
The State of Software for Evolutionary Biology
Diego Darriba, Tomáš Flouri, and Alexandros Stamatakis

Supplementary material

This supplement has two sections. In Section 1 we provide additional technical details and an
in-depth discussion regarding some of the codes we tested that is intended for code developers.
In Section 2 we provide transcripts of all code analysis runs we executed.

Section 1 - technical details & discussion for code
developers

Compiler Flags

In the following we list the compiler flags we used.
We executed gcc (version 4.9.1) with the -Wall flag enabled. Note that, there are substantial
differences in the number and types of warnings that compilers issue. We have found that, the
clang compiler (version 3.6.0) see http://clang.llvm.org/) generally issues considerably more
warnings than gcc . For instance, when compiling the sequential SSE3 version of RAxML
(v8.1.16) with the gcc warning flags used here, we obtain just three minor and irrelevant
warnings about unused parameters in function calls. However, using clang with flags
-Weverything -Wno-padded we obtain around 900 warnings for RAxML.
More importantly, clang also detects type errors in library function calls such as, for instance,
the malloc() typecast issue (see below and main text).
Finally, for JAVA-based codes (i.e., Beast) we used the -Xlint:all argument, which enables
all recommended warnings in the JAVA compiler. We then counted and categorized the
warnings we obtained into major and minor as follows:

Comp Type Warning Description

GCC

Minor

-Wchar-subscripts array subscript has type ‘char’

-Wformat-contains-nul embedded ‘\0’ in format

-Wreorder ‘x’ will be initialized after ‘y’

-Wunused-but-set-variable variable ‘x’ set but not used

-Wunused-result ignoring return value of ‘x’

-Wunused-variable unused variable ‘x’

Major
-Waggressive-loop-optimizations iteration 1u invokes undefined behavior

-Warray-bounds array subscript is above array bounds

-Wformat= format ‘x’ expects argument of type ‘y’, but argument n
has type ‘z’

-Wmaybe-uninitialized ‘x’ may be used uninitialized in this function

-Wparentheses suggest explicit braces to avoid ambiguous ‘else’

-Wpointer-sign pointer targets in passing argument X of foo differ in signedness

-Wreturn-type control reaches end of non-void function

-Wsign-compare comparison between signed and unsigned integer expressions

Java
Minor

cast redundant cast

deprecation x in y has been deprecated

fallthrough possible fall-through into case

options bootstrap class path not set in conjunction with -source 1.6

path bad path element

rawtypes found raw type

serial serializable class x has no definition of serialVersionUID

unchecked unchecked conversion

Major static static variable should be qualified by type name

Hoare logic

One classic and straightforward example for programming errors that can be prevented by using
Hoare logic, that will also be detected by enabling compiler warnings, is the missing default

statement in C switch clauses.

A good code would look as follows:

int c;
...

switch(c)

{

case 1:
 doSomething;
 break;
case 2:
 doSomethingElse;
 break;
default:

 assert(0);
}

In the above example, we state by Hoare logic (the assertion will always fail) that the variable c

can only assume values 1 or 2.
Omission of the default clause can yield unexpected or unspecified program behavior in
cases where the programmer simply forgot one or more cases or when a break statement is
missing.
We advocate the explicit use of assertions instead of explicit conditional if statements that
serve the same purpose because conditional statements may affect program performance.
Thus, when a code is compiled with -DNDEBUG the assertions will be automatically removed
from the code, thereby making it faster. We also suggest a clear distinction of program errors,
that is, assertions should be used for assessing correctness during development and testing,
whereas conditional statements should be used to inform users about incorrect input formats,
incompatible command line flags etc.

Correct arguments for malloc()

The prototype function is void *malloc(size_t size); . Our emphasis here is on the fact
that the argument is of size_t which, according to the C99 standard, is an unsigned integer
data type of at least 16 bits. The actual size in bits depends on the target processor.

A frequent programming error is to use signed integers (with a typical range of -2,147,483,648
to +2,147,483,647 for 32 bit) in memory allocations, for instance:

int

 a = 5000000,
 b = 4000000;

double

 *v = (double *)malloc(a * b * sizeof(double));

Evidently, the above assignment will exceed the signed 32-bit integer number range and the
malloc() call will fail. The correct way to do it is as follows:

Either, according to the implicit type conversion rules in C/C++, change the order of the
operands to sizeof(double) * a * b , or typecast the first operand (size_t)a * b *

sizeof(double) . However, we consider the following:

v = (double *)malloc((size_t)a * (size_t)b * sizeof(double));

as being a good and less implicit solution that does not require an understanding of C/C++ type
conversion rules. Ideally though, both variables a and b should be defined as being of type
size_t right away. This would be the cleanest solution.

Another common error is to typecast only the result of the operation:

For instance, what we denote as MisCast error is present in MrBayes where memory size is
cast incorrectly as

malloc((size_t)((x+1)*sizeof(int)))

whereas a correct cast would be

malloc(((size_t)x+1)*sizeof(int))

In the ms population genetics code we observe a third (denoted as WrongCast) error type; here
variables inside malloc() are cast to unsigned int instead of size_t . We therefore
distinguish between NoCast (i.e., missing typecast as described before) and
MisCast (misplaced cast) and WrongCast errors.

Selected Issues with tested codes

In the following we discuss some tool-specific issues that we consider worth reporting.

