Fall 2014 CURE Report

A Collaborative Project Funded by HHMI

The CURE survey offers a comparison of learning benefits between course experiences and undergraduate research experiences. The pre-course survey collects student data based upon demographic questions, reasons for taking the course, level of experience on various course elements, science attitudes, and learning style. The post-course survey parallels the pre-course survey and includes additional questions that focus on student estimates of learning gains in specified course elements, estimates of learning benefits that parallel questions in the SURE surveys, overall evaluation of the experience, and science attitudes.

David Lopatto Leslie Jaworski

Fall 2014 CURE Report

A Collaborative Project Funded by HHMI

Summary for Indiana University-Purdue University (IUPUI) - BIO-K102

	You	r Students	All S	All Students*		
-	PreCourse PostCourse		PreCourse	PostCourse	_	
					* The data from	
N**	38	31	5057	4962	Survey between	

* The data from "all students" in this report was obtained from the CURE Survey between June 1, 2014 - January 6, 2015.

n

n

** N represents the total number of respondents. Note that not every respondent answered each question in the survey, resulting in Ns smaller than the total (participation) postcourse N. In such instances, the total is represented by a lower case n.

Your	Students	AII S	Gender	
PreCourse	PostCourse	PreCourse	PostCourse	_
12	10	1910	1875	Male
23	20	3048	2996	Female
35	30	4958	4871	_

You	r Students	Al	l Students	_Ethnicity
PreCourse	PostCourse	PreCourse	PostCourse	_
0	0	0	6	Alaskan Native
0	0	9	12	American Indian
5	3	719	812	Asian American
1	1	376	308	Black or African American
0	0	48	48	Filipino
0	0	108	100	Foreign National
0	0	2	1	Hawaiian
1	1	324	303	Hispanic/Latino
0	1	7	9	Pacific Islander
28	23	2933	2796	White
1	1	233	222	Two or more races
0	0	118	121	_ Other
36	30	4877	4738	_

Demographics

	Your S	Students	All	Students	Current Status	
	PreCourse	PostCourse	PreCourse	PostCourse	_	
	0	0	8	5	High School	
	32	27	2060	1934	First-year college student	
	3	2	1279	1356	Second-year college student	
	0	0	846	758	Third-year college student	
	1	1	698	725	Fourth-year college student	
	0	0	30	23	Graduate or medical student	
	0	0	81	90	Other	
n	36	30	5002	4891	_	

Academic Information

n

	Your	Students	All S	Declared Major	
	PreCourse	PostCourse	PreCourse	PostCourse	_
	35	28	3164	3303	Yes
	1	2	1873	1633	No
n	36	30	5037	4936	_

Your	Students	AII S	Students	Considering Science Major
PreCourse	PostCourse	PreCourse	PostCourse	(excludes those already science majors)
1	2	960	930	Definitely yes
0	0	669	426	It is likely
0	0	141	127	I'm not sure
0	0	71	80	lt is unlikely
0	0	21	46	Definitely no
1	2	1862	1609	_

PreCourse Survey: Post-Graduate Plans

	Your Students	All Students	%	
	2	613	12.9%	Grad school for Ph.D. in biology field
	1	145	3.0%	Grad school for Ph.D. in physical science field
	0	265	5.6%	Grad school for Masters in life science
	1	176	3.7%	Grad school for Masters in physical science
	4	173	3.6%	Grad School for Ph.D. or Masters in social science
	0	38	0.8%	Grad school for Ph.D. or Masters in humanities or fine arts
	0	56	1.2%	Earn certification or degree to qualify for teaching
	11	1467	30.8%	Go to school for a medical degree (M.D.)
	10	756	15.9%	Go to school for an M.D./PhD.
	6	709	14.9%	Go to school for other health professions
	2	148	3.1%	Go to grad school for professional degree other than above (such as law)
	1	215	4.5%	No graduate education in near future
n	38	4761	=	

PostCourse Survey: Post-Graduate Plans

	Your Students	All Students	%	
	0	438	10.3%	I have not considered post-graduate education
	1	112	2.6%	I now plan NOT to pursue post-graduate education
	2	800	18.9%	I now plan to pursue a Master's degree in science field
	12	997	23.6%	I now plan to pursue a Doctoral degree in science field
	0	148	3.5%	I now plan to pursue a Master's degree in non-science field
	0	73	1.7%	I now plan to pursue a Doctoral degree in non-science field
	14	1589	37.5%	I now plan to pursue a medical degree
	1	76	1.8%	I now plan to pursue a law, architectural, or other degree
n	30	4233	-	

PreCourse Survey: Reasons for Taking Course 10 reasons for taking a course

1 = Not important, 3 = very important

Your Students

Level of Importance

Not	Moderate	Very	N*	
2	13	20	35	To fill a distribution requirement
0	3	33	36	To fill a requirement for my major
3	5	28	36	I need it for graduate or professional school
0	8	28	36	I need it for my desired employment after college
1	10	26	37	Interest in the subject matter
4	10	23	37	To learn lab techniques
4	7	26	37	To learn about science and the research process
3	9	25	37	To get hands-on research experience
12	13	12	37	It fit in my schedule
1	16	20	37	The course and/or the instructor has a good reputation

^{*} Each student was asked to rate each reason for taking the course.

