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1. Supplementary Note
Analysis of the temperature dependence of the

individual microscopic steps involved in secondary nucleation

1.1 Objective and introduction

The aim of this supplementary note is to decompose the overall temperature dependence of the
secondary nucleation rate, determined experimentally as described in the main text, in terms of the
temperature dependence of its constituent microscopic steps, namely the adsorption of monomers
onto the fibril surface and the subsequent surface-catalysed conformational conversion leading to
nucleus formation and detachment. Using these results, we construct the energy landscape of both
processes as a function of the concentration of monomers in solution.

In the main text, we have applied a kinetic analysis approach based on master equations to fit the
time course of the aggregate mass concentration measured at different temperatures. This analysis
allowed us to extract the temperature dependence of the overall rate constant for secondary fibril
nucleation, k2(T ). The fact that k2(T ) is a coarse-grained quantity that captures the overall nucle-
ation step from monomers directly to aggregates naturally motivates the following question: does
the temperature dependence of k2(T ) provide any insights into the temperature dependence of the
constituent microscopic steps of secondary nucleation, in particular the initial monomer adsorption
step and the subsequent reaction on the fibril surface?

The main challenge in addressing this question comes from the fact that fibril nucleation processes
are highly complex phenomena involving the concurrent making and breaking of many hundreds of
bonds between the multiple molecular species present. This challenge is analogous to that encoun-
tered in protein folding dynamics, which, even for the smallest proteins, involve rearranging a large
number of interactions between the constituent atoms. In the context of protein folding dynamics,
much progress has been made by setting aside the full complexity of the problem and modeling the
process as a diffusive passage over a free energy barrier along a potential energy landscape with just
a few important coordinates. Such diffusive dynamics processes are the focus of Kramers reaction
rate theory, which has therefore become a powerful approach for analyzing protein folding dynam-
ics. In the following, we aim at applying Kramers reaction theory to study the problem of secondary
fibril nucleation as a multi-molecular reaction governed by diffusive dynamics and, in this manner,
extract information about the temperature dependence of its constituents microscopic steps.

This material is organized as follows. In Section 1.2, we review Kramers theory of diffusive
dynamics. We study the general situation of a double-well potential landscape first and then dis-
cuss generalizations to multi-well potential landscapes. In Section 1.3, we discuss the strategy for
analyzing the temperature dependence of secondary fibril nucleation rates using Kramers rate the-
ory. Finally in Section 1.4, we apply these results to the analysis of experimental data and construct
the potential energy landscape for secondary fibril nucleation as a function of the concentration of
monomers in solution.

1.2 Diffusive dynamics and Kramers rate theory

In what follows we review some key results from Kramers theory of diffusive reactions which will
represent the starting point for the temperature analysis discussed in Sections 1.3 and 1.4 and sum-
marized in Figs. 3–5 in the main text. We will first study a model example of a diffusive reaction
governed by a single free energy barrier. We will then extend the framework to diffusive reactions in
an energy landscape with multiple barriers and show how in this case the reaction rate depends only
on the highest free energy barrier, measured relative to the starting point of the reaction.
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1.2.1 Kramers rate theory for a double-well potential

Consider a one-dimensional double-well potential landscapeG(x) having local minima in correspon-
dence of the reaction coordinates x1 and x2 (see Supplementary Fig. 5a). The key question is: how
long does it take on average for the system to diffuse from the minimum x1 to the other one x2? A
rigorous answer to this problem is given in terms of the first-hitting time of the point x2, starting
in x1: τ(x1 → x2). Clearly, because the diffusion process from x1 to x2 is random, τ(x1 → x2) is a
random variable. However, in the limit when the free energy barrier is much bigger than the thermal
energy (ε = RT/G� 1), its average can be computed and satisfies the (Eyring)-Kramers law [1]:

〈τ(x1 → x2)〉 ' 2π√
G′′(x1)|G′′(x?)|

e[G(x?)−G(x1)]/RT (S1)

= C e∆G‡/RT .

Due to the equivalence between average first exit times from a potential well and the inverse of the
associated Kramers escape rate r (see Appendix), we can invert Eq. S1 to find the escape rate from
x1:

r =
1

〈τ(x1 → x2)〉
' A e−∆G‡/RT . (S2)

Thus, the rate at which the system diffuses from x1 to x2 is given by a prefactor A (which depends on
the curvatures G′′(x1) and G′′(x∗) of the potential landscape at x1 and x∗, respectively) multiplied by
the negative exponential of the highest free energy point measured relatively to the starting point.