PAML

The entire package generates thousands of compiler warnings. The malloc() typecast issue
is present, but all calls to malloc() are checked for success. Memory-wise some components
do not free the memory at the end but we did not detect any leaks. In mcmctree , however a
static array is accessed out of its bounds (see Section 2 of this supplement for further details).

PHYML

The code is generally clean with the exception of the malloc() issue (NoCast); potentially
more assertions could be added to the code.

MrBayes

Apart from the malloc() MisCast error, MrBayes faces some memory issues that might be
critical. Firstly, there is an out-of-bounds array access:

proposal.c:17192:37: warning: array subscript is below array bounds

[-Warray-bounds]

proposal.c:17188:24: warning: array subscript is above array bounds

[-Warray-bounds]

Secondly, on a small test alignment (see supplement for details) valgrind reports several
invalid read accesses. The above two memory management errors might induce incorrect
program behavior and/or crashes.

T-Coffee

T-Coffee generated a comparatively large number of 345 major warnings. Apart from that, it
cannot read alignment files with upper-case letters in the file name and will exit with a
segmentation fault.

Also, the following macro definition is problematic:

#define ACTION(x) ((n_actions>=(x+1))?action_list[x]:NULL)

Calling ACTION(x) as follows: ACTION(cond ? a : b) may cause problems. When
extending large codes, programmers usually cannot afford the luxury to revise potential
mistakes. Based on unit testing, programmers assume that the code is correct and build upon
the existing functionality. One potential pitfall with this approach is the usage of macros.
Calling the above macro in the following way

ACTION(cond ? a : b)

will expand the call to

((n_actions>=(cond ? a : b + 1))?action_list[cond ? a : b]:NULL)

which was probably not the original intention. What one would expect to happen is that the
condition is evaluated, and the result (a or b) is incremented by one. However, in the current
execution the condition is evaluated, and the result is either a or b+1 .

A correct macro definition would be

#define ACTION(x) ((n_actions>=((x)+1))?action_list[(x)]:NULL)

which expands to

((n_actions>=((cond ? a : b) + 1))?action_list[(cond ? a : b)]:NULL)

This is probably what the programmer expected to happen.

BEAST

BEAST is the only code written in Java and will therefore generate different types of warnings.

For BEAST we obtained the largest number (3800) of warnings among all codes. These include
calls to deprecated functions and 13, potentially deliberate, fallthroughs in switch statements
(analogous to missing break statements in the C switch construct). Note that, while JAVA
warning flags do exist, based on our experience, they are rarely being used to improve codes.

An analysis with valgrind was not feasible. While it supports JAVA, we obtained over
10,000,000 errors. We assume that these are caused by the Java virtual machine in conjunction
with garbage collection. To further analyze BEAST (v1.8.1) we deployed the dedicated
FindBugs (http://findbugs.sourceforge.net) tool for JAVA codes. The tool found and categorized
a total of 6193 potential bugs/issues.

The bug categories are distributed as follows: Bad practice (1843), Malicious code vulnerability
(1453), Dodgy code (1451), Performance (863), Internationalization (290), Correctness (200),
Multithreaded correctness (71), Experimental (22). For details on the categories, please refer to
the FindBugs documentation.

SOAP

SOAP also generated a large number of 145 major warnings that we consider to be potentially
critical in the sense that the program may not work according to its specification. It does not use
any assertions and also shows the `classic' malloc() NoCast error.

Further Numerical Issues

We first provide an additional example to illustrate how the mere addition order of real values
can affect the log likelihood score.

As input we used the values of 29,149 per-site log likelihoods at the root of a phylogeny for a
DNA dataset of 125 taxa as calculated by RAxML (code and data available at:
https://github.com/stamatak/softwareQuality). Then, we generated 1000 random permutations
of these values to generate distinct addition orders and recorded the overall log likelihood
scores. The maximum was -826079.30333342 and the minimum was -826079.30333344 with a
deviation of 0.000000021 log likelihood units.
Evidently, for larger phylogenomic datasets with more sites, these roundoff deviations will
increase. Keep in mind that, this deviation is due to reordering computations at the root only.
For branch length optimization in Maximum Likelihood (ML) programs using the
Newton-Raphson method, two such cumulative sums (first and second derivative of the
likelihood) are computed at each branch of the tree. This explains why different ML programs
can return different ML scores for the same tree.

An interesting general experiment highlighting the magnitude of round-off errors can be found at
the following link http://i.stack.imgur.com/UVWuE.png

http://findbugs.sourceforge.net/
https://github.com/stamatak/softwareQuality
http://i.stack.imgur.com/UVWuE.png

We reproduced the results and found that with 10^8 iterations which is not a very large number
using single precision floating point we get an error of approximately 10^7. The result of the
operation should be zero, but it was 10 millions instead! Of course this is constructed
worst-case example. However, it does illustrate why round-off errors are something we should
be aware of.

In the following we discuss an issue that is related to computational performance when using
floating point arithmetics.

With respect to floating point performance, the effect of so-called de-normalized floating point
numbers on execution times is widely unknown. For instance, the exact same number of floating
point operations can require execution times that differ by up to 50% for different input values
(see http://dl.acm.org/citation.cfm?id=1775087).
A micro-benchmark (available https://github.com/stamatak/denormalizedFloatingPointNumbers)
illustrating this is available. We extracted it from RAxML and it exactly shows this unexpected
run-time variance for the likelihood function. While developing the Evolutionary Placement
Algorithm (EPA, http://sysbio.oxfordjournals.org/content/60/3/291) we observed that some
reads almost required twice the time to be placed into the reference tree than others because of
de-normalized floating point values.

