DOI: 10.1289/EHP1674

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Sex- and Dose-Specific Effects of Maternal Bisphenol A Exposure on Pancreatic Islets of First- and Second-Generation Adult Mice Offspring

Amita Bansal, Cetewayo Rashid, Frances Xin, Changhong Li, Erzsebet Polyak, Anna Duemler, Tom van der Meer, Martha Stefaniak, Sana Wajid, Nicolai Doliba, Marisa S. Bartolomei, and Rebecca A. Simmons

Table of Contents

Figure S1. Experimental paradigm of maternal BPA exposure study.

Figure S2. Flowchart of animal usage from multiple cohorts generated in two different animal care facilities.

Figure S3. Representative photos of H&E stained pancreatic sections from F1 and F2 males.

Figure S4. Alpha and Delta mass adjusted for body weight in F1 and F2 males.

Figure S5. Islet cytosolic calcium levels in (A) F1 males, and (B) F2 males.

Figure S6. Percent DNA methylation at *H19/Igf2* ICR (*H19* 1524JH) and *Esr1* Exon C in islets. (A) F1 and (B) F2 adult male offspring. Data are percent CpG methylation values from individual litter (islets pooled from 2-3 males per litter) and presented as mean + SEM. Data were analyzed using Dunnett's test. For % methylation at all CpG cites as well as mean methylation across all sites, p values were >0.1 relative to Control.

Table S1. Custom designed TaqMan Primers and Probes Assays for qPCR.

Table S2. PCR and Pyrosequencing Primers for *Igf*2 DMR1, *H19/Igf*2 ICR, and *Esr1*.

Table S3. Changes in cytokine/chemokine levels on a LUMINEX assay in pancreatic lysates of F1 adult male offspring. N=3 to 4 litters per group. Data are normalized to total protein concentration as pg of cytokine or chemokine per μ g of total protein, and presented as mean \pm SEM. Decimal places are represented by E notation, where E represents base 10, followed by the power of 10 (example, E-2 = 10^{-2} , E-3 = 10^{-3} , E-4 = 10^{-4}). P values are from Dunnett's test performed on log-transformed data, where required (g-csf, IL9, IL15, and RANTES). Control: 7% corn oil diet; LowerB: Lower BPA (10 μ g/kg/day); UpperB: Upper BPA (10 mg/kg/day).

Table S4. Changes in cytokine/chemokine levels on a LUMINEX assay in pancreatic lysates of F2 adult male offspring. N=3 to 4 litters per group. Data are normalized to total protein concentration as pg of cytokine or chemokine per μ g of total protein, and presented as mean (SEM). Decimal places are represented by E notation, where E represents base 10, followed by the power of 10 (example, E-2 = 10^{-2} , E-3 = 10^{-3} , E-4 = 10^{-4}). p values are from Dunnett's test performed on log-transformed data, where required (IL2, IL9, IL10, IL12p40, IL15, IP10, and MIP2). Control: 7% corn oil diet; LowerB: Lower BPA (10 μ g/kg/day); UpperB: Upper BPA (10 mg/kg/day).

and molecular studies

Fig.S1. Experimental paradigm of maternal BPA exposure study. C57BL/6 virgin female mice (F0) were randomly assigned to the following three diets: 7% corn oil (Control), 10 µg/kg/day (LowerB), and 10 mg/kg/day (UpperB) BPA. After two weeks, while continuing on these diets, the females were time-mated to unexposed C57BL/6J males and once pregnant designated as the "F0". The females were allowed to deliver and raise their offspring (F1) until weaning. At postnatal day (PND) 21, all F1 mice were weaned on to the control diet, so the exposure to BPA was limited to gestation and lactation only. All subsequent generations were maintained on the control diet as well. A subset of F1 females were time-mated to unexposed C57BL/6J males and allowed to deliver and raise their offspring (F2) until weaning. The only time when F2 offspring were exposed to BPA was as ovulum of the F1 females during gestation and lactation.

Fig.S2. Flowchart of animal usage from multiple cohorts generated in two different animal care facilities. N are number of litters. 2 to 5 male offspring and 2 to 5 female offspring per litter. KIC: α-keto isocaproate.

Fig.S3. Representative photos of H&E stained pancreatic sections from F1 and F2 males. (A-C) F1 males, and (D-F) F2 males.

Fig. S4. Alpha and Delta mass adjusted for body weight in F1 and F2 males: (A-B) F1 males, and **(C-D)** F2 males. Data are individual litter data (one animal per litter) with mean superimposed. Data were analyzed using Dunnett's test performed on log-transformed data, where required (F1 alpha and delta, F2 alpha and delta); P values are relative to Control.

Fig. S5. Islet cytosolic calcium levels in (A) F1 males, and **(B)** F2 males. Data are expressed as mean values. G: glucose; KIC: α-ketoisocaproate.

Fig.S6. Percent DNA methylation at *H19/lgf2* ICR (*H19* 1524JH) and *Esr1* Exon C in islets: (A) F1 and (B) F2 adult male offspring. Data are percent CpG methylation values from individual litter (islets pooled from 2-3 males per litter) and presented as mean + SEM. Data were analyzed using Dunnett's test. For %methylation at all CpG cites as well as mean methylation across all sites, p values were >0.1 relative to Control.

