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CONTENTS 

The supporting information includes the mathematical theory for modeling the deformation of 

microraft arrays. Also included are discussions of modeling parameters, modeling uncertainty, 

modeling limitations, the density of data required for accurate modeling, and the effectiveness of 

alternate shape models. The supplemental methods describe the tensile testing of PDMS, cell 

culture, and cell staining. 
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SUPPLEMENTAL EXPERIMENTAL SECTION 

Tensile testing. Tensiometry of bulk PDMS was performed according to ASTM D 412 – 06a 

standards, with the exception of the shape of the dogbone samples, which was rectilinear. The 

dogbone shape consisted of an 8 mm long, 2 mm wide strip with 10 mm long, 12 mm wide 

gripping regions at either end. Bulk 3 mm PDMS was die-cut into dogbones and loaded into an 

EnduraTEC ELF 3200 load frame (Bose). PDMS dogbones underwent 20% strain at 1% s
-1

 rate 

without pre-loading. The Young’s modulus was calculated from the linear slope of the 

engineering stress as a function of strain. All Young’s modulus measurements were taken at 

room temperature using at least 9 measurements per condition, which included between 2-4 

technical and 2-3 experimental replicates.  

 

Cell Culture and Staining. Microraft arrays were prepared for cell culture by air plasma 

treatment for 5 minutes and sterilization with 75% ethanol. H1299 non-small cell lung carcinoma 

cells previously transfected with eGFP (H1299-GFP) were seeded on microraft arrays at 

approximately 2,000 cells/cm
2
 and cultured for 5 days in 1:1 fresh:conditioned RPMI media with 

10% fetal bovine serum and 1% penicillin/streptomycin until the cells reached a density of 

approximately 5-10 per microraft. Chemical fixation was performed by rinsing the arrays twice 

with 1× PBS and incubating them with 1 mL 4% paraformaldehyde at room temperature for 20 

minutes. The arrays with fixed cells were rinsed three times with 1× PBS, incubated with 1:250 

Hoechst 33342 at room temperature for 15 minutes, and then rinsed three times with PBS. 

Arrays with fixed and stained cells were stored and imaged in 1× PBS with 0.1% sodium azide. 

 

 



S-3 

 

SUPPLEMENTAL RESULTS AND DISCUSSION 

Mathematical model of deflection in transferred microarrays. The transverse deflection of 

membranes, plates, and shells has been well studied.
1,2

 Governing equations and solutions are 

known for both steady state and non-steady-state deflection phenomena with a variety of model 

geometries, loading types, and boundary conditions.
3
 For thin membranes undergoing small 

strains, three potential physical bending regimes have been described extensively: 1) no pre-

tension, with deformation consistent with plate theory, 2) large pre-tension, with deformation 

consistent with linear membrane theory, or 3) negligible pre-tension, with deformation consistent 

with nonlinear solutions.
1
 In the case of microraft arrays, pre-tension in the membrane is the 

dominant component of transverse bending resistance. The deflection of microraft arrays is 

resisted by both a material bending resistance and resistance due to thermally-induced 

mechanical tension within the membrane. From plate bending theory, small deflection of thin 

rectangular plates can be generally modeled by combining the Germain-Lagrange and 2D 

Poisson equations. The transverse displacement ��(�, �) of the membrane under tension � with 

flexural rigidity 	 subject to a constant downward pressure with magnitude 
 thus satisfies the 

partial differential equation 

� ��
����
 	 + �

����
 � + 		 ��

������ 	 + ������
��
 + �
������ � = −
.						(�1) 

Assuming that the material parameters are independent of temperature for our experiments, the 

membrane tension term can be estimated using the relationship 

� = �ℎ�∆1 − � 	.								(�2)					 
where ∆ is the difference between the membrane cure temperature and its temperature during 

deformation measurements, E is the elastic modulus of PDMS, and	� is Poisson’s ratio of PDMS. 
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ℎ is the geometrically averaged thickness of the PDMS membrane, which for square microwells 

of side length s, depth d into the membrane of thickness t, and distance between adjacent 

microwells w is given by: 

ℎ = (� − �)(�)
 + �((� +  )
 − (�)
)(� +  )
 .							(�3) 
The flexural rigidity term is given by 

	 = �ℎ"12(1 − �
).						(�4) 
Mathematically, tension dominates flexural rigidity when 

