
MRI-based labeling of the SRLM as described in Section S1.2.

S1.4.4 Sub�eld Segmentation in MRI Space

Following the automated histology alignment and registration to the whole-hippocampus MRI, the cytoarchi-
tecturally-derived sub�eld boundary annotations were mapped into the 3D MRI space and used to generate
a contiguous 3D sub�eld segmentation. The approach in this paper is a departure from our previous ap-
proach in [2], where sub�elds were �rst fully segmented in each histology slice, and these segmentations were
reconstructed in 3D MRI space and then manually edited for 3D continuity. The new procedure forgoes
the time-consuming segmentations in histology slices, relying instead on the boundary annotations. The
approach of segmenting hippocampal sub�elds in MRI space on the basis of annotations derived from his-
tology has several advantages over the alternative approach of segmenting sub�elds in histology images and
warping these 2D segmentations into the 3D MRI space. These include greater throughput, robustness to
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Figure S3: Histology reconstruction and alignment to block and whole-specimen MRI. The reconstructions
are shown in the space of the block MRI, where histology slices are parallel and transformed in-plane. The
sagittal view of the histology illustrates the relative continuity of the 3D histology reconstruction. The
whole-specimen MRI, deformed under strong regularization constraints to match the block MRI, is also
shown.

Whole-Specimen MRI Reconstructed HistologyMatched Block MRIs

Figure S4: Histology reconstruction in the space of the whole-specimen MRI. The native-space whole-
specimen MRI, block MRIs resampled into whole MRI space, and reconstructed histology blocks are shown
in the sagittal section. Black spaces in the histology reconstruction correspond to gaps between blocks and
missing spans of slides within blocks, as well as some residual tissue deformation not recovered by the block
MRI to whole-specimen MRI registration.
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CA3 CA2

CA1

CA3 DG

Subfield Boundary Annotations on Histology Slice

Zoomed-in view of histology (dotted red box)

Figure S5: Histology annotation example. Top: a histology slide in the hippocampal head, with line
annotations drawn by author JP and reviewed by author SLD. Bottom: a zoomed-in view of the region
outlined by a red dashed box in full-resolution histology data. Full resolution histology was used to determine
the location of annotated boundaries. Additional annotations are shown at a larger scale in Figures S16-S20.
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errors in histology-to-MRI registration, and better continuity of the segmentation in 3D space. Moreover,
segmenting hippocampal sub�elds directly in MRI space has the advantage of mitigating potential distorting
e�ects of tears or other slight in-plane misalignments between the histology sections and MRI scans. In the
presence of a registration mismatch between MRI and histology, the manual tracer can visually map sub�eld
boundaries from the histology space to MRI space, instead of �blindly� relying on the registration as in the
earlier approach. Note that the SRLM label is already traced in the MRI space (Section S1.2).

In the new sub�eld segmentation procedure, the co-registered MRI and histology with overlaid boundary
annotations are displayed side-by-side in ITK-SNAP [31, 30], and sub�eld outlines are manually traced in
MRI space. This is done separately for each block. In �block space�, the histology slices are deformed in-
plane to match the corresponding slices of the MRI. Thus it is still possible to see full detail of histology
and the boundary annotations. Yet, since the MRI has 3D continuity in block space, it is also possible to
trace sub�elds in a way that is consistent three-dimensionally. Author LW traced the boundaries of CA1,
CA2, CA3, dentate gyrus and subiculum sub�elds in coronal MRI slices in each of the 46 blocks. Histology
annotations were used to de�ne CA1/CA2, CA2/CA3, CA3/DG, CA1/SUB boundaries, which cannot be
clearly observed on MRI. MRI gray/white contrast was used to de�ne inner and outer boundaries of the
sub�elds. In certain head slices with very complex geometry of sub�eld boundaries, histological boundary
annotations were not enough to infer the full segmentation, and segmentation performed directly in histology
space (as in [2]) was consulted in order to label sub�elds in MRI space. Additionally, in 2 of the 46 blocks,
a slight misalignment of histology and MRI was detected along the histology slicing direction, and matching
histology slices were manually selected by author LW, instead of relying on the automatic histology/MRI
reconstruction. Figure S6 illustrates this sub�eld segmentation procedure in a single slice.