Table S1. Custom designed TaqMan Primers and Probes Assays for qPCR.

	Gene			Amplicon Length	
Serial #	Name	Species	Assay ID	(bp)	Assay Design
1	Pdx1	Species: Mouse	Mm00435565_m1	74	Probe spans exons
2	lgf1	Species: Mouse	Mm00439560_m1	77	Probe spans exons
3	lgf2	Species: Mouse	Mm00439564_m1	107	Probe spans exons
4	Esr1	Species: Mouse	Mm00433147_m1	99	Probe spans exons
5	Hnf1α	Species: Mouse	Mm00493434_m1	134	Probe spans exons
6	Ucp2	Species: Mouse	Mm00627599_m1	137	Probe spans exons
7	Ogdh	Species: Mouse	Mm00803119_m1	90	Probe spans exons
8	Kcnj11	Species: Mouse	Mm00440050_s1	129	Both primers and probe map within a single exon
9	Abcc8	Species: Mouse	Mm00803458_g1	106	Probe spans exons
10	Snap25	Species: Mouse	Mm00456922_m1	90	Probe spans exons
11	Beta actin	Species: Mouse	Mm00607939_s1	115	Both primers and probe map within a single exon
12	Cyclopilin A	Species: Mouse	Mm02342430_g1	148	Probe spans exons
13	Rpl19	Species: Mouse	Mm02601633_g1	69	Probe spans exons
14	Hprt	Species: Mouse	Mm01545399_m1	81	Probe spans exons

Genes	Primer Type	Primer Sequence	CpG sites
	PCR forward primer	5'- TGAGGTTAGATTAGGTTGTAAGTT-3'	
<i>lgf2</i> DMR1	PCR reverse-biotinylated primer	5'- /5Biosg/CTTCCCTACCCCTTAAACC -3'	
	Pyrosequencing primer S1	5'- GGATTTTGTTAGGTAGGA -3'	1 and 2
H19/lgf2 ICR	PCR forward primer	5'- GGGTAGGATATATGTATTTTTAGGTTG -3'	
	PCR reverse-biotinylated primer	5'- /5Biosg/CTCATAAAACCCATAACTATAAAATCAT -3'	
	Pyrosequencing primer	5'- TGTAAAGATTAGGGTTGT- 3'	1, 2, 3, 4, 5, and 7
	PCR forward primer	5'- TGGGTTATTTGTGTTTTGTAGGATAG -3'	
Esr1	PCR reverse-biotinylated primer	5'- /5Biosg/CTTAAATCTAATACAACAAAACCATTC -3'	
Exon A	Pyrosequencing primer F1	5'- GGTAGGGTTAGGGTTAGTAT -3'	A1-A4
	Pyrosequencing primer F2	5'- AGGTTTTATTTTTTTTTTTAGGTGG -3'	A5-A11
<i>Esr1</i> Exon C	PCR forward primer	5'- TATGGGTTTGTAGAAGTTAAGGGTTGAG -3'	
	PCR reverse-biotinylated primer	5'- /5Biosg/CCAAATACCCTACCTACTAACTACTTCC -3'	
	Pyrosequencing primer F1	5'- GAAGTTAAGGGTTGAGATA -3'	C1-C5

Table S3. Changes in cytokine/chemokine levels on a LUMINEX assay in pancreatic lysates of F1 adult male offspring. N=3 to 4 litters per group. Data are normalized to total protein concentration as pg of cytokine or chemokine per μ g of total protein, and presented as mean ± SEM. Decimal places are represented by E notation, where E represents base 10, followed by the power of 10 (example, E-2 = 10^{-2} , E-3 = 10^{-3} , E-4 = 10^{-4}). P values are from Dunnett's test performed on log-transformed data, where required (g-csf, IL9, IL15, and RANTES). Control: 7% corn oil diet; LowerB: Lower BPA (10 µg/kg/day); UpperB: Upper BPA (10 mg/kg/day).