Section 2 - code analysis transcripts

Tools for phylogenetic inference
Standard procedure:
PAML

baseml
basemlg
chi2
codeml
evolver
mcmctree/infinitesites
pamp
yn00

PHYML
MrBayes

Population genetics software
ms
SweepFinder

Sequence alignment software
Mafft

http://dl.acm.org/citation.cfm?id=1775087
https://github.com/stamatak/denormalizedFloatingPointNumbers
http://sysbio.oxfordjournals.org/content/60/3/291

T-Coffee
Prank

Software for divergence time estimation
BEAST
FDPPDIV

Coalescence
BP&P

Sequence Simulation Tools
Seq-gen
Indelible

de-Novo sequence assembly
Soap
Abyss

Tools for phylogenetic inference

Standard procedure:

Make: compile with gcc and clang and warning flags enabled.
Valgrind: run with valgrind using the example datasets and suggested parameters included with

each tool.
Malloc: Checked for one of the three error types (NoCast, MisCast, WrongCast)
Assertions: grep for assertions in source code

PAML 4.8

Make: Compiles correctly, but with thousands of warnings; reports a large number of
unused variables.

Malloc: No typecasts, but the success of the allocation is always checked

Assertions: No assertions

baseml

Make: 45 Warnings: Using char data type as array subscript, ignoring return values of
fscanf() and fgets() , 8 warnings of type: “pointer targets in assignment
differ in signedness”

Valgrind: A few errors detected, and memory leaks at exit

valgrind --tool=memcheck baseml examples/baseml.ctl

==12945== Conditional jump or move depends on uninitialised value(s)
==12945== at 0x40B3DA: OutSubTreeN (treesub.c:2938)
==12945== by 0x41054F: StepwiseAddition (treesub.c:2954)
==12945== by 0x428889: main (baseml.c:338)
…

==12945== HEAP SUMMARY:
==12945== in use at exit: 20,484 bytes in 19 blocks
==12945== total heap usage: 53 allocs, 34 frees, 8,069,923 bytes
allocated

==12945==

==12945== LEAK SUMMARY:
==12945== definitely lost: 0 bytes in 0 blocks
==12945== indirectly lost: 0 bytes in 0 blocks
==12945== possibly lost: 0 bytes in 0 blocks
==12945== still reachable: 20,484 bytes in 19 blocks
==12945== suppressed: 0 bytes in 0 blocks

basemlg

Make: 47 Warnings: Same as above

Valgrind: Memory leaks at exit

valgrind --tool=memcheck basemlg examples/basemlg.ctl

==12942== in use at exit: 10,640 bytes in 20 blocks
==12942== total heap usage: 37 allocs, 17 frees, 42,209 bytes
allocated

==12942==

==12942== LEAK SUMMARY:
==12942== definitely lost: 1,360 bytes in 1 blocks
==12942== indirectly lost: 0 bytes in 0 blocks
==12942== possibly lost: 0 bytes in 0 blocks
==12942== still reachable: 9,280 bytes in 19 blocks
==12942== suppressed: 0 bytes in 0 blocks

chi2

Make: 2 warnings: Printing a double as integer, ignoring return value from scanf() .

Valgrind: No errors or leaks

valgrind --tool=memcheck chi2 1 3.84

==12927== HEAP SUMMARY:
==12927== in use at exit: 0 bytes in 0 blocks
==12927== total heap usage: 0 allocs, 0 frees, 0 bytes
allocated

==12927==

==12927== All heap blocks were freed -- no leaks are
possible

codeml

Make: 83 warnings. Same as baseml , some additional type mismatches in printf()

Valgrind: Does not free the memory at the end, no errors.

valgrind --tool=memcheck codeml
examples/Technical/Simulation/Codon/codeml.ctl

==12905== HEAP SUMMARY:
==12905== in use at exit: 5,063,272 bytes in 13 blocks
==12905== total heap usage: 54 allocs, 41 frees, 5,515,947 bytes
allocated

==12905==

==12905== LEAK SUMMARY:
==12905== definitely lost: 0 bytes in 0 blocks
==12905== indirectly lost: 0 bytes in 0 blocks
==12905== possibly lost: 0 bytes in 0 blocks
==12905== still reachable: 5,063,272 bytes in 13 blocks
==12905== suppressed: 0 bytes in 0 blocks

evolver

Make: 83 warnings. 3 char data types as array subscripts, 3 pointers with different
sign and 1 ‘\0’ encoded in the format string of scanf() . The rest are ignored return
values.

Valgrind: Memory is leaked after each iteration.

Evolver is an interactive tool, so we did 2 iterations for computing randomly an
unrooted and an rooted tree with 100 taxa, second one computing branch lengths
from a birth-death process.

valgrind --tool=memcheck ./evolver

==12870== in use at exit: 205,864 bytes in 5 blocks
==12870== total heap usage: 5 allocs, 0 frees, 205,864 bytes
allocated

==12870==

==12870== LEAK SUMMARY:
==12870== definitely lost: 110,248 bytes in 2 blocks
==12870== indirectly lost: 0 bytes in 0 blocks
==12870== possibly lost: 0 bytes in 0 blocks
==12870== still reachable: 95,616 bytes in 3 blocks
==12870== suppressed: 0 bytes in 0 blocks

==12870== Rerun with --leak-check=full to see details of leaked
memory

mcmctree/infinitesites

Make: 92 warnings. Most of them as before, there is a more interesting one:
“lgene” is declared in mcmctree.c as
int lgene[1] ,
but there is a loop accessing positions 1 and 2:

treesub.c:292 -> “for(i=0;i<3;i++) com.lgene[i]=com.ls/3; ”.