Course Elements 25 items about course elements

On the pre-course survey, students were asked to assess their prior experience on each element. They were asked to rate their experience on a scale where 1 means no experience or that the student feels inexperienced and 5 means much experience or that the student feels that she or he has mastered the element. These data are most useful, first, descriptively, and second, as covariates that aid in the interpretation of other data. On the post-course survey, the students were asked to "rate the gains you may have made as a result of taking this course." The 5-point scale, where 1 = no or very small gain to 5 = very large gain, is consistent with the scale used to rate other learning gains. *Means are used to represent the data.*

Your Students		All S	Students	
PreCourse	PostCourse	PreCourse	PostCourse	
Experience	Gain	Experience	Gain	
3.46	3.55	3.45	3.26	Scripted lab or project where students know outcome
3.16	3.83	3.37	3.43	Lab or project where only instructor knows outcome
2.14	4.23	2.47	3.38	Lab or project where no one knows the outcome
3.72	4.00	3.65	3.61	A least one project assigned and structured by instructor
2.78	4.65	2.95	3.84	A project where students have input into process or topic
2.30	4.62	2.47	3.57	A project entirely of student design
3.41	4.03	3.57	3.37	Work individually
2.89	3.32	3.11	3.15	Work as a whole class
3.89	4.32	3.83	3.87	Work in small groups
3.78	4.45	3.78	3.88	Become responsible for a part of the project
2.81	4.26	2.99	3.55	Read primary scientific literature
2.30	4.42	2.41	3.45	Write a research proposal
3.86	4.58	3.69	3.88	Collect data
3.68	4.65	3.61	4.02	Analyze data
2.86	4.58	3.10	3.61	Present results orally
3.19	4.52	3.36	3.70	Present results in written papers or reports
2.89	4.61	2.94	3.26	Present posters
3.05	3.69	2.87	3.27	Critique work of other students
4.16	4.13	3.97	3.46	Listen to lectures
3.86	3.60	4.02	3.04	Read a textbook
3.92	3.68	3.83	3.43	Work on problem sets
4.35	4.16	4.17	3.29	Take tests in class
3.92	3.80	3.88	3.48	Discuss reading materials in class
3.03	3.19	3.54	3.58	Maintain lab notebook
2.22	3.27	2.24	3.05	Computer modeling

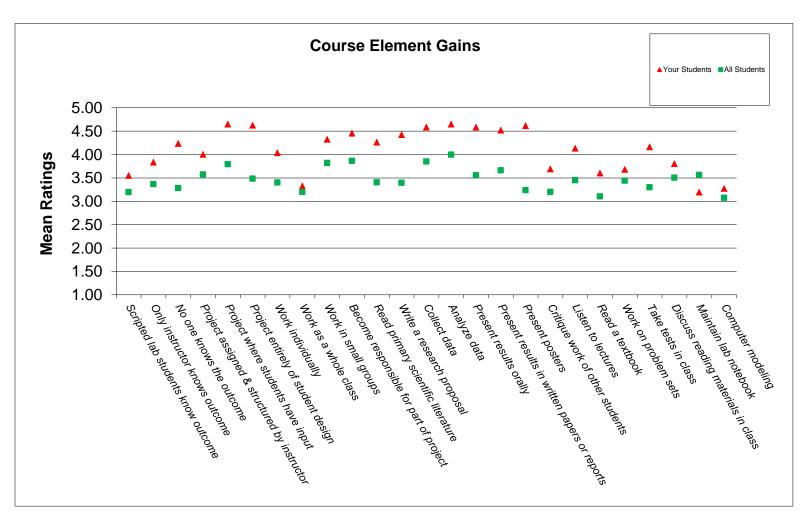


Figure 1. The figure illustrates the mean ratings by students of gains in 25 areas corresponding to the course elements above.