$%&' ≫ 1, where the 

nondimensionalizing factor L is the width of the array. Substituting for D and T,	
�)
	 = 12�∆(1 + �))
ℎ
 ∝ +)ℎ,


 .							(�5)						 
Microraft array membranes are very thin relative to their width (

%. ≈ 80,	$%&' ≈ 2300). Thus, the 

flexural rigidity of the membrane was neglected  and the transverse displacement ��(�, �) of the 

membrane under tension � subject to a constant downward pressure with magnitude 
 thus 

satisfies the linear partial differential equation 

� ��
����
 	 + �

����
 � = −
,						(�6) 

with homogeneous Dirichlet (no-displacement) boundary conditions at the edges of the square 

membrane with side length L, which are ��(0, �) = ��(), �) = ��(�, 0) = ��(�, )) = 0.	The 

average hydrostatic loading pressure due to the media of volume 3 was estimated as 


 = 453)
 						(�7) 
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where 4 is the density of the loading liquid and 5 is the acceleration due to gravity. The partial 

differential equation (S6) with boundary conditions was solved using the standard separation of 

variables technique resulting in the double Fourier series solution for the displacement field 

��(�, �) = −16
)
�7� 8 8 sin <=7�) > sin <?7�) >?=(?
 + =
)
∞

�	@AA
∞

B	@AA
		.						(�8) 

The infinite sums (over the positive odd integers only) converge rapidly and thus only a finite 

number of terms are needed for high accuracy.  The spatial structure of the deflection is dictated 

solely by the infinite sum, whereas the overall amplitude is determined a multiplicative pre-

factor depending on the experimental conditions. Using equation (S8), the maximum 

displacement is predicted to occur at the center of the membrane:  

��(0.5), 0.5)) = C ≈ −0.0737 
)
� = −0.0737 453(1 − D)�ℎ�∆ .						(�9) 
Equations (S8-S9) are expected to be accurate for small deflections of dominantly pre-tensioned 

PDMS membranes with small and shallow microfeatures relative to the membrane thickness. It 

should be noted the for thin (h ≤ 300 µm) microarrays under high load (V ≥ 6 mL of media), the 

membrane deformation is greater than the array thickness and the use of linear membrane theory 

for modeling these arrays may produce significant errors. 

 

Modeling parameters. Since the Poisson’s ratio and linear thermal coefficient of expansion 

(CTE) of Sylgard 184 PDMS have been shown to be relatively constant, a Poisson’s ratio of 0.5 

and CTE of 265 ppm/°C were used for modeling all microarray membranes 
4,5

 In contrast, the 

Young’s modulus of PDMS varies with the crosslinker concentration, cure temperature, and.
6–9

 

PDMS cure extent was controlled experimentally by fully curing the PDMS in all conditions 

with 40-minute cure times. Tensile load testing was used to measure the Young’s modulus of 
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bulk 10:1 and 5:1 PDMS cured at 95 °C. The measurements of Young’s modulus, 1.88 ± 0.21 

MPa for 10:1 PDMS and 1.47 ± 0.12 MPa for 5:1 PDMS, agree well with literature reports from 

similarly cured PDMS.
7,10

 Additional measurements of the Young’s modulus of 10:1 PDMS 

cured at 150 °C and 10:1 PDMS cured for 48 hours at 95 °C (2.09 ± 0.11 MPa and 1.91 ± 0.24 

MPa respectively) were not statistically different from that of 10:1 PDMS cured for 40 minutes 

at 95 °C, indicating that the PDMS in this study was fully cured.   

 

Discussion of modeling uncertainty. Uncertainty in the material and geometric parameters of 

microraft arrays exists due to the nature of the microfabrication methods used to make microraft 

arrays as well as the measurement methods utilized to probe these parameters. The derived 

equation predicting the maximal membrane deflection of microraft arrays, ��(0.5), 0.5)) ≈
−0.0737 FGH(IJK)L.M∆ 	, relies on several uncertain parameters. Some are known with high certainty; 

values for the loading liquid density ρ, gravitational constant g, PDMS Poisson ratio ν, and 

PDMS coefficient of thermal expansion α are relatively precise in the literature. Others, such as 

the measured equivalent membrane thickness h had significant variation. A summary of 

parameter uncertainty is presented in Supplemental Table 1. An estimated propagation of 

uncertainty was performed under the assumption of no correlation between parameters and that 

all parameters are constant except E and h: 

