Supporting information for:

Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function

J. Scott Lee¹, Ruth X. Wang¹, Erica E. Alexeev¹, Jordi M. Lanis¹, Kayla D. Battista¹, Louise E. Glover², and Sean P. Colgan^{1*}

From the ¹Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO USA; ²School of Medicine, University College Dublin, Ireland

Running title: Epithelial adenylate metabolites and barrier function

Key words: Epithelia, barrier function, energy metabolism, actin

*To whom correspondence should be addressed: Sean Colgan, Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO 80045, USA. Office phone: 303-724-7235 Fax: 303-724-7243 E-mail: sean.colgan@ucdenver.edu

Table of Contents

Figures

Figure S1. HPLC traces of sub-confluent control and 1 mM allopurinol-treated cells.S-2Figure S2. Barrier and metabolite responses to 2-deoxyglucose + oligomycin A treatments.S-3

Figure S1. HPLC traces of sub-confluent control and 1 mM allopurinol-treated cells. Indicated are retention times for allopurinol, adenosine, and the proposed alloribosyl. For comparison, retention time for inosine is ~8 min.

Figure S2. Barrier and metabolite responses to 2-deoxyglucose + oligomycin A treatments. (A and B) Barrier and metabolite responses of T84 cells to 2-deoxyglucose (20 mM) + oligomycin A (2 μ M) with and without hypoxanthine (1 mM) as measured by HPLC; n = 3, t = 30 min. (C) Total available energy of results depicted in panel B. Data presented as mean ± SD; TER, transepithelial resistance; 2-DOG, 2-deoxyglucose; BKG, background (untreated); Total available energy = PCr + ATP + (0.5•ADP); Cr, creatine; PCr, phosphocreatine; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; Ino, inosine; Hpx, hypoxanthine; Xan, xanthine; *** indicates p<0.001.