To reduce segmentation time, sub�eld boundaries were traced by LW in block MRI space on every third
coronal slice (every 0.6 mm) for the blocks containing hippocampal head and tail; and every �fth slice
(every 1.0 mm) for the hippocampal body blocks. These sparse segmentations were then interpolated in
the space of the whole-hippocampus MRI (Figure S7). Gaps between blocks and missing blocks were not
interpolated. After interpolation, author LW reviewed the reconstructed segmentations in ITK-SNAP. In
regions where 3D discontinuity between boundaries was observed, author LW consulted the block-space
histology segmentations and histology annotations, and if warranted, edited the whole-MRI space sub�eld
segmentation locally to improve continuity while still adhering to the cytoarchitectural evidence of sub�eld
boundaries (white circle in Figure S7).

S1.4.5 Computation of Consensus Segmentation in MRI Atlas Space

A consensus segmentation of the hippocampal sub�elds in the MRI atlas was computed by majority voting
among the warped sub�eld segmentations of the nine specimens with histology (shown in Figure S12), with
slight regularization by a Markov random �eld prior. Let us consider the discrete representation of the MRI
atlas space with voxels labeled 1, . . . , Nvox. For a voxel x in MRI atlas space, let V [x, k] be the total number
of �votes� for the label k among the nine warped segmentations, i.e., V [x, k] =

∑
j S

k
j [x], where Skj is the

warped binary segmentation image for label k ∈ {1, . . . ,K} in specimen j. Since segmentations derived from

histology have missing data (gaps between blocks), the total number of votes at a voxel, V̂ [x] =
∑K
k=1 V [x, k],

may be di�erent at di�erent voxels (K denotes the number of histology labels). The consensus multi-label
segmentation of the atlas is obtained by solving the optimization problem

S∗ = arg min
S∈{1,...,K}Nvox

Nvox∑
x=1

(
V̂ [x]− V [x, S[x]]

)
+ β

∑
{x,y}∈E

δ(S[x], S[y]) , (7)

where β is a scalar weight, E is the set of all face-adjacent voxels, and δ is the Kronecker delta function.
This optimization problem corresponds to �nding the mode of a Gibbs probability density, and can be solved
using a polynomial-time graph cut algorithm [17]. The �rst (data) term in (7) penalizes the number of votes
at a voxel x that disagree with the consensus label S[x], while the second term penalizes spatial discontinuity
in labels, and acts as a regularizer.

Regularization was employed because at some voxels there is little data available (due to gaps in the
histology segmentations) and continuity may help determine the correct label assignment at those voxels. In
determining the relative weight of the regularization term (β), we obtained consensus segmentations using
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Histology with boundary annotations  
warped to the blocked MRI space

MRI slice with overlaid 
boundary annotations

Hippocampal subfield labels  
traced in block MRI space using the  
boundary annotations from histology

CA1 CA2 CA3 DG SUB

Whole-hippocampus and SRLM labels 
created directly from the MRI

HF SRLMCyst

Figure S6: Example of a histology annotation mapped onto an MRI slice and used to segment hippocampal
sub�elds in block MRI space. The same histology slide is shown in Fig. S5. The white markings on the MRI
slices correspond to the dark lines and text on the histology slide, and can be viewed with larger font in Fig.
S5. There is a tear in the tissue adjacent to SRLM in the histology slide, which is not uncommon and is one
of the reasons why we chose to perform sub�eld segmentation in MRI space rather than histology space.
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Before Interpolation After Interpolation Manually Edited

Figure S7: Mapping of histology segmentations performed in block MRI space into whole MRI space for a
single specimen. On the left, the segmentations drawn on every third/�fth slice in block space are warped
into whole MRI space. In the middle, these warped slice segmentations are interpolated within regions where
blocks cover the whole-specimen MRI. On the right, small corrections are introduced manually to improve
3D continuity of the segmentation.
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a range of β values and for each β value computed the average generalized Dice coe�cient (GDSC) [8]
between the consensus segmentation and all of the warped specimen segmentations. We empirically chose
the largest β such that mean GDSC with regularization was no more than 0.2% of the mean GDSC without
regularization (hence the degree of regularization is very slight). The selected value was β = 0.05.