NOP ≈ QR����� R NL
 + R����ℎ R N.
.						(�10) 
Discussion of inconsistent membrane conditions. Microarrays cured at high temperature or 

fabricated using PDMS with high crosslinker concentrations were poorly predicted by the model 

(Supp. Fig. 2). Liquid Sylgard 184 PDMS sets (defined by 67% gelation) exponentially faster 
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with increasing temperature, with previous reports indicating that similar PDMS membranes 

cured at 130 °C or lower when cured within a 150 °C environment.
11

 Finite-element-modeling 

could potentially be used to compute effective thermal expansion temperatures. However, at cure 

temperature of 175 °C or greater, thermal degradation and stress defects in PDMS membranes 

were observed that may have further reduced the accuracy of the model under these conditions. 

 The measured tensile modulus of bulk 5:1 PDMS was reproducibly and consistently 

lower than that of 10:1 PDMS in agreement with literature reports.
6,12–14

 Yet, reports of PDMS 

modulus measured by other methods such as nanoindentation, compression, and buckling that 

are less sensitive to polymer orientation than tensile tests indicate a higher effective modulus.
15,14

 

We hypothesize that the strength of thin PDMS membranes lies in in the polymer network 

strength, and tensile measurements of Young’s modulus are not always accurate predictors of 

holistic polymer network strength. However, given the undefined nature of high-crosslinker 

PDMS, these microarrays were not modelled further. 

 

Fitting deformation models to membrane shape data. It is possible to determine the focal 

surface of microraft arrays by autofocusing at every imaging position. However, this tactic 

becomes unfeasible at magnifications above 4× due to the time required to autofocus with typical 

autofocus routines and microscopy hardware. With a focusing translation speed of 2 mm/s, stage 

translation speed of 7 mm/s, and image acquisition speed of 10 s
-1

, the imaging times required to 

focus throughout a single 1 sq. inch microraft array at 4×, 10×, and 20× magnification are 

estimated at 0.4, 2.5, and 9.5 hours, respectively. Over these timescales, the media above the 

PDMS microarrays evaporates altering the load on the array. Not only does this prevent accurate 

deformation measurements but also leads to cell toxicity from the increased media osmolarity as 
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the media evaporates over the prolonged analysis times. Thus a method to pair the transferred 

microraft arrays with a reduced number of focal measurements would significantly improve 

experiments demanding higher magnification, timelapse imaging, and/or rapid single-timepoint 

microscopy of deforming membranes. 

 A series of parameters were added to the physical model describing membrane deflection 

in equation (S8) to enable fitting to real-world microarray data. In practice, the precise material 

and geometric parameters of a given microarray is seldom known exactly. Furthermore, in 

optical assays, arrays are typically placed with small tilts and focal offsets relative to the 

measurement coordinate system of microscope stages. A lumped-parameter approach describing 

the transverse displacement of microraft arrays was adopted to account for unknown material 

and/or geometric microarray parameters:   

��ST�UVA(�, �, W) = W 8 8 sin <=7�) > sin <?7�) >?=(?
 + =
) ,					(�11)∞

�	@AA
∞

B	@AA
		 

where the aggregate parameter A is a linear scale factor. Membrane tilts and offsets relative to 

the coordinate system of the microscope stage were compensated for by modifying equation 

(S11) with a uniform planar offset to form the fitting equation 

��∗ (�, �, W, �Y, �Y, ZY, [, \)
= ��ST�UVA(� − �Y, � − �Y, W) + ]ZY + [ × (� − �Y) + \ × (� − �Y)_,					(�12) 

where fit parameters x0 and y0 are the translations in x and y required to center the array and z0, 

a, and b are the coefficients of a flat plane that de-trends the membrane onto the X-Y plane of the 

microscope stage. By considering membranes under no media load as flat planes, measured focal 

points Zm
measured

(x,y) on the membrane of the microarray were fit to equation (S12) in a least-

squares manner:  
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mina,bc,dc,ec,f,g8(���VfhTiVA(�, �) − ��∗ (�, �b,d
, W, �Y, �Y, ZY, [, \))
.								(�13) 

The fitting minimization in equation (S13) was implemented as an unconstrained multivariate 

minimization using MATLAB’s fminsearch function.
16

 Initial guesses of the fit parameters were 

x0 = y0 = 0, z0 = max(Zm
measured

(x,y)). Guesses for microraft array tilt angles a and b were 

produced from a least squares fit of a flat plane to the measured transverse displacement 

(Zm
measured

), and the initial guess for the deformation scale (A) was the range of tilt-corrected 

displacements (Zm
*
). The rapidly converging infinite sum in equation (S11) was implemented 

using odd m and n from 1 to 25. The search tolerances were 0.001 µm
2
 and 0.1 for the function 

value and fitting parameters, respectively. 

