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Suppression of cross-coupling in the two-channel device (Figure 2) 

 

To ensure independent operation of each channel, cross channel coupled power is assessed. At 

the frequency of the first channel (1.8 GHz), the S11 (reflected power) of the second channel is 

~0.1 dB, which corresponds to ~2.2% of the input power. This means that 2.2% of the power 

delivered at 1.8 GHz will still be delivered to the second channel. However, 2.2% of the 

minimum required power of ~125 mW for the heater for fluid delivery in 25 seconds 
[1]

 is 

~2.75 mW, which is not enough to activate an array of four μ-ILEDs, thereby supporting 

independent operation of the fluid delivery. Conversely, the power required for activating an 

array of μ-ILEDs is much lower than the power required for activation of the fluidic delivery, 

and thus the cross-channel coupling is less of concern for the second channel. The resonant 

frequency spacing can be further increased if larger cross channel isolation is required. 
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Figure S1. Operation principle of fluid delivery. Fluid is initially stored in the 

hemispherical reservoir (left). As the thermally expandable layer expands, fluid is pushed out 

throughout the microfluidic channel (right).  
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Figure S2. X-ray computed tomographic scans of the mouse brains implanted with a 

conventional metal cannula (A) and an optofluidic neural probe (B). The arrows indicate 

the implants. Compared to the metal cannula, the optofluidic probe causes physically less 

damage in the brain due to its smaller dimension. Scale bars, 1mm.  
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Figure S3. Schematic layout and component information for RF energy harvester. 

  

Manufacturer Part Number Description

C1 Murata Electronics GRM0335C1H1R0CA01D 1 pF Ceramic Capacitor

C2 Murata Electronics GRM0335C1H220JA01D 22 pF Ceramic Capacitor

C3 Murata Electronics GRM033R6YA104KE14D 0.1 μF Ceramic Capacitor

L1 Taiyo Yuden HKQ0603U5N0C-T 5 nH Inductor

L2 Taiyo Yuden HKQ0603U2N7B-T 2.7 nH Inductor

I1 Nexperia 1PS66SB82 Diode Array Schottky

Interconnect

to heater

Interconnect

to optofluidic probe
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Figure S4. Fully wireless microfluidic device integrated with a stretchable four-channel 

RF energy harvester. A. Optical image of wireless microfluidic device, consisting of a 

stretchable four-channel antenna and four fluid reservoirs connected to the microfluidic probe. 

(Inset) Optical micrograph of a microfluidic probe with four separate channels. B. Block 

diagram illustrating selective channel operation of a four-channel wireless device. C. 

Scattering parameter, S11, of the four-channel device. Channel 1–4 are operated at 1.9 GHz, 

2.3 GHz, 2.7 GHz, and 3.2 GHz, respectively. D–G. IR images showing individual operation 

of four distinct heaters, each corresponding to a separate fluidic reservoir. H–K. Sequential 

images demonstrating capabilities of the wireless device for delivery of four distinct fluids 

(yellow, red, green, and blue dyes) throughout different individual microfluidic channels. 
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Figure S5. Four-channel RF harvester antenna and resonance frequency at each channel. 

(Top) False-colored optical image of a stretchable RF antenna with four capacitive coupling 

channels. (Bottom) Optical image of the four channel RF harvester (left) and a table of 

channel numbers and its corresponding resonant frequencies (right). 
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Figure S6. Picture of RF transmitter setup for control of wireless optofluidic devices. 
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Figure S7. Preparation of a model rat for simulation of device operation. A. Images of an 

optofluidic device implanted into a phantom brain (0.6% agarose gel; left) and its integration 

in a model rat (right). B. Saline water bag inserted in the body of a model rat to simulate the 

RF characteristics of biological tissue.  
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Figure S8. Temperature at the surface of PDMS layer encapsulating the thermally 

actuated pump for thermal insulation. IR images, A–D, show the temperature at device 

surface with a (A) 1 mm, (B) 1.5 mm, (C) 2 mm, and (D) 3 mm thick PDMS encapsulation 

layer. E–H show corresponding temperatures obtained by FEA simulation. 
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Figure S9. Proposed surgical procedure for implantation of optofluidic device in the 

mouse brain. A. The mouse’s skull is exposed after a superficial midline incision is 

performed under aseptic conditions. B. Following the identification of the desired stereotaxic 

coordinates for the implantation of the device, we proceed to drill a small opening for 

placement of the optofluidic probe. C. Relative size of the implant with relation to the 

animal’s head. D. Insertion of the soft RF harvester under the skin, caudal to the implantation 

site. E. Placement of the optofluidic probe into the brain cortex, following temporary 

stiffening of the implant with a biodegradable polymer (PLGA). F. After securing the implant, 

the mouse’s skin was sutured to close the wound and allow for recovery.  
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