This produces the following warnings:

warning: iteration 1u invokes undefined behavior
[-Waggressive-loop-optimizations]

warning: array subscript is above array bounds
[-Warray-bounds]

Valgrind: There are some still reachable memory blocks at the end, but no errors.

However, the warning above might produce a segmentation fault.

valgrind --tool=memcheck ./mcmctree DatingSoftBound/mcmctree.ctl

==12588== in use at exit: 13,324 bytes in 1 blocks
==12588== total heap usage: 129 allocs, 128 frees, 10,479,421 bytes
allocated

==12588==

==12588== LEAK SUMMARY:
==12588== definitely lost: 0 bytes in 0 blocks
==12588== indirectly lost: 0 bytes in 0 blocks
==12588== possibly lost: 0 bytes in 0 blocks
==12588== still reachable: 13,324 bytes in 1 blocks
==12588== suppressed: 0 bytes in 0 blocks

valgrind --tool=memcheck ./mcmctree
DatingSoftBound/mcmctree.Infinitesites.ctl

==12821== in use at exit: 139,401 bytes in 33 blocks
==12821== total heap usage: 135 allocs, 102 frees, 10,485,865 bytes
allocated

==12821==

==12821== LEAK SUMMARY:

==12821== definitely lost: 0 bytes in 0 blocks
==12821== indirectly lost: 0 bytes in 0 blocks
==12821== possibly lost: 0 bytes in 0 blocks
==12821== still reachable: 139,401 bytes in 33 blocks
==12821== suppressed: 0 bytes in 0 blocks

pamp

Make: 29 warnings. Type char used as array subscript, ignored function return values,

2 pointers with different sign.

Valgrind: Small leaks and no free() calls at all. No errors.

valgrind --tool=memcheck ./pamp examples/pamp.ctl

==12383== HEAP SUMMARY:
==12383== in use at exit: 8,020,060 bytes in 28 blocks
==12383== total heap usage: 52 allocs, 24 frees, 8,081,686 bytes
allocated

==12383==

==12383== LEAK SUMMARY:
==12383== definitely lost: 7,456 bytes in 1 blocks
==12383== indirectly lost: 0 bytes in 0 blocks
==12383== possibly lost: 0 bytes in 0 blocks
==12383== still reachable: 8,012,604 bytes in 27 blocks
==12383== suppressed: 0 bytes in 0 blocks

yn00

Make: 31 warnings. Same as before

Valgrind: Almost the entire memory is leaked. No errors

valgrind --tool=memcheck ./yn00 examples/yn00.ctl

==12367== HEAP SUMMARY:
==12367== in use at exit: 207,880 bytes in 15 blocks
==12367== total heap usage: 24 allocs, 9 frees, 228,894 bytes
allocated

==12367==

==12367== LEAK SUMMARY:
==12367== definitely lost: 200,000 bytes in 1 blocks
==12367== indirectly lost: 0 bytes in 0 blocks

==12367== possibly lost: 0 bytes in 0 blocks
==12367== still reachable: 7,880 bytes in 14 blocks
==12367== suppressed: 0 bytes in 0 blocks

PHYML 20141009

Make: No major warnings

Valgrind: No errors or leaks

valgrind --tool=memcheck ./phyml -i examples/nucleic

==12976== in use at exit: 0 bytes in 0 blocks
==12976== total heap usage: 262,708 allocs, 262,708 frees,
66,232,882 bytes allocated
==12976==

==12976== All heap blocks were freed -- no leaks are possible

Malloc: No typecasts (Error type: NoCast)

Assertions: Only a few assertions

MrBayes 3.2.4-svn(r926)

Downloaded latest development version from sourceforge (28.10.2014). MrBayes is
written in C with a total of 94,432 lines of code (LoC). Loc determined using

cloc `find $HOME/mrbayes -type f -iname “*.c” -o -iname
“*.h” -o -name “*.cpp” -o -name “*.cc” -o -name “*.hpp”`

which ignores comments and empty lines.

When compiling with -Wall , we get two warnings only:

proposal.c:17192:37: warning: array subscript is below array

bounds [-Warray-bounds]
proposal.c:17188:24: warning: array subscript is above array

bounds [-Warray-bounds]

When typing:

valgrind ./mb
execute co1_1.nex
mcmc

valgrind reports several invalid reads on uninitialized memory!

Some memory is also leaked.

Test datasets were downloaded from:
http://www.molecularevolution.org/software/phylogenetics/mrbayes

MrBayes code growth over time is illustrated in the plot below:

Except bayes.c , all files contains assertions (223 in total).