 A priori information about the microraft array spatial orientation can be incorporated into 

equation (S13) to improve fitting robustness. The orientation information includes: array focal 

height on the microscope stage, array tilt angles, and the coordinate of the center of microraft 

array deformation. When these parameters, symbolized as z0, a, b, x0, and y0, respectively, were 

treated as constants in equation (S13), the fitting equation was simplified to reducing the fit to a 

univariate minimization for the array deformation A: 

mina 8(���VfhTiVA(�, �) − ��∗ (�, �b,d
, W))
.								(�14) 

The fitting minimization in equation (S14) was implemented as a bounded minimization using 

MATLAB’s fminbnd function.
17

 

The measured, unfitted maximal deflection of the microraft arrays was estimated from 

focal point data as the difference between the highest and lowest point of de-trended 

measurements of the array surface position. The 95
th

 percentile was used to estimate the highest 



S-10 

 

and lowest positions in order to minimize the effect of for measurement noise on the estimate of 

maximal deflection. 

 

Optimization of membrane shape data measurement density. The location and number of 

deflection measurements that are necessary to obtain an accurate prediction of deflection at all 

locations of a microarray membrane using equation (S13) were investigated. A training set of 

microarray shapes was generated by measuring the deformations of four transferred microraft 

arrays (Condition 1) under 3 and 6 mL liquid load using a 23×14 measurement grid 

(approximately 0.6 measurements/mm
2
). This training set was subsampled from 23×14 down to 

various measurements resolutions and patterns ranging from 9 to 57 points in size (Supp. Fig. 4). 

Each subsampled pattern of measurements was fit to a deformation model using equations (S11-

S13), and the resulting model was then used to predict the original 23×14 grid of microarray 

surface positions. The mean absolute difference between the original and interpolated data varied 

with the number and patterning of measurement points (Supp. Fig. 4A). Averaging over 4 arrays 

with average maximal deflection of 330 µm, the difference between the original and interpolated 

reached a minimum of 3.4% with 25 or more measurement points. A measurement pattern of 19 

points, or 6% of the original 23×14 grid, was selected as an optimal tradeoff between speed and 

accuracy (Fig. 4A “Pattern 1”). 

 A disadvantage of the above approach is that the measurement pattern requires focal 

measurements spanning the entire microarray, and acquiring these measurements becomes more 

time-inefficient as the arrays scale in size. For the 2.3×2.3 cm microraft arrays in this study, 

about 13% of the time spent determining a focal surface was used translating the microscope 

stage between the 19 imaging points, which were on average 6.7 mm away from each other. This 
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fraction of time would increase to ~40% for a hypothetical 10×10 cm array. Thus, more 

concentrated patterns of measurements were also of interest (Fig. 4A “Pattern 2” and “Pattern 

3”). 

Rapid determination of microarray imaging surfaces using other shape models. The 

performance of other shape modeling approaches to enable cytometric microscopy in 

combination with transferred microrarrays was compared to that of the tension shape model. 

Thin plate splines, cubic interpolants, and biharmonic interpolants were used to calculate the 

focal planes for microscopic cytometry of the same array tested by the pre-tension shape model. 

Of these, only thin plate splines were able to fit data from Patterns 1-3 without massive 

prediction errors of focal positions outside the 10 mm working distance of the objective. Imaging 

using thin plate splines to predict focal points from Pattern 1-3 measurements resulted in 2-3 fold 

more error in cytoplasmic or nuclear area quantification and up to 3 fold more microrafts with 

errors in cell count greater than 1 cell compared to the tension model (Supp. Fig. 6, Supp. Table 