1.2.2 Kramers rate theory for multi-well potentials

When the potential landscape has multiple local minima, can the escape rate still be written in the
form of Eyring equation? The answer to this question is that the escape rate satisfies Eyring equation
provided that the local minima satisfy certain ordering conditions. In particular, it has been demon-
strated [2] that for a multi-well potential landscape having local minima at x1, x2, · · · , xn there ex-
ists an ordering ≺ of these local minima (the ordering is obtained by ordering the minima from
deepest to shallowest) so that the expectation value for the average escape time from xk to the set
Mk = {xj |xj ≺ xk} satisfies Kramers formula

〈τ(xk →Mk)〉 ' Ce[H(xk,Mk)−G(xk)]/RT , (S3)

where the argument of the exponential function H(ξ, ω) is called the communication height and is
defined by

H(ξ, ω) = inf
γ:ξ→ω

(
sup
η∈γ

G(η)

)
(S4)

where the infimum is taken over all curves γ going from ξ to ω along the potential landscape. Note
that there is a single point η? realizing the supremum in Eq. S4; this point defines the relevant saddle
point between ξ and ω and determines the relevant free energy barrier controlling the escape rate.

Let us consider as an example of the application of this theorem the energy landscape in Sup-
plementary Fig. 5b. The minima in the figure are ordered from the deepest to the shallowest as
x3 ≺ x1 ≺ x2. Thus, according to the above theorem, the average first-hitting time of x3 starting from
x1 satisfies an Eyring equation. To find the relevant argument of the exponential, we compute the
communication height between x1 and x3

H(x1, x3) = inf
γ:x1→x3

(
sup
η∈γ

G(η)

)
. (S5)

As there is only one curve γ connecting x1 to x3, H(x1, x3) necessarily corresponds to the maximum
of G(x) between x1 and x3:

H(x1, x3) = G(x?), (S6)
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where x? is the point indicated in Supplementary Fig. 5b. Thus,

〈τ(x1 → x3)〉 ' Ce[G(x?)−G(x1)]/RT = Ce∆G‡/RT (S7)

and the associated escape rate is

r =
1

〈τ(x1 → x3)〉
' Ae−∆G‡/RT . (S8)

Thus, the rate for diffusing from x1 to x3 only depends on the highest free energy barrier (∆G‡)
measured relatively to the starting point x1. Finally we highlight that Eq. S8 does not apply when
the ordering of the minima x1 and x2 is reversed. We note however that this condition is satisfied for
secondary nucleation at c = 1µM , as discussed in what follows.

1.3 General strategy to analyse secondary nucleation

1.3.1 Kinetic approach

The standard procedure of kinetic analysis based on closed-form solutions for the aggregate mass
concentration allows us to determine the overall temperature-dependent rate constant for secondary
nucleation, k2(T ), from a global fit of aggregation kinetics at different temperatures [3]. The total rate
of secondary nucleation is then given by:

r(T, c) = k2(T )cn2 , (S9)

where c is the monomer concentration, n2 is the reaction order. Note that this expression tacitly
assumes that the concentration c is sufficiently low that the process of secondary nucleation is not
saturated [4].

1.3.2 Insights from simulations

From computer simulations of the process, supported by biosensing experiments, we infer [5] that
the rate of secondary nucleation depends on the fibril surface coverage θ = c/(KD + c), where 1/KD

is the monomer-surface binding constant. Note that the fibril surface coverage θ is dependent both
on the monomer concentration and temperature, hence KD is temperature dependent. The rate of
secondary nucleation can then be written in the form:

r(T, c) = k(T )θ(T, c)N , (S10)

where N is related to the size of the nucleating oligomer (see Ref. [5], page 878, second paragraph).
Note that k(T ) and N are in principle distinct from the parameters k2(T ) and n2 in Eq. S9.