Typecasts in malloc() are used incorrectly. Typically, in MrBayes, typecasts within have the
following format:

malloc((size_t)(x*sizeof(type)));

This is incorrect, see the following simple example:

int x = INT_MAX;

void * p = malloc((size_t)((x+1)*sizeof(int)));

http://www.molecularevolution.org/software/phylogenetics/mrbayes

The result of the above line will be a NULL pointer since x will overflow and assume a value of
0.
Typecasting needs to be applied to variables that will be used in operations and not to the result
of operations that may already have overflown/underflown, e.g.:

void * p = malloc(((size_t)x+1)*sizeof(int));

RAxML 8.2.11

Make: GCC compilation does not report major warnings, but sporadic unused
parameters or functions. Nonetheless, these warnings show up because of the different
Makefiles provided (e.g., 5 for SSE, 9 for AVX, 11 for AVX+PTHREADS). Several
functions and parameters are used or not depending on the selected flavor. Clang,
however, reported 964 warnings when used with -Weverything -Wno-padded flags.

Valgrind: No errors nor hard leaks detected, but several soft leaks (i.e., reachable blocks
at the end of the execution).

Malloc: the typecast issue is generally tackled by placing the sizeof(x) expression in first
place, which casts the following operands to size_t. Hence, it is not necessary to
explicitly use the size_t cast.

Assertions: Assertions are thoroughly used throughout the code.

Population genetics software

ms

No version information available for ms. Last update of source files was done in 8 Sep
2014 (rand1.c).

Written in C. Total of 2,063 lines of code. Counted using

cloc `find $HOME/ms -type f -iname “*.c” -o -iname “*.h” -o
-name “*.cpp” -o -name “*.cc” -o -name “*.hpp”`

which ignores comments and empty lines.

When compiling with gcc -Wall , we obtain 33 warnings of the following categories:

33 Total number of warnings

22 unused or set but not used variables

1 control reaches end of non-void function

9 variables may be used uninitialized

Ms incorrectly typecasts most variables from int to unsigned int when calling

malloc() .
No assertions are being used.

SweepFinder

No version provided for SweepFinder. Downloaded on February 23, 2015 from
http://http://people.binf.ku.dk/rasmus/webpage/sf.html

Make: A few warnings but copying command line arguments into variables is done as

follows:
char snpfn[1000];
sprintf(snpfn, argv[2]);

Apart from the missing format in the sprintf() function instruction, this may lead to a
stack buffer overflow. This can be risky if the kernel or the compiler do not check for
this. This should not be a problem on modern systems, but it is not good practice;
see http://insecure.org/stf/smashstack.html

When a custom frequency spectrum is specified, the tool assumes that the file covers
the whole sample size. This constraint causes an assertion to fail,

freq.c:328: loadfreq: Assertion `p[i] >=0.0' failed.

Normally, the tool should check this beforehand and produce a more informative error
message.

Valgrind: No errors or leaks, some memory still reachable at the end.

valgrind --tool=memcheck ./SweepFinder -m 100 infile out

==13598== HEAP SUMMARY:
==13598== in use at exit: 220,532 bytes in 674 blocks

http://insecure.org/stf/smashstack.html

==13598== total heap usage: 2,692 allocs, 2,018 frees, 1,036,396
bytes allocated
==13598==

==13598== LEAK SUMMARY:
==13598== definitely lost: 0 bytes in 0 blocks
==13598== indirectly lost: 0 bytes in 0 blocks
==13598== possibly lost: 0 bytes in 0 blocks
==13598== still reachable: 220,532 bytes in 674 blocks
==13598== suppressed: 0 bytes in 0 blocks

Sequence alignment software

Mafft v7.205

Downloaded latest mafft v7.205 without extensions.
Written in C. Total of 57,688 LoC. Counted using

cloc `find $HOME/mafft -type f -iname “*.c” -o -iname “*.h”
-o -name “*.cpp” -o -name “*.cc” -o -name “*.hpp”`

which ignores comments and empty lines.

When compiling with gcc -Wall , we get 134 warnings of the following types:

134 Total number of warnings

73 unused or set but not used variables

60 variables may be used uninitialized

1 operation may be undefined

The undefined operation is the following:

blosum.c:290:16: warning: operation on ‘*(*(matrix +

(sizetype)((long unsigned int)i * 8ul)) + (sizetype)((long
unsigned int)i * 8ul))’ may be undefined [-Wsequence-point]

 matrix[i][i] = matrix[i][i] = (double)1.0;

line 290 in blosum.c looks like this:

matrix[i][i] = matrix[i][i] = (double)1.0;

Some simple executions of the program of the program fail:

$./mafft-profile --help
file --help
illegal option -
Segmentation fault

$./mafft-profile --a
file --a
illegal option -
options: Check source file ! ?

$./mafft-profile --b
file --b
illegal option -
Error in myatoi()

$./mafft-profile -h
Segmentation fault

Valgrind execution:

All memory leaks are blocks of allocated memory that are still reachable program

termination. Valgrind reports invalid file descriptors at close() .

There are several memeory allocations of the form: alloc(a+b) . For instance, line

2013 of tbfast.c

calloc(nogaplen+1, sizeof (RNApair *));

where nogaplen is of type (signed) int and was obtained by:
nogaplen = stlren(bseq[i]);

When feeding the program with sequences of length MAX_INT we may expect
problems/errors.

No assertions are used.

T-Coffee v20141026_23:18

Downloaded latest tcoffee version 20141026_23:18.
Written in C. Total of 124,282 LoC. Counted using

cloc `find $HOME/tcoffee -type f -iname “*.c” -o -iname
“*.h” -o -name “*.cpp” -o -name “*.cc” -o -name “*.hpp”`

which ignores comments and empty lines.