2).    
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Supplemental Figure 1. Example focal plane measurements of the microraft array surface used 

to determine the best focal plane. A microraft array was imaged in an initial plane (plane 1) in 

bright-field. The grayscale pixel intensity standard deviation (“Focus Score”) was measured and 

then Brent’s algorithm was used to determine the next plane for imaging.
17

 This process 

continued iteratively until a maximal focal score was obtained at plane 6 when using a tolerance, 

or smallest allowable iteration step, of 2 µm. (A) Focal score vs the imaged plane is shown for an 

example autofocus process. The Y axis of 7400-8000 µm is the measured distance from the 

lowest position available to the microscope objective (0 µm). A high-resolution set of focus 

measurements taken every 4 microns is included for visualization purposes (blue ground truth 

trace). (B) A representative bright-field microscopy field of view during focusing. Scale bar is 1 

mm. (C) Cropped images at intermediate focal planes as well as the best focus plane showing 4 

microrafts. Scale bar is 200 µm.  
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Supplemental Figure 2. Modeling of the microarray deflection at various array thickness and 

cure temperatures. (A) Fold-difference between experimental and predicted microraft array 

deflection as a function of PDMS cure temperature for conditions 1-4 and 6-8 of Table 2. The 

dotted line represents agreement between measured and predicted array deformations. (B) 

Measured and predicted maximal microarray deflection as a function of PDMS thickness and 

volume of media placed onto the array for conditions 1, 3, and 4 of Table 2. 
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Supplemental Table 1. Uncertainty in modeling parameters. 

Parameter Value* 
Standard 

Uncertainty 

Relative Standard 

Uncertainty (%) 

E 1.88 MPa 0.21 MPa 11% 

h 264 µm 22 µm 8% 

∆ 58 °C 2 °C 3% 

V 3 mL 0.005 mL 0.2% 

α 265 ppm/°C ~ ~ 

ν 0.50 ~ ~ 

ρ 1000 kg/m
3
 ~ ~ 

g 9.80665 m/s
2 

~ ~ 

*For a representative transferred array (Condition 1, Table 1)  
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Supplemental Figure 3. Comparison between transferred and non-transferred microraft arrays. 

(Left panels) Deflection (red) and imaging plane generated from a 1
st
 order polynomial surface 

fit to the deflection (blue) of microraft arrays. (Middle panel) Widefield view of the microraft 

array. (Right panels) Bright-field and fluorescence microscopy of H1299 cells adhered to 

microrafts. Green: Visually judged to be in-focus; red: de-focused; blue: nuclear Hoechst 33342 

fluorescence.   
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Supplemental Figure 4. Determination of optimal number and pattern of measurements for 

surface modeling of microraft arrays. (A) The theoretical convergence to minimum error of 

shape fitting (Y axis) using a variety of patterns and different numbers of measured focal planes 

(X axis). The mean convergence percent is indicated by the red curve while the shaded error bars 

represent 1 standard deviation over n=4 datasets. (B) Representative patterns using 17, 19, and 

25 measured focal planes are shown. Measurement points are in red, microraft array edges are in 

black, and the small black points represent all focal plane measurements contained in the datasets 

from (A).  
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Supplemental Figure 5. Fitting residuals as a function of distance from the microarray center 

using Pattern 1 focal measurements to predict a 312-point grid of focus locations throughout a 

microraft array. 
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Supplemental Figure 6. Application of gold-standard thin plate spline model to automated 

imaging. (A) Whole-array stitched bright-field images of a microraft array seeded with H1299-

EGFP cells. (B-D) Images from select regions of the array as indicated in panel A. Close-up 

bright-field (top row) and composite fluorescence (middle row) images of representative 

individual microrafts are shown at the three locations. Green: cytoplasmic EGFP fluorescence. 

Blue: nuclear Hoechst 33342 fluorescence. Also shown are visualizations of identified microrafts 

(white outline), cell cytoplasm (green) and nuclei (blue) (bottom row) after analysis of the 

bright-field and fluorescence images. 
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Supplemental Table 2. Comparison of cytometry performance using thin-plate spline modeling. 

Focusing  

Pattern 

Modeling 

Time (s) 

Median Relative Absolute Error (%) 
Microraft 

Analysis  

Efficiency (%) 

Correct 

Cell 

Counts (%) 

Incorrect* 

Cell 

Counts 

(%) 

Microraft 

Area 

Cytoplasmic 

Area 

Nuclear 

Area 

Cell 

Count 

Ground Truth 1336.4 0.0 0.0 0.0 0.0 100.0 100.0 0.0 

Pattern 1 101.3 0.8 2.7 3.1 0.0 101.5 74.6 18.7 

Pattern 2 116.0 1.6 4.4 5.9 0.0 100.2 53.1 25.3 

Pattern 3 109.0 1.6 6.8 9.0 12.5 93.5 43.2 24.6 

*Error of 1 cell 
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