PostCourse Survey: Benefits 21 items about learning gains

The learning gain items below are the same as a list of gains students assess when they complete the SURE survey, an assessment of summer undergraduate research experiences. The parallel between the two surveys permits an analysis of how well the course experience emulates the gains of a research experience. A consistent result is that CURE means on most items, except for writing and ethics, are lower than SURE means. In addition, courses with a research-like component yield means higher than courses with no research-like component. The means shown for the benchmark on the right are for all CURE participants, regardless of course. The scale is 1 to 5, with 5 being the largest gain. These items appear only on the post-course survey. *Means are used to represent the data*.

Your Students	All Students	SD	
n≤31	n≤4807		
3.48	2.96	1.24	Clarification of a career path
4.00	3.54	1.03	Skill in interpretation of results
4.10	3.49	1.05	Tolerance for obstacles faced in the research process
4.16	3.41	1.08	Readiness for more demanding research
3.94	3.42	1.05	Understanding how knowledge is constructed
4.35	3.46	1.11	Understanding the research process
4.16	3.46	1.04	Ability to integrate theory and practice
4.19	3.58	1.07	Understanding how scientists work on real problems
4.32	3.64	1.06	Understanding that scientific assertions require supporting evidence
4.39	3.74	1.01	Ability to analyze data and other information
4.03	3.58	1.06	Understanding science
3.57	3.13	1.22	Learning ethical conduct
4.42	3.77	1.10	Learning laboratory techniques
3.84	3.34	1.17	Ability to read and understand primary literature
4.06	3.14	1.24	Skill in how to give an effective oral presentation
4.06	3.31	1.18	Skill in science writing
3.90	3.19	1.23	Self-confidence
4.07	3.40	1.10	Understanding how scientists think
3.81	3.32	1.15	Learning to work independently
4.10	3.47	1.13	Becoming part of a learning community
3.34	2.92	1.27	Confidence in my potential as a teacher

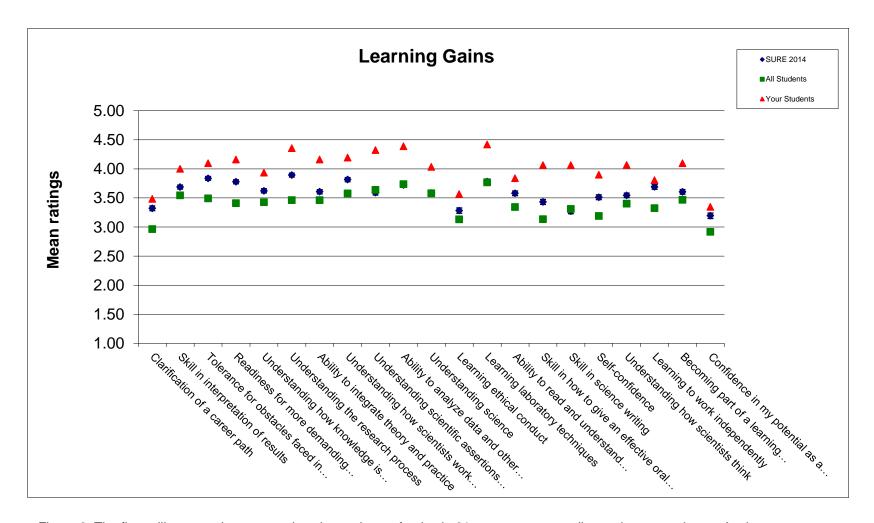


Figure 2. The figure illustrates the mean ratings by students of gains in 21 areas, corresponding to the areas above. As these same items are evaluated by students who participate in summer undergraduate research, the recent results of the Summer Undergraduate Research Experience (SURE) survey are presented for reference. Also presented (green squares) are the overall mean ratings by the reference cohort of students who completed the CURE survey in the fall of 2014. The vertical lines around the SURE means represent 2 standard errors above and below. *Note:* Data from students who completed the pre-course survey and those who did not are indistinguishable.

Attitudes about Science

22 questions about science

These items appear on both the pre-course survey and the post-course survey. The scale is 1 (strongly disagree) to 5 (strongly agree). We have not found large changes from pre- to post-course survey. Note that 5 items are printed in italics. In exploratory factor analysis these 5 items load on a factor that we have named "engagement". Engagement scores, whether pre-course or post-course, have correlated in our first findings with higher reported learning gains and a greater likelihood to declare a science major. *Means are used to represent the data*.