When compiling with gcc -Wall , we get 964 warnings of the following categories:

964 Total number of warnings

551 unused or set but not used variables/functions

2 wrong format specifiers

124 comparisons between signed and unsigned data types

11 unknown pragmas

117 variables may be used uninitialized

8 suggestions for parenthesis in logic operations

68 /* within comment

32 null argument where non-null required

5 control reaches end of non-void function

17 no return statement in function returning non-void

12 array subscript has type char

4 too many arguments for format

6 operations may be undefined

4 dereferencing type-punned pointer will break strict-aliasing rules

example from tcoffee leading to this warning:
int n;

double x;
...

n = (*(long long *)&x);

1 second parameter of ‘va_start’ not last named argument

1 converting to non-pointer type int from NULL

1 use of tmpnam function is dangerous, better use mkstemp

Bugs in the program:

tcoffee has a command-line parameter -infile to specify the input alignment file. If the
filename contains a capital letter (which in our case it did), for example ‘Alignment.fa’,
tcoffee magically ignores the capital letter, tries to read ‘lignment.fa’ and then exits with a
segmentation fault.

Another critical mistake is the macro definition in lib/util_lib/reformat.c lines

15-17.
The macro ACTION(x) is defined as

#define ACTION(x) ((n_actions>=(x+1))?action_list[x]:NULL)

However, calling ACTION(x) in the form:

ACTION(cond ? a : b)

will lead to problems.

Reachable memory blocks at the end, except around ~ 30 bytes (constant amount)

which are always leaked.

Code complexity increase (LoC) of T-Coffee over time:

Prank v.140603

Downloaded latest prank v.140603.
Written in C++. Total of 23,947 LOC. Counted using

cloc `find $HOME/prank -type f -iname “*.c” -o -iname “*.h”
-o -name “*.cpp” -o -name “*.cc” -o -name “*.hpp”`

which ignores comments and empty lines.

When compiling with gcc -Wall , we get 170 warnings of the following categories:

170 Total number of warnings

6 unused or set but not used variables/functions

83 comparisons between signed and unsigned data types

2 variables may be used uninitialized

26 suggestions for parenthesis in logic operations

1 control reaches end of non-void function

23 no return statement in function returning non-void

4 passing pointer instead of bool value (will always evaluate as
true)

25 deleting object of polymorphic class which has non-virtual
destructor might cause undefined behaviour

Valgrind does not report memory leaks, however it reports that several conditional jumps

depend on uninitialized memory.

Software for divergence time estimation

BEAST v1.8.0

By default warnings are not displayed in JAVA and it compiles without problems. Ant
enforces to use JDK 1.6 and it produces a record (for the codes analyzed in our
paper) of approximately 3800 Warnings, including a large number of calls to
deprecated functions. Setting the source to 1.7 BEAST compiles as well, with the
same warnings.

Warning list: 87 deprecations, 2356 rawtypes, 478 unchecked, 94 redundant casts, 750

[serial] (serializable classes without ID), 13 fall-throughs in switch statements, 22
static attributes without qualifier.

For readers not familiar with Java, here are some explanations:

Deprecated: Use of methods that are explicitly marked as deprecated. Probably they will

not be supported in future versions. However, these warnings come from deprecated
annotations in the BEAGLE code.

Serial: Serializable classes should declare a static version identifier such that when an
instance is loaded one can compare it with the current identifier and prevent errors
from loading data stored in a different format.

Static attributes without qualifier: When a static attribute is called from a non-static
member in the source code, it should be addressed as part of the class and not the
instance (i.e., Classname.staticAttribute instead of just
staticAttribute). Note that, static in java denotes a class member as in
C++/C#. It does not have the same meaning as in C.
However, sometimes the authors of BEAST are updating static attributes inside the
class constructor. For example:

public AbstractPCARateMatrix(String name, DataType dataType,
String dir) {

 this.name = name;
 this.dataType = dataType;
 this.dataDir = dir;
 }

 private static String name;
 protected static String dataDir;
 protected DataType dataType;

In the example above, name and dataDir are accessed as members of the
instance and not the class (this.name , …). They are updated with every
instantiation, but since name and dataDir are static variables, this will also
affect every already existing instance. In particular, dataDir is also updated for
every subclass. Maybe this class is instantiated only once, or it does not have
any effect at all during the execution, but this is bad practice.

Rawtypes and unchecked: These 2 warnings are related to each other. A rawtype
means that a generic class/interface is declared without specifying the type
argument. For example. Set instead of Set<int> . If one attempts to operate with a
rawtype on a generic class with a defined type, one will obtain an unchecked
warning. For example, a.add(b) , where a is a Set<int> and b is a rawtype. This
is like working with void * pointers in C despite the fact that one already knows
that they are integer pointers.

Valgrind: Although Valgrind supports java, it was impossible to use. We obtained the

following output:

==19039== More than 10000000 total errors detected. I'm not reporting any more.
==19039== Final error counts will be inaccurate. Go fix your program!
==19039== Rerun with --error-limit=no to disable this cutoff. Note
==19039== that errors may occur in your program without prior warning from
==19039== Valgrind, because errors are no longer being displayed.

We assume this is a Valgrind issue related to the Java Virtual Machine.

FDPPDIV v1.3

Compiling produces a large number of warnings, but no major warnings. Most of them

are of type: comparison between signed and unsigned integer in loop
headers [-Wsign-compare] , and attribute initializations in the wrong order
[-Wreorder] in class instantiations. Also some maybeUninitialized warnings
were issued.

