Algorithm 1: Coancestry estimation: a simple case with haploid individuals and without missing data

```
Data: For each locus, the sequences of nucleotides that vary between individuals
    Result: Estimated coancestry matrix
    Init: Initialize the coancestry matrix \mathbf{C}, so that \mathbf{C}_{ij}=0 for all i and j
 {\tt 1} \;\; \textbf{foreach} \; \mathsf{RAD} \; \mathsf{locus} \; \textbf{do}
         for each individual i // a recipient
 2
 3
               foreach individual j \neq i // potential donors
 4
 5
                   \mathbf{D}_{ij} = \text{number of SNPs between } i \text{ and } j;
 6
 7
               \mathrm{M}_i = \min_{j 
eq i} (\mathbf{D}_{ij}); // The minimum of \mathrm{D}_{ij} for all j 
eq i
 8
               N_{Mi} = \operatorname{count}_{j \neq i}(\mathbf{D}_{ij} == M_i); // Count the number of 'donors'
 9
               foreach individual j \neq i do
10
                    \mathbf{if}\;(\mathbf{D}_{ij} == \mathbf{M}_i)\;//\; If individuals i and j are closest, j is a 'donor'
11
12
                         // Assign an equal proportion of coancestry to each donor
13
                         \mathbf{C}_{ij} = \mathbf{C}_{ij} + 1/\mathbf{N}_{Mi}
14
                    \mathbf{end}
15
               end
16
         end
17
18 end
```