Your S	tudents	All S	tudents	
PreCourse	PostCourse	PreCourse	PostCourse	
				Even if I forget the facts, I'll still be able to use thinking skills learned
4.06	4.52	4.09	4.15	in science
3.44	3.45	3.34	3.32	You can rely on scientific results to be true and correct
				The process of writing in science is helpful for understanding
3.97	4.26	3.93	3.91	scientific ideas
				When scientific results conflict with my personal experience, I follow
2.82	2.96	2.99	3.11	my experience in making choices
				Students who do not major/concentrate in science should not have to
2.17	2.06	2.26	2.49	take science courses
				I wish science instructors would just tell us what we need to know so
2.91	2.84	2.86	2.89	we can learn it
1.82	1.87	1.87	2.04	Creativity does not play a role in science
				Science is not connected to non-science fields such as history,
1.91	2.10	1.99	2.17	literature, economics, or art
				When experts disagree on a science question, it's because they don't
2.86	2.87	2.92	3.03	know all the facts yet
				I get personal satisfaction when I solve a scientific problem by
4.40	4.39	4.24	4.20	figuring it out myself
				Since nothing in science is known for certain, all theories are equally
2.40	2.43	2.62	2.70	valid
3.11	2.97	3.10	3.12	Science is essentially an accumulation of facts, rules, and formulas
4.14	4.39	4.00	3.97	I can do well in science courses
3.31	3.58	3.05	3.27	Real scientists don't follow the scientific method in a straight line

Attitudes about Science (cont.)

Your Students		All Students		
PreCourse	PostCourse	PreCourse	PostCourse	
2.66	2.29	2.69	2.81	There is too much emphasis in science classes on figuring things out for yourself
2.20	2.19	2.38	2.53	Only scientific experts are qualified to make judgments on scientific issues
1.86	2.00	1.95	2.11	Scientists know what the results of their experiments will be before they start
4.06	4.26	4.09	4.08	Explaining science ideas to others has helped me understand the ideas better
2.94	3.45	3.26	3.38	Main job of the instructor is to structure the work so that we can learn it ourselves
2.40	2.52	2.85	2.83	Scientists play with statistics to support their own ideas Lab experiments are used to confirm information studied in science
3.80	3.84	3.73	3.64	class If an experiment shows that something doesn't work, the experiment
1.63	1.58	1.84	1.92	was a failure

Learning style items

10 pairs of statements

The pre-course survey included 10 self-descriptive items derived from a brief learning style survey published by Romero et al. Each item contained pairs of statements, and the student was to use a 1-6 scale to describe how closely one or the other statement described him or her. Two scales, one a dimension of concrete-abstract information preference and one a dimension of reflective-active learning preference were scored. The diagram below describes the names given to four kinds of learning styles and the majors typically associated with them. We are currently exploring the possible relations between this information and other information from the surveys. See Romero, Tepper, and Tetrault (1992). Development and validation of new scales to measure Kolb's learning style dimensions. *Educational and Psychological Measurement*, 52, 171-180.

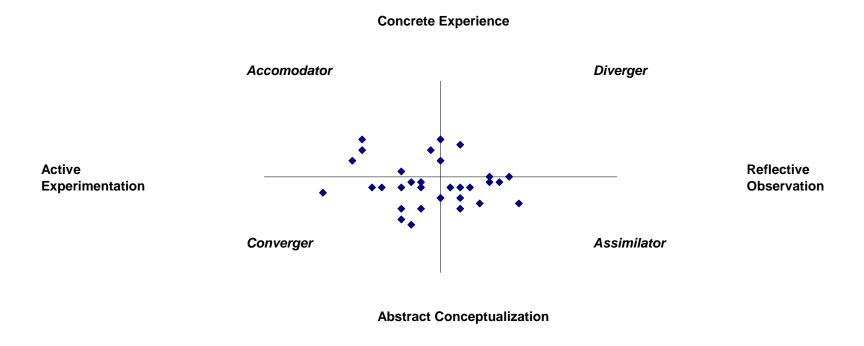


Figure 3. The two dimensions of learning style, with typical majors suggested by Romero, et al. In that report, science majors tended to score in the "Assimilator" or "Converger" quadrants.

Learning Style Quadrants

	Your Students	All Students	%	
	5	1013	22.5%	Divergers
	11	1193	26.5%	Assimilators
	11	1443	32.1%	Convergers
	5	853	18.9%	Accomodators
n	32	4502	_	

PostCourse Survey: Overall Assessment

These four questions serve as an overall assessment of the course. Note that the scale is 1 (strongly disagree) to 5 (strongly agree). The questions are on the post-course survey only. *Means are used to represent the data.*

Your Students	All Students	SD	
4.48	3.88	1.07	This course was a good way of learning about the subject
4.68	4.00	1.03	This course was a good way of learning about the process of scientific research
4.45	3.66	1.22	This course had a positive effect on my interest in science
4.52	4.06	1.04	I was able to ask questions in this class and get helpful responses

Contact: lopatto@grinnell.edu