1.3.3 Matching theory with simulations

How are the theoretical kinetic approach and the approach based on computer simulations discussed
in the previous two sections related to each other? At low peptide concentrations (c . KD), the fibril
surface is unsaturated, and the surface coverage can be approximated by a linear function of the
monomer concentration

θ(T, c) =
c/KD(T )

1 + c/KD(T )
≈ c

KD(T )
. (S11)

In this regime, Eq. S10 can be re-written as

r(T, c) = k(T )θ(T, c)N ≈ k(T )

KD(T )N
cN . (S12)

In this regime, the expression for the rate of secondary nucleation, Eq. S12, recovers Eq. S9. In partic-
ular, comparing the two equations allows us to make the following identification:

k2(T ) = k(T )α(T )N , hence N = n2, (S13)
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where

α(T ) =
1

KD(T )
(S14)

is a parameter that captures the temperature dependence of the surface coverage. Note that to obtain
the second equality in Eq. S13 we have exploited the fact that N is constant, as observed both in
kinetic fitting and computer simulations.

Equation S13 is a key result of this section. It shows that the overall temperature dependence
of the rate of secondary nucleation, expressed by k2(T ), can be decomposed into the temperature-
dependence of the individual microscopic steps: the surface coverage, α = θ/c, and the temperature-
dependence of the surface-catalysed nucleation step, k(T ).

1.4 Application to the experimental data

1.4.1 Strategy

The experimental kinetic data is collected in the 2-10 µM range of monomer concentrations, where the
fibril surfaces are to a very good approximation unsaturated at all temperatures [4]. In this regime,
we have shown that the rate of secondary nucleation can be expressed as

r(T, c) = k(T )θ(T, c)n2 , (S15)

with

k(T ) =
k2(T )

α(T )n2
, (S16)

or, equivalently,
k2(T ) = k(T )α(T )n2 . (S17)

This is a central relation that we will use to extract the temperature dependence of the individual
mechanistic steps of the secondary nucleation process. In particular, from the analysis of kinetic data
we can extract the temperature dependence of the overall rate constant for secondary nucleation,
k2(T ), as explained in the main text. Moreover, the temperature dependence of the surface coverage,
and thus of the parameter α(T ), can be obtained from SPR experiments. From the availability of the
temperature dependencies of k2(T ) and α(T ), we can evaluate k(T ) using Eq. S16. Obtaining k(T )
in such a way will give us information about the temperature-dependence of the surface-catalysed
nucleation step, a necessary ingredient for constructing the energy landscape. In what follows we
discuss in detail how we obtain k(T ).

1.4.2 Experimental temperature dependence of the overall rate constant k2(T )

From the kinetic analysis discussed in the main text, we infer thatN = 2 and the overall temperature-
dependent rate constant for secondary nucleation, k2(T ), reads:

k2(T = 293.15K) = 2.7 · 104 M−2s−1

k2(T = 303.15K) = 2.2 · 104 M−2s−1

k2(T = 313.15K) = 1.8 · 104 M−2s−1.

1.4.3 Experimental temperature dependence of the surface coverage α(T )

The monomer-fibril binding constant, 1/KD(T ), is obtained from fitting the SPR experimental data
to the Langmuir isotherm. From Eq. S14 we find the following α(T ):

α(T = 293.15K) = 9.1 · 104 M−1

α(T = 303.15K) = 3.8 · 104 M−1

α(T = 313.15K) = 1.6 · 104 M−1.
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1.4.4 Temperature dependence of the surface-catalysed nucleation k(T )

From the measured values of k2(T ) and α(T ), using Eq. S16, we are now in a position to determine
the rate constant of the surface catalysed step k(T ):

k(T = 293.15K) = 3.2 · 10−6 s−1

k(T = 303.15K) = 1.5 · 10−5 s−1

k(T = 313.15K) = 7.3 · 10−5 s−1.

It is apparent that k(T ) exhibits a positive and a relatively strong temperature dependence (with a
20-fold increase over 20oC).