Error compiling AVX-vectorized version. The header file immintrin.h was commented
in cpuspec.h . Just needed to remove the comment, or change all the intrinsics
includes for x86intrin .

Valgrind: It does not report errors during run-time, but there is a small memory leak

directly proportional to the alignment size

valgrind --tool=memcheck ./dppdiv-seq-sse -in test_seq.dat
-tre test_tre.phy -cal test_fos.cal -tga -clok -n 1000 -sf
100 -pf 100 -out test_fbd

==15811== HEAP SUMMARY:
==15811== in use at exit: 36,701 bytes in 309 blocks
==15811== total heap usage: 89,037 allocs, 88,728 frees,
12,963,276 bytes allocated
==15811==

==15811== LEAK SUMMARY:
==15811== definitely lost: 1,888 bytes in 15 blocks
==15811== indirectly lost: 34,813 bytes in 294 blocks
==15811== possibly lost: 0 bytes in 0 blocks
==15811== still reachable: 0 bytes in 0 blocks
==15811== suppressed: 0 bytes in 0 blocks

valgrind --tool=memcheck ./dppdiv-seq-sse -in test_seq.dat
-tre test_tre.phy -cal test_fos.cal -tga -clok -n 1000 -sf
100 -pf 100 -out test_fbd.pr -rnp

==15937== HEAP SUMMARY:
==15937== in use at exit: 36,701 bytes in 309 blocks
==15937== total heap usage: 18,532 allocs, 18,223 frees,
10,814,520 bytes allocated
==15937==

==15937== LEAK SUMMARY:
==15937== definitely lost: 1,888 bytes in 15 blocks
==15937== indirectly lost: 34,813 bytes in 294 blocks
==15937== possibly lost: 0 bytes in 0 blocks
==15937== still reachable: 0 bytes in 0 blocks
==15937== suppressed: 0 bytes in 0 blocks

Comment: The input data is not checked for consistency. For example, if the alignment
and tree do not match, the program exits with a segmentation fault and no additional
information.

We used a 6 taxa random alignment with 20 sites, and a 5 taxa rooted tree, setting
random seeds to 1 for reproducibility:

test.phy

T1 atcgcgtcgacgtatctgct
T2 attgcgtcgacgtatctgct
T3 attgggtcgacgtagctgat
T4 atcgggtagacgtagctgca
T5 atcgcgtagacgtatctgat
T6 atcgcgtagacgtatctgat

test.tre

(T1,((T2,T3),(T4,T5)));

test.cal

3

-t root 241.81
-t T2 T5 15.7573

Test command:

dppdiv-seq-sse -in test.phy -tre test.tre -cal test.cal
-tga -clok -pf 10 -s1 1 -s2 1

Output:
…

Contamination model fossil calibration lambda parameters: lambda1 =
5.38996, lambda2 = 32.3397

Strict clock, initial substitution rate = 1.1191
Rate Group Elements: (1.1191) -> 0 1 2 3 4 5 7 8 9 10
6 --- 241.81
6 --- 241.81
7 --- 55.7573
Segmentation fault (core dumped)

Coalescence

BP&P v3.0

There is no Makefile available. The instructions for compiling are part of the README
file:

Notes by Ziheng Yang
30 May 2010

(1) To compile, try one of the following

 UNIX gcc/icc:
 cc -o bpp -ansi -O3 -funroll-loops -fomit-frame-pointer
-finline-functions bpp.c tools.c -lm

 icc -o bpp -fast bpp.c tools.c -lm

 MAC OSX intel:
 cc -o bpp -funroll-loops -fomit-frame-pointer -finline-functions
bpp.c tools.c -lm
 cc -o MCcoal -DSIMULATION -O4 -funroll-loops -fomit-frame-pointer
-finline-functions bpp.c tools.c -lm

 Windows MSC++ 6.0/2008:
 cl -O2 bpp.c tools.c
 cl -O2 -FeMCcoal.exe -DSIMULATION bpp.c tools.c
 cl -O2 -Fesummarize.exe -DSUMMARIZE bpp.c tools.c

(2) To run an example analysis, try

cd examples

../bpp yu2001.bpp.ctl

../bpp ChenLi2001.bpp.ctl

../bpp lizard.bpp.ctl

Good luck.

Make: 102 warnings. 79 unused variables, including 35 ignored return values from
fscanf() or fget(), 10 char data types used as array subscripts, 5 maybe
uninitialised variables.

Valgrind: Does not report errors during execution, but there are reachable blocks at

program termination.

valgrind --tool=memcheck ./bpp examples/ChenLi2001.bpp.ctl

==13655== HEAP SUMMARY:
==13655== in use at exit: 803,528 bytes in 204 blocks
==13655== total heap usage: 1,180 allocs, 976 frees, 3,975,101
bytes allocated
==13655== LEAK SUMMARY:
==13655== definitely lost: 240 bytes in 1 blocks

==13655== indirectly lost: 0 bytes in 0 blocks
==13655== possibly lost: 0 bytes in 0 blocks
==13655== still reachable: 803,288 bytes in 203 blocks
==13655== suppressed: 0 bytes in 0 blocks

valgrind --tool=memcheck ./bpp examples/yu2001.bpp.ctl

==14207== HEAP SUMMARY:
==14207== in use at exit: 1,066,749 bytes in 270 blocks
==14207== total heap usage: 400 allocs, 130 frees, 2,533,018 bytes
allocated

==14207== LEAK SUMMARY:
==14207== definitely lost: 0 bytes in 0 blocks
==14207== indirectly lost: 0 bytes in 0 blocks
==14207== possibly lost: 0 bytes in 0 blocks
==14207== still reachable: 1,066,749 bytes in 270 blocks
==14207== suppressed: 0 bytes in 0 blocks

Sequence Simulation Tools

Seq-gen v1.3.3

Make: Some warnings on unused variables and 1 warning for redefining the function cexp()

as complex cexp(complex a); .

