S4. Cox model specifications

As we included 48 variables in the model, a minimum of 480 events (10 events per covariate) were needed to avoid overfitting, although some simulation studies have suggested this criterion can be relaxed. The equation used to model the time from index date to the first occurrence of seizure-related hospitalization is:

Log [h (t, X)] = log [h₀ (t)] +
$$\sum_{1}^{48} \beta nXn$$
 (Equation 1)

Where: t represents days until the event of seizure-related hospitalization (Model), log [h (t)] represents the baseline hazard, and $X=(X_1, X_2, X_3... X_{49})$ represents the confounders we tried to adjust for in the model.

X₁: Stimulant exposure status (current, former or no use)

X₂: Gender (male, female)

 X_3 : Race (White, Black, American Indian/ Alaskan Native, Asian, Hispanic/ Latino, Native Hawaiian/ Pacific Islander, Hispanic/ Latino and ≥ 1 races, ≥ 1 race, Unknown race)

X₄: Age category (3-5, 6-9, 10-14, 15-18) at baseline

X₅: Epilepsy types (generalized non-convulsive, generalized convulsive, focal, unknown) at baseline

X₆: Epilepsy severity (non-intractable, intractable, unspecific)

X₇: Number of AEDs filled/refilled during baseline

X₈: Cerebral Palsy during baseline

X₉: Congenital CNS anomalies during baseline

X₁₀: Autism during baseline during baseline

X₁₁: Intellectual disability during baseline

X₁₂: Head trauma during baseline

X₁₃: Schizophrenia during baseline

X₁₄: ADHD during baseline

X₁₅: ODD/CD during baseline

X₁₆: Anxiety during baseline

X₁₇: Depression during baseline

X₁₈: Bipolar disorder during baseline

X₁₉: Sleep disorder during baseline

X₂₀: Foster care during baseline

X₂₁: Cash assistance during baseline

X₂₂: Poverty during baseline

X₂₃: Disability during baseline

X₂₄: State of residence at index date

X₂₅: Calendar year at index date

X₂₆: Medication possession rate during baseline

X₂₇: Amoxicillin during baseline

X₂₈: Ciprofloxacin during baseline

X₂₉: Desmopressin during baseline

X₃₀: Ofloxacin during baseline

X₃₁: Carbamazepine during baseline

X₃₂: Clonazepam during baseline

X₃₃: Diazepam during baseline

X₃₄: Valproic acid during baseline

X₃₅: Ethosuximide during baseline

X₃₆: Gabapentin during baseline

X₃₇: Lamotrigine during baseline

X₃₈: Levetiracetam during baseline

X₃₉: Lorazepam during baseline

X₄₀: Oxcarbazepine during baseline

X₄₁: Phenobarbital during baseline

X₄₂: Phenytoin during baseline

X₄₃: Topiramate during baseline

X₄₄: Zonisamide during baseline

X₄₅: SSRI during baseline

X₄₆: Non-SSRI antidepressants during baseline

X₄₇: Atypical antipsychotics during baseline

X₄₈: Typical antipsychotics during baseline

After evaluating the main effects, we tested patient characteristics and stimulant interactions by adding interaction terms to the model one at a time. We selected these patient characteristics with the aim of identifying one or more subpopulations for whom the risk of seizure-related hospitalization was significantly higher for stimulant users. The information might be useful for decision making in stimulant prescribing.

Stimulant – epilepsy type interaction:

Log [h (t, X)] = log [h₀ (t)] +
$$\sum_{1}^{48} \beta n X n + X_1 * X_5$$
 (Equation 2)

Stimulant – epilepsy severity interaction:

Log [h (t, X)] = log [h₀ (t)] +
$$\sum_{1}^{48} \beta n X n + X_1 * X_6$$
 (Equation 3)

Stimulant – cerebral palsy interaction:

Log [h (t, X)] = log [h₀ (t)] +
$$\sum_{1}^{48} \beta nXn + X_1 * X_8$$
 (Equation 4)

Stimulant – Congenital CNS anomalies interaction:

Log [h (t, X)] = log [h₀ (t)] +
$$\sum_{1}^{48} \beta n X n + X_1 * X_9$$
 (Equation 5)

Stimulant – Intellectual disability interaction:

Log [h (t, X)] = log [h₀ (t)] +
$$\sum_{1}^{48} \beta n X n + X_1 * X_{11}$$
 (Equation 6)