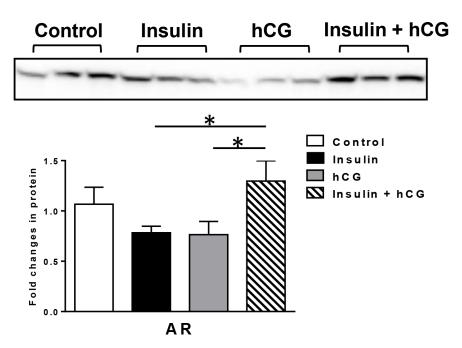
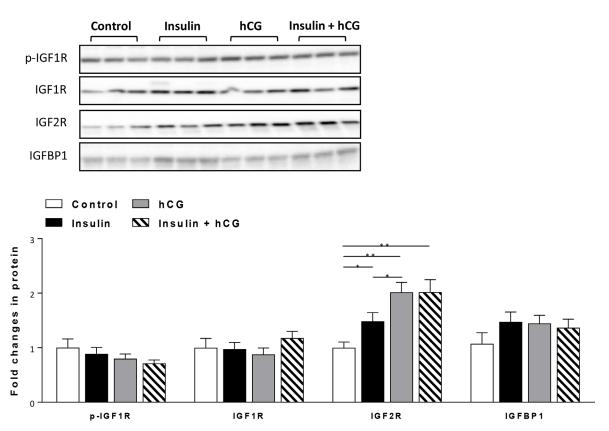
Hyperandrogenism and insulin resistance contribute to hepatic steatosis and inflammation in female rat liver

SUPPLEMENTARY MATERIALS

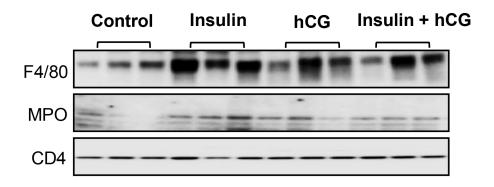
Supplementary Table 1: Antibodies: species, clone/catalog number, method, dilution, and source

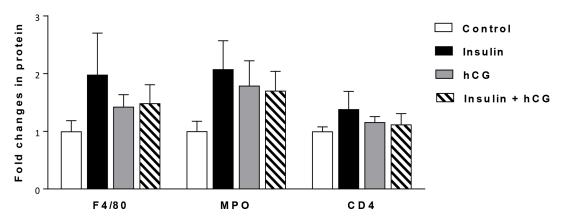

Antibody	Species	Cat. No.	kDa	Method	Dilution	Source
IRα	Rabbit	07-724	97	WB	1:500	Millopore (Darmstadt, Germany)
IRβ	Rabbit	3025	95	WB	1:1000	Cell Signaling Technology (Danver, MA)
IRS1	Rabbit	3407	180	WB	1:500	Cell Signaling Technology
p-IRS1 (S1101)	Rabbit	2385	180	WB	1:300	Cell Signaling Technology
IRS2	Rabbit	4502	185	WB	1:200	Cell Signaling Technology
pan-Akt	Mouse	2920	60	WB	1:1000	Cell Signaling Technology
p-Akt (S473)	Rabbit	4060	60	WB	1:500	Cell Signaling Technology
p-Akt (T308)	Rabbit	13038	60	WB	1:500	Cell Signaling Technology
AS160	Rabbit	2670	160	WB	1:500	Cell Signaling Technology
GSK3α	Rabbit	4337	51	WB	1:2000	Cell Signaling Technology
p-GSK3α (S21)	Rabbit	9316	51	WB	1:500	Cell Signaling Technology
GSK3β	Rabbit	12456	46	WB	1:2000	Cell Signaling Technology
p-GSK3β (S9)	Rabbit	5558	46	WB	1:500	Cell Signaling Technology
Beclin-1	Rabbit	3495	60	WB	1:1000	Cell Signaling Technology
Atg7	Rabbit	8558	78	WB	1:1000	Cell Signaling Technology
Atg3	Rabbit	3415	40	WB	1:1000	Cell Signaling Technology
Atg5	Rabbit	12994	55	WB	1:1000	Cell Signaling Technology
Atg12	Rabbit	4180	16,53	WB	1:1000	Cell Signaling Technology
Atg16L1	Rabbit	8089	66,68	WB	1:1000	Cell Signaling Technology
LC3I/II	Rabbit	12741	14,16	WB	1:1000	Cell Signaling Technology
p62	Rabbit	5114	62	WB	1:1000	Cell Signaling Technology
α-SMA	Rabbit	6487	100	WB	1:1000	Cell Signaling Technology
AR	Rabbit	sc816	110	WB	1:100	Santa Cruz Biotechnology
IGF1R	Rabbit	9750	95	WB	1:1000	Cell Signaling Technology
p-IGF1R	Rabbit	3024	95	WB	1:500	Cell Signaling Technology
IGF2R	Rabbit	14364	275	WB	1:500	Cell Signaling Technology
IGFBP1	Rabbit	06-580	32	WB	1:500	Upstate (Darmstadt, Germany)
F4/80	Rabbit	ab74383	160	WB	1:1000	Abcam (Cambridge, UK)
MPO	Rabbit	sc16128	72	WB	1:100	Santa Cruz Biotechnology (Heidelberg, Germany)
CD4	Goat	sc1140	54	WB	1:100	Santa Cruz Biotechnology
TNFα	Goat	sc1349		IHC	1:150	Santa Cruz Biotechnology
IL1β	Rabbit	sc7884		IHC	1:100	Santa Cruz Biotechnology