1.5 Building the energy landscape from k2(T ), α(T ) and k(T )

1.5.1 Thermodynamics of monomer adsorption onto the fibril

We first use α(T ) to determine the thermodynamics of the adsorption step unto the fibril. According
to the Clausius-Clapeyron equation, the enthalpy of monomer adsorption onto the fibrils surface can
be evaluated as:

∆Hads

R
=

(
∂ ln(Kd)

∂(1/T )

)
θ

= −∂ ln(α(T ))

∂(1/T )
. (S18)

The value obtained using α(T ) from the previous section is:

∆Hads = −67 kJmol. (S19)

Combining this quantity and KD(T ) also allows us to directly access the adsorption entropy change
via:

∆Gads = −RT ln(c	/KD) +RT ln(c/c	)

= ∆Hads − T∆Sads,
(S20)

where c is the monomer concentration in solution and c	 = 1 M . At T = 298 K and c = 1 M the
calculation gives

∆Gads = −27 kJmol, T∆Sads = −40 kJmol. (S21)

However, at T = 298 K and c = 1 µM the adsorption free energy change is positive

∆Gads = 7 kJmol, T∆Sads = −74 kJmol. (S22)

1.5.2 Evaluation of the post-adsorption enthalpic nucleation barrier ∆H‡2

We next use the temperature dependence of the surface-catalysed nucleation, k(T ), to determine
the thermodynamics of this step following monomer adsorption onto the fibril. The enthalpy of
activation of the surface-catalysed nucleation step can be evaluated as:

∆H‡2
R

=
∂ ln(k(T ))

∂(1/T )
. (S23)

Using the extracted values for k(T ), we obtain a value of ∆H‡2 = 119 kJ/mol, which is comparable to
the enthalpic barrier of primary nucleation.
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1.5.3 Overall enthalpic barrier for secondary nucleation, ∆H‡

In the main text the enthalpic barrier of the secondary nucleation process has been extracted from
the temperature dependence of the overall nucleation step, k2(T ), and its value was ∆H‡ = (−11 ±
7) kJ/mol. As a consistency check, we now verify that this value agrees with the value obtained from
combining the adsorption enthalpy (Eq. S19) and the post-adsorption enthalpic nucleation barrier
(Eq. S23). Combining these two contributions gives the weak overall enthalpic barrier for secondary
nucleation:

∆H‡ = R
∂ ln(k(T ))

∂(1/T )
+NR

∂ ln(α(T ))

∂(1/T )

= ∆H‡2 + 2∆Hads = −15 kJ/mol,
(S24)

a value which agrees well with the enthalpic barrier ∆H‡ = (−11 ± 7) kJ/mol determined directly
from the temperature-dependence of k2(T ).

1.5.4 Overall entropic and free energy barriers for secondary nucleation

The temperature-dependence of the rate constant for secondary nucleation is given by Kramers for-
mula

k2(T ) = A e−∆G‡/RT , (S25)

where ∆G‡ corresponds to the highest free energy point along the potential landscape. To determine
the free energy of activation for the secondary nucleation, an estimate of the prefactor A is needed.
For fibril elongation, which is effectively a unimolecular reaction, we have shown that A ∼ NADreff,
where NA is the Avogadro’s constant [6, 7]. For the nucleation processes, we choose also to work
with a reference value of the frequency pre-factor corresponding to an attempted frequency from
free diffusive motion [6, 7]. Since, inevitably, we do not have complete information about diffusion
along the reaction coordinate for the nucleation processes, we partition all of the missing information
into the free energy barrier in the rate equation. Other choices of partitionings are equally possible
(for example, accounting for the adsorption process in the pre-factor); one advantage of our choice of
partitioning is that the pre-factor can be readily estimated. More generally, in this type of analysis the
kinetic pre-factor and the free energy barrier are never independent, and the latter is only meaningful
if stated together with the corresponding pre-factor. Furthermore, the precise value of the frequency
pre-factor enters only as a logarithmic correction to the entropies of activation; hence a difference of a
factor of 10 in the pre-factor results in a change in the entropy and free energy activation parameters
for the nucleation processes by only RT log(10) = 5.7 kJ mol−1.

As the rate of secondary nucleation depends on the monomer concentration with a power n2 = 2,
to obtain a quantity with the same dimensions as k2 we infer A = NADreff/c. Hence, we obtain

k2(T ) =
NADreff

c
e−∆H‡/RT−∆S‡/R, (S26)

which can be rearranged to give:

T∆S‡(c) = RT ln

(
k2c

NADreff

)
+ ∆H‡. (S27)

We have previously established estimates for the radius of the effective reaction volume reff ∼
3·10−11m and the diffusion coefficient D ∼ 10−9m2s−1 for Aβ in the context of fibril elongation [6, 7].
It is interesting to note that the rate determining step of secondary nucleation may involve the reac-
tion between a fibril-bound monomer and a free monomer, or between two fibril-bound monomers.
The former case would be similar to elongation, whereas the latter scenario may have a reduced pref-
actor corresponding to the diffusion of a bound monomer along the fibril surface. Such a process can
be modeled as diffusion in a rough potential and the reduction in diffusion coefficient compared to
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free diffusion depends on the amplitude of the roughness [8]; however, for a significant reduction in
the pre-factor to occur, the roughness features would have to be several kBT.

