Supporting Information

Contents

Virus and cell biology	S-2
Crystallographic data Table	S-2
Copies of ¹ H and ¹³ C NMR spectra of key intermediates and inhibitors	S3-S26

Experimental Section

All reactions were carried out under an argon atmosphere in either flame or oven-dried (120 $^{\circ}$ C) glassware. All reagents and chemicals were purchased from commercial suppliers and used without further purification unless otherwise noted. Anhydrous solvents were obtained as follows: Dichloromethane from calcium hydride, diethyl ether and tetrahydrofuran from Na/Benzophenone, methanol and ethanol from activated magnesium under argon. All purification procedures were carried out with reagent grade solvents (purchased form VWR) in air. TLC analysis was conducted using glass-backed Thin-Layer Silica Gel Chromatography Plates (60 Å, 250 µm thickness, F-254 indicator). Column chromatography was performed using 230-400 mesh, 60 Å pore diameter silica gel. 1 H, 13 C NMR spectra were recorded at room temperature on a Bruker ARX-400 and DRX-500. Chemical shifts (δ values) are reported in parts per million, and are referenced to the deuterated residual solvent peak. NMR data is reported as: δ value (chemical shift, J-value (Hz), integration, where s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet). LRMS and HRMS spectra were recorded at the Purdue University Department of Chemistry Mass Spectrometry Center.

Table 1: Crystallographic Data Collection and Refinement Statistics

Space group	P2 ₁ 2 ₁ 2
Unit cell dimensions: (Å)	
а	59.04
b	86.43
С	45.93
Resolution range (Å)	50-1.67 (1.73-1.67)
Unique reflections	27,851 (2,763)
R _{merge} (%) overall (final shell)	7.1 (48.4)
I/σ(I) overall (final shell)	18.1 (4.8)
Completeness (%) overall (final shell)	99.8 (100.0)
Redundancy overall (final shell)	6.1 (6.1)
Refinement	
R (%)	19.5
R _{free} (%)	26.3
No. of solvent atoms (total occupancies)	169 (133.9)
RMS deviation from ideality	
Bonds (Å)	0.008
Angle distance (Å)	0.026
Average B-factors (Ų)	
Wilson Plot B factor	13.0
Main-chain atoms	20.6
Side-chain atoms	28.8
Whole chain atoms	24.6
Inhibitor	16.9
Solvent	28.8

Cells, viruses, and antiviral agents. Human CD4⁺ MT-2 cells were grown in RPMI-1640-based culture medium supplemented with 10% fetal calf serum (FCS: JRH Biosciences, Lenexa, MD), 50 unit/mL penicillin, and 100 □g/mL of kanamycin. The following HIV-1 viruses were employed for the drug susceptibility assay (see below): a laboratory HIV-1strain (HIV-1_{LAI}), a clinical HIV-1 strain isolated from drug-naive patients with AIDS (HIV-1_{ERS104pre}) (1), and six HIV-1 clinical isolates which were originally isolated from patients with AIDS, who had received 9 to 11 anti-HIV-1 drugs over the past 32 to 83 months, and were genotypically and phenotypically characterized as multi-PI-resistant HIV-1 variants (1, 2). All such primary HIV-1 strains were passaged once or twice in 3-day old phytohemagglutinin-activated peripheral blood mononuclear cells (PHA-PBM), and the culture supernatants were stored at −80 °C until use. Amprenavir (APV) was received as a gift from Glaxo-Wellcome, Research Triangle Park, NC. Darunavir (DRV) was synthesized as previously described (3).

- 1. Yoshimura, K., et al. *Proc. Natl. Acad. Sci.* USA **96**, 8675-8680 (1999).
- 2. Koh, Y., et al. Antimicrob. Agents Chemother. **53**, 987-996 (2009).
- 3. Koh Y, et al *J Mol Biol* **282**, 28709-28720 (2007).

 $^{1}\text{H NMR}$ (400 MHz, CDCl $_{3}$)

 ^{13}C NMR (100 MHz, CDCl $_3$)

¹H NMR (400 MHz, CDCl₃+CD₃OD)

¹H NMR (400 MHz, CDCl₃)

13 C NMR (100 MHz, CDCl₃)

 $^{1}\text{H NMR}$ (500 MHz, CDCl $_{3}$)

¹H NMR (400 MHz, CDCl₃)

- 1.5

¹H NMR (400 MHz, CDCl₃)

 13 C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃+CD₃OD)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

100 90 f1 (ppm)