IR, insulin receptor; IRS, insulin receptor substrate; AS160, the Akt Ser/Thr kinase 160; GSK3, glycogen synthase kinase 3; Atg, autophagy-related protein; LC3, microtubule-associated protein 1A/1B-light chain 3 (a cytosolic LC3-I is conjugated to phosphatidylethanolamine to form LC3-II, which is recruited to autophagosomal membranes); p62, sequestosome 1 (SQSTM1); α -SMA, α -smooth muscle actin; AR, androgen receptor; IGF1R, insulin-like growth factor receptor 1; IGFBP1, IGF binding protein 1; F4/80, adhesion G protein-coupled receptor E1; MPO, the heme protein myeloperoxidase; CD4, cluster of differentiation 4; TNF α , tumor necrosis factor α ; IL1 β , interleukin-1 β ; WB, western blot; IHC, immunohistochemistry.

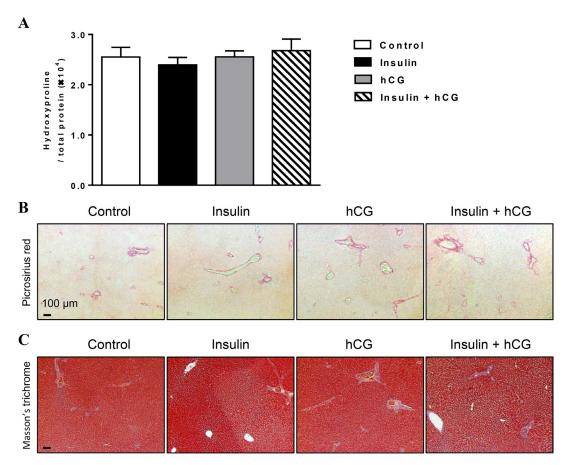

Supplementary Table 3: The intra-assay and inter-assay % CV for the rat insulin, steroid hormones and lipid profile

	Intra-assay % CV	Inter-assay % CV	
Insulin	6.4	7.5	
E2	6.2	7.4	
Total T	5.9	6.6	
DHT	4.2	7.5	
A4	6.0	7.4	
RBP4	6.0	6.5	
TC	2.1	4.0	
TG	2.0	3.5	
HDL-C	2.6	4.2	
ALT	7.0	8.3	
AST	7.2	8.1	
PIIINP	6.2	7.3	
НА	6.0	7.1	


E2, 17β-estradiol; T, testosterone; DHT, dihydrotestosterone; A4, androstenedione; RBP4, retinol-binding protein 4; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; PIIINP, N-terminal propeptide of yype III collagen; HA, hyaluronic acid.



Supplementary Figure 1: Effects of insulin and/or hCG on the androgen receptor (AR) expression in the rat liver. Representative AR with immunoblotting quantification (n = 9/group) is shown, total proteins served as the loading control. Values are expressed as means \pm SEM. *p < 0.05.



Supplementary Figure 2: Effects of insulin and/or hCG on insulin-like growth factor 1/2 receptor (IGF-1R and IGF2R) and IGF binding protein 1 (IGFBP1) expression in the rat liver. Representative p-IGF1R, IGF1R, IFG2R, and IGFBP1 are shown. For immunoblotting quantification (n = 9/group), total proteins served as the loading control. Values are expressed as means \pm SEM. *p < 0.05; **p < 0.01.

Supplementary Figure 3: Effects of insulin and/or hCG on F4/80, MPO, and CD4 expression in the rat liver. Representative F4/80, MPO, and CD4 are shown. For immunoblotting quantification (n = 9/group), total proteins served as the loading control. Values are expressed as means \pm SEM.

Supplementary Figure 4: Effects of insulin and/or hCG on collagen deposition in the rat liver. Picrosirius red (A) and Masson's trichrome (B) staining of liver tissue sections (n = 9-12/group) did not reveal any major histological differences in collagen deposition between groups regardless of different treatment. There was no significant difference in hepatic hydroxyproline levels (C) in any of the groups (n = 9/group). Scale bars are indicated in the photomicrographs.