At T = 298 K and c = 1 M, the calculation gives:

∆G‡ = 16 kJmol, T∆S‡ = −27 kJmol, (S28)

while at T = 298 K and c = 1 µM, we obtain:

∆G‡ = 32 kJmol, T∆S‡ = −43 kJmol. (S29)

Supplementary Fig. 6 summarizes graphically the results of the energy landscape of secondary nu-
cleation analysis discussed here, and places it in contrast with the energy landscape of primary nu-
cleation, discussed in the main text.

1.5.5 Why does the highest free energy barrier follow the monomer adsorption step?

It is important at this point to comment on our assumption that the highest free energy barrier in the
system takes place after the monomer adsorption onto the surface, and not before. From the kinetic
measurements of the secondary nucleation of Aβ40 [4] it is known that the rate of the secondary
nucleation saturates in the micromolar range of peptide concentrations, which correlates with the
saturation of the fibril surface coverage by monomeric peptides in the same concentration regime [5].
These experiments, accompanied by computer simulations, suggest that the rate of secondary nucle-
ation depends on the fibril surface coverage (Eq. S10). Such a dependence necessarily implies that
the rate determining step, characterized by the highest free energy barrier on the energy landscape,
takes place after the monomer adsorption onto the fibril surface. This rate determining step may for
instance involve nucleus formation or detachment.

1.5.6 Comment on the lower bound on the nuclei detachment rate

We can provide an estimate for the lower bound of the detachment rate, by considering that any
detachment step following the highest free energy point will be characterized by the following prop-
erties: 1) the associated free energy barrier cannot be higher than the highest free energy point (16
kJ/mol); 2) the starting point for the detachment step on the free energy landscape has a free en-
ergy higher than ∆Gfib = RT ln(ccrit/c) = −12 kJ/mol (at 1 µM). For these reasons, we obtain an
upper bound for the free energy barrier for detachment: ∆G‡detach ≤ (16 + 12) kJ/mol = 28 kJ/mol.
The prefactor is obtained from a scaling argument as A = cDreffNA = 0.018 s−1. Thus the rate of
detachment will be at least kdetach ≥ A exp(−∆G‡detach/RT ) = 2.2× 10−7s−1.

1.6 Appendix: Equivalence between average first exit time and inverse
Kramers rate

In this appendix, we review the equivalence between average first exit times from a potential well
and the inverse of the associated Kramers rate.

1.6.1 Average first exit time from potential well

We consider the diffusive motion along a one-dimensional double-well potential potential landscape
G(x) (Supplementary Fig. 5a). The time it takes for a particle initially at x1 to exit the potential well
for the first time is denoted with τ(x1 → x2) = τ . Because sample paths of the particle’s motion are
random, τ is a random variable. ConsideringN independent realizations τ1, τ2, · · · , τN we define the
average first exit time as [9]

〈τ〉 = lim
N→∞

1

N

N∑
n=1

τn. (S30)
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Turning to the definition of Kramers rate, we consider a large ensemble of N independent diffus-
ing particles initially inside the well x1. We expect that the particles will reach a quasi-equilibrium
steady state but will leak out slowly across the potential barrier. If particles are introduced in the
potential well at the constant rate J (flux), then the escape rate is given by Kramer’s formula [9]

r =
J

p
, (S31)

where p is the stationary probability of a particle being inside the potential well. We now show that
the Kramers rate can be computed from the average first exit time from the potential well as

r =
1

〈τ〉
. (S32)

Following the approach outlined in Ref. [9], we first notice that if a particle is injected in the well at
time t = 0 and leaves the well at τ for the first time, then the particle density inside the well evolves
as

x(t) = θ(τ − t), (S33)

where θ is the Heaviside step function. Considering now that particles are injected into the potential
well at a rate J , then the total number of particles within the well at time t is given by