Valgrind: There are reachable blocks at program termination and small leaks. The size of the

memory leak is directly proportional to the number and length of the sequences and the
number of trees on which the user wants to simulate data. However, the leak size does
not depend on the number of alignment replicates that are simulated per tree.

valgrind --tool=memcheck ./seq-gen -mHKY -t3.0 -f0.3,0.2,0.2,0.3 -l40
-n3 < examples/example.tree

==15755== HEAP SUMMARY:
==15755== in use at exit: 171,807 bytes in 58 blocks
==15755== total heap usage: 66 allocs, 8 frees, 235,807 bytes
allocated

==15755==

==15755== LEAK SUMMARY:
==15755== definitely lost: 8 bytes in 1 blocks
==15755== indirectly lost: 17,092 bytes in 7 blocks

==15755== possibly lost: 0 bytes in 0 blocks
==15755== still reachable: 154,707 bytes in 50 blocks
==15755== suppressed: 0 bytes in 0 blocks

Malloc: No typecast (NoCast error), but the results of the allocations are checked for success.

Assertions: No assertions in the code. However, some preconditions are enforced. For example,

if a set of frequencies that do not sum to 1.0 is specified, the tool automatically modifies
the highest frequency.
For example
f:={0.01, 0.01, 0.02, 0.01}
will produce an output with frequencies
f’={0.01, 0.01, 0.97, 0.01}
without issuing any sort of warning.

INDELible v1.0.3

Make: 260 warnings. 193 of them a comparison between signed and unsigned integers
in for loops, e.g.:

for (int i = 1; i < ratevec.size(); i++)

25 unused variables, 12 set but unused variables.

Valgrind: No errors or leaks

valgrind --tool=memcheck ./indelible

==15764== HEAP SUMMARY:
==15764== in use at exit: 0 bytes in 0 blocks
==15764== total heap usage: 15,943 allocs, 15,943 frees, 1,595,946
bytes allocated
==15764==

==15764== All heap blocks were freed -- no leaks are possible

We used the following control file:
[TYPE] NUCLEOTIDE 2

[MODEL] model1
[submodel] GTR 3.695 2.025 1 2.025 1 9.753

[rates] 0 0.8529 4
[statefreq] 0.3126 0.1613 0.1021 0.424

[MODEL] model2
[submodel] GTR 3.695 2.025 1 2.025 1 9.753
[rates] 0 0.8529 4
[statefreq] 0 0 0 1

[TREE] tree1
((t1:0.45,t2:0.8):0.4,(t3:0.12,t4:0.7):0.3,(t5:0.1,t6:0.2):0.31);

[TREE] tree2
((t1:0.0,t2:0.8):0.4,(t3:0.12,t4:0.7):0.3,(t5:0.1,t6:0.2):0.31);

[PARTITIONS] partitions
[tree1 model1 849]
[tree2 model1 849]
[tree1 model2 849]

[EVOLVE] partitions 1 alignment1

Malloc: There are no malloc() invocations. It uses the the C++ std::vector
(resizable arrays) approach without specifying an initial size.

Assertions: None

de-Novo sequence assembly

Soap 2 r240

Downloaded latest SOAPdenovo2 r240.
Written in C/C++. Total of 37,020 lines of code. Counted using

cloc `find $HOME/soap -type f -iname “*.c” -o -iname “*.h”
-o -name “*.cpp” -o -name “*.cc” -o -name “*.hpp”`

which ignores comments and empty lines.

Compiling fails with 8 errors, which are due to the following 3 problems repeated in

several files:

1. cannot find function usleep()
2. cannot find function getopt()
3. undeclared variable optind ;

After fixing the problems by including the necessary header files and declarations, we
obtain 773 warnings of the following categories (when compiling with gcc -Wall):

773 Total number of warnings

422 unused or set but not used variables/functions

144 wrong format specifiers

28 comparisons between signed and unsigned data types

54 unknown conversion type character (0xa or 0x9) in format.

This was caused because of using “%\n” and/or “%\t” as a format
specifier, which is wrong. The percentage character must be
correctly displayed as %% (double percentage).

51 variables may be used uninitialized

2 suggestions for parenthesis in logic operations

50 implicit function declarations

4 control reaches end of non-void function

4 no return statement in function returning non-void

2 array subscript has type char

4 too many arguments for format

8 pointer targets in passing arguments differ in signedness

In our case, caller passes int *, callee accepts unsigned int *.

Only Reachable memory leaks.

No assertions are used, and no typecasting (error type NoCast) when calling

malloc() .

Abyss 1.5.2

The perfect program. No compiler warnings. There are assertions everywhere.

No memory leaks. Correct malloc() typecasts.

Written in C/C++. 43,189 LOC.