Cytokine/			Control	LowerB	UpperB	LowerB	UpperB
Chemokine	Produced By	Respond To	pg/µg	pg/µg	pg/µg	p value	p value
	Neutrophil	growth	1E-3	1E-3	2E-3		
G-CSF			±4E-4	±5E-3	±5E-4	0.99	0.04
	Monocyte	growth	2E-3	2E-3	3E-3		
GM-CSF			±5E-4	±6E-4	±6E-4	0.96	0.49
	Macrophages,						
		cells with IL1a	6E-3	3E-3	5E-3		
IL1a	Neutrophils, Epithelial and Endothelial cells	receptor	±2E-3	±2E-3	±2E-3	0.32	0.86
11.2		Immature	13E-4	13E-4	12E-4	0 99	0.94
162		T cells 🖉 Treg	±2E-4	±3E-4	±3E-4	0.99	0.94
IL9	CD4 + cells	Cells that have IL9R, ≫co-stimulatory molecules of Macrophages,	6E-3 ±4E-3	7E-3 ±6E-3	18E-3 ± 5E-3	0.94	0.07
		みB-cells, ≫NFкВ					
IL10	mostly by Monocytes, less commonly by T _h 2,	≫T _h 1, ⊁ MHCII	6E-3 ±2E-3	11E-3 ±2E-3	5E-3 ±2E-3	0.29	0.78
		T _h 1, Natural killer	1E-3	2E-3	5E-3		
IL12p40	activated Macrophages	cells	±1E-3	±2E-3	±2E-3	0.89	0.25
		Same cells that	2E-3	1E-3	1E-3		
IL13	T _h 2	respond to IL4	±5E-4	±6E-4	±6E-4	0.34	0.15
II 15	Macrophages	³ -T cell growth	2E-3	3E-3	5E-3	0.88	0.12
1213	Macrophages		±7E-4	±8E-4	±8E-4	0.00	0.12
	Macrophages	attracts					
IP10	Endothelial cells, Fibroblast	Macrophages, T-cells, Natural killer cells, Dendritic cells,	3E-3 ±1E-3	2E-3 ±1E-3	4E-3 ±1E-3	0.53	0.81
		Neutrophils, Stem	5E-3	4E-3	7E-3		
MIP2	Macrophages	cells	±1E-3	±1E-3	±1E-3	0.99	0.21
	+	Chemoattractant, T cells, Eosinophils,	5E-4	3E-4	4E-4		
RANTES	CD8 cells	Basophils, Natural killer cell proliferation	±2E-4	±2E-4	±2E-4	0.75	0.99

Table S4. Changes in cytokine/chemokine levels on a LUMINEX assay in pancreatic lysates of F2 adult male offspring. N=3 to 4 litters per group. Data are normalized to total protein concentration as pg of cytokine or chemokine per μ g of total protein, and presented as mean (SEM). Decimal places are represented by E notation, where E represents base 10, followed by the power of 10 (example, E-2 = 10^{-2} , E-3 = 10^{-3} , E-4 = 10^{-4}). p values are from Dunnett's test performed on log-transformed data, where required (IL2, IL9, IL10, IL12p40, IL15, IP10, and MIP2). Control: 7% corn oil diet; LowerB: Lower BPA (10 μ g/kg/day); UpperB: Upper BPA (10 mg/kg/day).

Cytokine/			Control	LowerB	UpperB	LowerB	UpperB
Chemokine	Produced By	Respond To	pg/µg	pg/µg	pg/µg	p value	p value
	Neutrophil growth		1E-3	2E-3	2E-3	-	
G-CSF			±5E-4	±5E-4	±5E-4	0.36	0.19
	Monocyte	e growth	1E-3	2E-3	2E-3		
GM-CSF			±6E-4	±6E-4	±6E-4	0.59	0.74
	Macrophages,						
II 1a	Neutrophils Enithelial	cells with IL1a	1E-3	1E-3	25E-3	0.99	0.75
ι∟ια	and Endothelial cells	receptor	±2E-2	±2E-2	±1E-2	0.00	0.70
ш о		Immature	1E-3	1E-3	3E-3	0.96	0.00
ILZ		T cells 🖉 Treg	±2E-3	±2E-3	±2E-3	0.00	0.00
IL9	$CD4^{+}$ cells	Cells that have IL9R, ≻co-stimulatory molecules of Macrophages, &B-cells, ≻NFκB	23E-3 ±5E-2	78E-3 ±5E-2	92E-3 ±5E-2	0.79	0.95
	mostly by Monocytes,						
IL10	less commonly by T _h 2,	≫T _h 1, ≫ MHCII	13E-3 ±1E-2	7E-3 ±1E-2	17E-3 ±1E-2	0.85	0.72
	Maor and Tieg cono		2E-3	2E-3	4E-3		
IL12p40	activated Macrophages	T _h 1, Natural killer cells	±2E-3	±2E-3	±1E-3	0.73	0.55
		Same cells that	1E-3	1E-3	1E-3		
IL13	T _h 2	respond to IL4	±3E-4	±3E-4	±3E-4	0.39	0.99
II 15	Macronhages	S-T cell growth	3E-3	7E-3	11E-3	0.51	0.50
1213	Macrophages		±5E-3	±5E-3	±4E-3	0.51	0.50
IP10	Macrophages Endothelial cells, Fibroblast	attracts Macrophages, T-cells, Natural killer cells, Dendritic cells,	3E-3 ±3E-3	3E-3 ±3E-3	6E-3 ±3E-3	0.91	0.83
MIP2	Macrophages	Neutrophils, Stem	1É-2	14E-3	24E-3	0.75	0.48
10111 2	Macrophages	cells	±1E-2	±1E-2	±1E-2	0.10	0.70
RANTES	CD8 cells	Chemoattractant, T cells, Eosinophils, Basophils, Natural killer cell proliferation	1E-3 ±2E-4	1E-3 ±2E-4	1E-4 ±2E-4	0.35	0. 24

!