N∑
n=1

J

∫ t

0
θ(τn − t′)dt′. (S34)

Hence, the probability that at time t a particle is inside the potential well is given by

lim
N→∞

1

N

N∑
n=1

J

∫ t

0
θ(τn − t′)dt′. (S35)

Finally, taking the limit t→∞ (stationary limit), yields the stationary probability of finding a particle
inside the well as

p = lim
N→∞

1

N

N∑
n=1

Jτn = J〈τ〉. (S36)

Therefore, from the definition of Kramers escape rate, Eq. S31, we find

〈τ〉 =
p

J
=

1

r
. (S37)

We have therefore demonstrated that Kramers escape rate can be computed by inverting the average
first exit time.
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2. Supplementary Methods

2.1 Cryogenic transmission electron microscopy.

Cryogenic transmission electron microscopy was used to provide an estimate of the average length,
L(0), of the pre-formed fibrils formed at 36◦C, which were used in the experiments in Fig. 2, as well as
the average length of fibrils formed in reactions at other temperatures. To ensure a stable temperature
and to avoid the loss of solution during sample preparation a controlled environment vitrification
system was used. Samples were prepared as thin liquid films (<300 nm thick) on glow-discharge
treated lacey carbon film coated copper grids and plunged into liquid ethane at -180◦C. In this way
the original microstructures are preserved as component segmentation and rearrangement is avoided
in addition to water crystallisation as the samples are vitrified. Samples were stored under liquid N2

until measured and then transferred using an Oxford CT3500 cryoholder and its workstation into
the electron microscope (Philips CM120 BioTWIN Cryo) equipped with a post-column energy filter
(Gatan GIF100). An acceleration voltage of 120kV was used and images were recorded digitally with
a CCD camera under low electron dose conditions.

It is interesting to note that the average fibrillar length, L(0), appears only as a multiplicative
pre-factor to the elongation rate constant (k+) in the kinetic equations, i.e. k+/L(0). Therefore, when
substituted into the Arrhenius equation, the average length affects only the pre-exponential factor
and hence has no impact on the gradient of the Arrhenius plot. Correspondingly, L(0) has no impact
on the activation enthalpies. However, L(0) does enter into the expressions for the activation free en-
ergies and entropies but the dependence is logarithmic and therefore weak; for example, the change
in the activation free energies and entropies corresponding to a factor of 2 change in L(0) would
be RT log(2) = 1.7 kJ mol−1, indicating that experimental error in the determination of the average
length does not significantly impact the values reported for the activation energies and entropties.

2.2 Differential centrifugal sedimentation.

Freshly isolated 15µM Aβ42 monomer in 20 mM sodium phosphate, 0.2 mM EDTA, 0.02% sodium
azide, 6µM ThT, pH 8.0 was incubated in 96-well half-area plate of black polystyrene with a clear
bottom and PEG coating (Corning 3881, Massachusetts, USA), 100 µL per well, in a temperature
controlled plate reader (Fluostar OPTIMA and CLARIOSTAR, BMG labtech) until the ThT fluores-
cence reached a stable plateau. Since the plate reader is only able to hold a stable temperature above
the surrounding temperature, for fibril formation at temperatures lower than room temperature, the
plate reader was placed in a cold cabinet at 6◦C. The contents of each well were injected after vigor-
ous mixing into a 4-12% sucrose gradient in a CPS Disc Centrifuge (CPS Instruments, model 24000
UHR) operated at 24000 rpm. Each presented curve is an average over six replicates. Since the exact
sedimentation coefficients differ between each repeat experiment, linear interpolation was used in
order to enable averaging of the data sets.

The sedimentation coefficient is a monotonically increasing function of fibril length and hence
reports on the size distribution of the fibrils generated in the aggregation reaction. The kinetic theory
predicts that the mean fibrillar length at the end of the aggregation reaction, µ, depends on the ratio
of the elongation to secondary nucleation rate constants [3], µ ∼ k+/

√
k+k2 ∼

√
k+/k2. Since the

rate constant for elongation, k+, increases at higher temperatures, and the secondary nucleation rate
constant, k2, decreases at higher temperatures, the mean length of fibrils generated is predicted to
increase at higher temperatures.