S1.4.6 Computation of Regional Thickness of Hippocampal Layers

The thickness of three hippocampal layers (DG forming the innermost layer, SRLM forming the middle
layer, and the outermost layer composed of CA1-3 and subiculum) was computed as follows. The marching
cubes algorithm [18] is applied to the consensus segmentation of the MRI atlas to extract a surface mesh
of each layer. The surface mesh is smoothed slightly using the Taubin algorithm [23] implemented in the

VCG library 4 to remove sharp voxel edges. The transformations T int,M
j are applied to the surface meshes

to warp them into specimen native space for all 31 specimens. The Voronoi skeleton [21] is extracted from
each surface mesh, and twice the distance from each mesh vertex to the skeleton is recorded as thickness for
that specimen at that vertex. Thickness values are brought back into the atlas space, forming a set of 31
thickness observations at each vertex, which are analyzed as described in the Statistical Analysis Section of
the main paper.

S1.4.7 Visualization of Shape Variability

Geodesic shooting [25, 19] was used to visualize shape di�erences between control and AD hippocampi. As
in Step 2 of the MRI atlas generation approach (Section S1.3.4), geodesic shooting was applied between
landmarks sampled in the MRI atlas space along the SRLM and hippocampus surfaces and corresponding
landmarks in each input specimen. Correspondence between the two sets of landmarks was established by the
three-step registration procedure in Section S1.3). Geodesic shooting compactly represents the di�eomorphic
transformation between the template landmarks and a given specimen's landmarks as an initial momentum
vector at each landmark. By (5), the initial momentum vector at each landmark can be transformed into an
initial velocity vector at each landmark, and vice versa. Similar to [25], statistical shape analysis is performed
similar on these initial velocity vector �elds.

Shape analysis is performed as follows. First, principal components analysis (PCA) is used to derive
the mean initial velocity �eld and a set of orthogonal principal directions, which are the eigenvectors of the
covariance matrix of the initial velocity vector �elds, ordered by the magnitude of their eigenvalue. The set
of principal directions is culled to the P directions with largest eigenvalues that together account for 95% of
total variance. Each specimen is then represented by a P -dimensional vector of loadings on these principal
directions. A support vector machine (SVM) classi�er with a linear kernel [26] was trained using loadings as
features and diagnostic group (control or AD; other dementia cases were excluded from the SVM) as class
membership. The vector w orthogonal to the SVM hyperplane was assumed to be the direction in the space
of loadings that best discriminates between AD and control. The initial velocity vector �eld corresponding
to w was computed and geodesic shooting was used to obtain a time-varying velocity �eld vw(x, t) over
the entire image domain. Integrating the �ow equation over this �eld for di�erent values of t yields family
of di�eomorphic transformations of the MRI atlas corresponding to movement along direction w. These
transformations are then visualized as a movie representing shape change between control and AD groups.

S1.4.8 Measurement of hippocampal digitations and folds

Hippocampal digitations in the head refer to superior or laterosuperior protuberances of the surface of the
hippocampus; note that we are not referring to protuberances of the dentate gyrus. Similarly, folds refer
to the protuberances of the surface of the hippocampus in the body and tail, located often on the inferior
or latero-inferior surface in the body and sometimes on the lateral surface in the tail. The head digitations
were counted in the coronal plane by scrolling anterior and posterior to identify all digitations (See Figure
8a-c). The folds of the posterior hippocampus were mostly counted in the sagittal plane but also in the
other planes, especially counting folds in the tail (See Figure 8d-g).The 3D rendering of the hippocampus
was used to track all digitations/folds.

4http://vcg.isti.cnr.it/vcglib/
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Figure S8: Measurement of hippocampal digitations and folds. The coronal plane, �gure a-c, was used to
count digitations in the hippocampal head. In this subject 3 head digitations can be counted. In c it can
be seen that digitation 2 can no longer be identi�ed, which demonstrates the importance of scrolling back
and forth to identify all digitations. In �gure d-f, the sagittal plane of the same subject is shown which
was primarily used to count folds. Not all folds can be identi�ed on each of the sagittal slices with fold 4-6
disappearing on the two more medial slices, and vice versa for folds 9-11. In this subject the most posterior
folds could be identi�ed in the sagittal plane, but this is often not the case. For this reason all three planes
were inspected when counting folds.
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S1.4.9 Qualitative Analysis of Hippocampal Tail Morphology

Although there is no consensus de�nition, the hippocampal tail is often de�ned based on external landmarks
which were not available in the excised specimen MRIs. We therefore adopted a di�erent working de�nition
to be able to follow the curve of the tail in a consistent manner. We de�ned the tail as the posterior 1/3 of
the hippocampus. To test the hypothesis that at the macroscopic level the structure of the hippocampal tail
is similar to that of the hippocampal body, we de�ned three cut planes in each specimen MRI that followed
the curve of the tail. These cut planes were de�ned by drawing line segments in the axial plane following
rigid alignment of each specimen to the MRI atlas. Line segments were drawn by author LW using the line
annotation tool in ITK-SNAP at approximately 6/9, 7/9 and 8/9 of the total hippocampus length and in
the direction perpendicular to the lateral CA border. Cut planes were de�ned as the planes orthogonal to
the axial plane that contained these line segments. Each specimen MRI was resliced along the three cut
planes and the resulting 2D images were examined visually. Examples from two representative specimens
are shown in Figure S14.

S2 Supplemental Results

S2.1 MRI Atlas Quality

Figure S9 shows atlases obtained at di�erent stages and variations of the algorithm in Section S1.3. Atlases
labeled �MST, MST+GS and MST+GS+INT� correspond to the three stages in Section S1.3 (minimum
spanning tree, geodesic shooting, and intensity-based groupwise registration). The shape averaging e�ect of
the geodesic shooting step is clearly visible, with the shape of the atlas markedly di�erent between MST and
MST+GS atlases. Atlas �INT only� is generated to demonstrate that the more conventional computational
anatomy approach frequently used for in vivo brain morphometry [14, 15, 5] does not yield as good of an atlas
as the proposed approach. The white arrows in the �gure point out locations of marked di�erence between
�MST+GS+INT� and �INT only� approaches, with �INT only� generating a less well-de�ned pattern in the
head of the hippocampus, likely due to poor initial matching of SRLM surfaces.

The quality of the registration between individual specimen images and each of the atlases in Figure S9
is visualized in Figure S10. Overall, the warped specimen images for the MST+GS+INT strategy are more
similar to each other and to the atlas, than for the INT strategy.

Figure S11 reports quantitative metrics of atlas quality for the three stages in Section S1.3 and the
�INT only� approach. For each pair of specimens registered to a given atlas, we compute the Dice similarity
coe�cient, a measure of relative overlap [9], between their respective hippocampus and SRLM segmentations.
For all pairs of specimens with histology, we compute the generalized Dice coe�cient (GDSC, a multi-label
overlap measure) [8] between their histologically derived multi-label sub�eld segmentations in atlas space.
GDSC is computed across voxels that are labeled in both specimens and fall inside of the hippocampus mask
in the given atlas. Lastly, we compute the average normalized cross-correlation (NCC) image dissimilarity
metric (with patch size 9 × 9 × 9) between each pair of specimens registered to the atlas. For each pair of
specimens, the NCC is integrated over the hippocampus label in MRI atlas space.

The quantitative metrics in Figure S11 require careful interpretation. The hippocampus and SRLM
segmentations are directly used by the MST and MST+GS stages of atlas generation, so it is to be expected
that overlap for these segmentations would be highest for these two stages. Likewise, the NCC metric is
optimized by intensity-based registration, so we expect it to be higher for �MST+GS+INT� and �INT only�
approaches. The key observation is that �MST+GS+INT� not only has higher hippocampus/SRLM overlap
than �INT only� but also achieves greater NCC. This indicates that the �INT only� approach is initialized
farther from the optimal groupwise alignment than the �MST+GS+INT� approach. In other words, the
initialization provided by the MST+GS stages helps groupwise intensity-based registration to �nd a better
solution than initialization based on groupwise a�ne registration. Lastly, �MST+GS+INT� does best at
aligning histology labels between specimens.
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Figure S9: A comparison of MRI atlases generated by the three stages of the atlas building approach in
Section S1.3 with an alternative approach. The �rst three rows show atlases generated at the end of the
minimum spanning tree (MST), geodesic shooting (MST+GS) and intensity-based groupwise registration
(MST+GS+INT). The alternative approach is to use hippocampus and SRLM labels for a�ne alignment
(A�ne only� and then to perform only intensity-based groupwise registration (INT only). Each atlas is
generated by averaging the registered specimen MRI scans with equal weighting. The dashed white circles
point out regions where the INT template exhibits noticable di�erences from the MST+GS+INT template.
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Figure S10: MRI scans of 31 specimens warped into MRI atlas space for each of the �ve atlases in Figure
S9. The more similar the warped images, the better the atlas quality. The specimen that was the root of
the MST is marked by the red asterisk.
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Figure S11: Quantitative metrics of groupwise registration quality after each stage of atlas-building in Section
S1.3 and for the alternative �INT only� approach. See text for the description.