2.3 Data analysis.

As discussed in the main text, the experimental data shown in Fig. 1 were collected in parallel, since
the analysis is reliant upon an accurate knowledge of the relative monomer concentrations between
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each experiment. It was observed that the absolute noise level in our experimental data increased at
lower monomer concentrations, since a fixed level of noise, for example in the initial concentration
of peptides or fluctuations in the experimental conditions, is translated into larger absolute errors in
the reaction profiles at lower concentrations.

2.4 Glossary.

2.4.1 Kinetic parameters

k+: Elongation rate constant [units M−1s−1].

kn: Primary nucleation rate constant [units M−(nc−1)s−1].

k2: Secondary nucleation rate constant [units M−n2s−1].

nc: Reaction order of primary nucleation with respect to the monomer concentration.

n2: Reaction order of secondary nucleation with respect to the monomer concentration.

mtot: Total concentration of monomeric peptide [units M].

2.4.2 Thermodynamic parameters

Enthalpy of activation, ∆H‡: The enthalpy difference between the highest point in the energy land-
scape and the starting point at the same temperature and pressure. It expresses the dependence of a
rate constant k on temperature T according to ∆H‡ = −R∂ log k/∂(1/T ) where R is the gas constant.

Free energy of activation, ∆G‡: The (Gibbs) free energy difference between the highest point in the
energy landscape and the starting point. It defines the reaction rate constant k through the Arrhenius
equation, k = A exp(−∆G‡/RT ), where A is termed the exponential pre-factor or frequency factor.

Entropy of activation, ∆S‡: The entropy difference between the highest point in the energy land-
scape and the starting point, at the same temperature and pressure. It is calculated from the experi-
mental rate constant k through the relationship ∆G‡ = ∆H‡ − T∆S‡.
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3. Supplementary Figures

3.1 Supplementary Figure 1

Supplementary Figure 1: Normalized experimental reaction profiles, monitored by ThT fluores-
cence, for Aβ42 aggregation from purely monomeric peptide for different initial concentrations of
monomeric peptide and at different temperatures. The data are the same as those shown in Fig. 1
except that here the scale on the time axes are the same for each panel.

3.2 Supplementary Figure 2

Supplementary Figure 2: Comparison of the shape of the kinetic profiles at (a) 29◦C and 45◦C
and (b) 10◦C and 45◦C, for c = 2 µM, showing the reduction in the sharpness of the transition
with temperature. Note the different time axes. This macroscopic observation corresponds to a
microscopic change in the ratio of the primary nucleation to the secondary nucleation rate constant
(i.e. kn/k2), which increases as temperature increases (as shown in Fig. 3).
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3.3 Supplementary Figure 3

Supplementary Figure 3: (a) Representative TEM image, a series of which were used to provide
an estimate of the average length, L(0), of the pre-formed fibrils used in the experiments in Fig. 2.
(b) Normalized experimental reaction profiles for Aβ42 aggregation at 36◦C in the presence of 1
monomer equivalent of pre-formed fibrils which had been generated from aggregation reactions at
either 29◦C (blue circles) or 36◦C (red circles), indicating that the temperature at which the pre-formed
fibrils were generated does not significantly impact their ability to act as reactive fibril ends. (c) Fibril
morphologies observed by TEM were similar at all temperatures.

3.4 Supplementary Figure 4

Supplementary Figure 4: Cumulative number distribution of the sedimentation coefficient deter-
mined by differential centrifugal sedimentation at different temperatures. Since the sedimentation
coefficient reports on fibril length, the data are consistent with the prediction from the kinetic
analysis that the mean length of the fibrils generated increases at higher temperatures.
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3.5 Supplementary Figure 5

Supplementary Figure 5: Examples of (a) double-well and (b) multi-well potential landscapes.

3.6 Supplementary Figure 6

Supplementary Figure 6: (a) Analysis of the energy contributions of the microscopic steps underlying
secondary nucleation at c =1 M and T =298 K. Solid lines represent the quantities directly obtained
from our measurements. (b) Comparison of energy landscapes underlying primary and secondary
nucleation at c = 1 µM and T = 298 K. The relevant barriers are highlighted in a red box, and solid
lines represent the quantities directly obtained from our measurements.
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