20



S3 Additional Supplemental Figures

atlas segmentation entropy map

atlas

subject 6

subject 2

subject 7

subject 3subject 1

subject 5

subject 9subject 8

subject 4

CA1 CA2 CA3 DG SRLM SUB
0 0.5 1 1.5 2

Figure S12: Consensus Segmentation Labeling of MRI Atlas. Individual histology-based sub�eld seg-
mentations mapped into the MRI atlas space and the consensus segmentation. The consensus segmentation
includes the SRLM label obtained from MRI-based segmentations of SRLM in the 31 specimens. The last
panel shows the entropy map for the consensus segmentation; low values of entropy indicate that the nine
constituent segmentations are consistent with each other at a voxel, while higher values of entropy at a voxel
indicate greater disagreement between the nine segmentations.

Figure S13: Hippocampal Digitation Morphology. 3D rendering from the hippocampus from the
superior view (left) and the anterior/inferior view (right). The digitations and folds are indicated by colored
arrows, matched between the two renderings. The white and orange arrows point to digitations in the
hippocampal head and the purple arrow points to an inferior fold. The green arrow points to a laterally
located digitation or fold, suggesting a continuity between the typical head digitations and the typical
inferiorly located body folds.
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Figure S14: Hippocampal Tail Morphology. Examples of tail sections of two specimens are shown,
resliced perpendicular to the hippocampal long axis at three locations (white lines in the axial plane) as well
as sliced in the typical coronal cut at approximately the same location for comparison (red dashed lines in
the axial plane). It can be observed that in the two specimens with di�ering angulations of the tail, the
resliced sections have a �body-like� appearance, in some sections with a slight clockwise rotation (e.g. 1f).
The comparison of these angulated cuts with the typical coronal cut shows only small di�erences in example
1 in which the tail only shows a slight angulation. The di�erences are more striking for example 2, where
the angulation of the tail approximates 90 degrees. It was observed that in some specimens in the most
posterior resliced section, there is little DG present, an example is presented in 2f. The appearance of the
hippocampus in such sections slightly deviates from the �body-like� appearance.
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Figure S15: Transformation of the MRI atlas corresponding to moving along the discriminant direction
between control and AD specimens.
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CA1 CA2 CA3 DG SUB Cyst HF SRLM

Annotated histology (native space, not deformed to MRI)

Corresponding MRI slice
Histology-guided subfield 
segmentation of the MRI

MRI-guided labeling of SRLM 
and hippocampal boundary

Figure S16: Histology-Guided MRI Segmentation Example 1. As a complement to Figures S5 and
S6, this �gure and the following show a large-scale view of the annotated histology slide (as in Figure S5), and
the corresponding MRI slice overlaid with the histology-guided manual tracing of the hippocampal sub�elds
in MRI space (as in Figure S6), as well as with the MRI-guided semi-automatic segmentation of the SRLM
and whole hippocampal boundary (Figures S1 and S6). The large-scale histology slice is shown in its native
space, before deformation to the MRI slice.
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Figure S17: Histology-Guided MRI Segmentation Example 2.
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Figure S18: Histology-Guided MRI Segmentation Example 3.
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Figure S19: Histology-Guided MRI Segmentation Example 4.
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Figure S20: Histology-Guided MRI Segmentation Example 5.
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