
Reviewer #1 (Remarks to the Author):  

 

<i>Summary</i>  

This was an excellent study on studying the impact of PTVs on the phenotypes that are obtainable 

from the UK biobank dataset and one that is very timely and relevant. After filtering and QC, they 

identified 18,228 PTVs that were segregating in 337,208 people, and obtained phenotypes based 

on the health registries and self-reported status. They then performed GWAS, PheWAS and 

collapsed association and additivity analysis on their candidate hits.  

 

<i>Phenotyping</i>  

In Figure S2, they show the numbers of cases reported for various cancers that they identified 

from self-reported status and those obtained from their curation of health records. This is not a 

criticism of the authors choice to include both sources of phenotypes, but it would be a useful 

addition to the paper to show the overlap between the health records and self-reported status on 

the same patients to understand the confidence we have in the phenotyping status.  

 

<i>GWAS procedure</i>  

The major comment I have on their paper is on their use of three different thresholds for MAF of 

the PTVs and their separate multiple hypothesis testing correction by FDR-BY. This is unusual in 

the field (see Sham & Purcell, Nature Reviews Genetics, 2014) at least in settings of case-control 

designs, and perhaps quite lenient and I would suggest that the authors report standard 

Bonferroni corrected statistics in their results section. I understand that there are differences in 

power at different MAF thresholds, as reported in Figure S3, but perhaps the authors could justify 

their choice of using this procedure in this setup further.  

 

Of particular note is their use of family history information to confirm some of their results and 

shows that this is an effective approach at getting confidence with variants that are extremely 

rare.  

 

<i>PheWAS analysis</i>  

One of the strongest parts of the paper should have been their PheWAS analysis. As their UK 

biobank dataset was not initially conceived as a targeted, case control dataset for a particular 

phenotype, one advantage is to be able to screen across a large number of phenotypes for large 

effect variants (i.e. PTVs) that might have pleiotropic effects. I was a bit disappointed to see that 

they had restricted this analysis to a set of candidates that were first identified using their GWAS 

procedure. PTVs have been shown to be associated in many previous GWAS studies in a host of 

other diseases, and there has already been strong work in the area of neuropsychiatric-disorders 

by the senior authors of this study. It would be relevant here, for them to conduct their analysis 

on a larger gene set or for genes that are already known to affect phenotypes for which they had a 

large enough number of cases observed in their dataset and include all these associations as part 

of their results.  

 

<i>Homozygote carriers</i>  

Can the authors confirm if in their additivity analysis, they included compound heterozygotes, or if 

their assumption was genes with two or more PTVs, occurred on different haplotypes? Perhaps 

their results might be different if they looked at strict homozygotes in which a PTV in the same 

position is in homozyogote stat. Further, in cases where no homozygote carriers were available, 

probably because these mutations were rare enough, that not one could be identified on average 

in a dataset of >300,000 individuals, if homozygote carriers can be observed either in the 

ExAC/gnomAD dataset, or the recently published studies on Pakistani subjects from 

consanguineous families, (Salaheen et al, Nature 2017, Narasimhan et al. Science 2016). As 

protective PTVs make extremely promising drug targets, outside of just additivity analysis, these 

would also serve as a way to check on safety of knocking out these genes in humans.  

 

 



 

Reviewer #2 (Remarks to the Author):  

 

I like this paper. I like the further missense variant analysis of genes with associated PTVs. I like 

the phewas analysis of selected variants.  

 

The paper is very well written and the analysis is high quality.  

 

I have minor comments only, however I would expect these to be addressed or reasonably 

rebutted:  

 

- page 1 "standing germline PTVs" - peculiar use of "standing" to this reviewer. what does it 

mean? suggest revise  

 

- "predicted PTVs". Please can the accuracy of "predicted" be discussed? Perhaps especially for the 

splice variants.  

 

- In the Quality Control methods, state a bit more clearly how closely related were removed.  

 

- "hospital in-patient record data" I think it is UK NHS Hospital Episode Statistics that UK Biobank 

currently has. Which is not quite the same. Suggest revise.  

 

- "identified 74 significant associations between PTVs and medical phenotype (BY-adjusted p < 

0.05,". This might be all fine (I am not familiar with the BY method), but loses this reviewer and 

possibly other readers a bit. Can you add something like how many associations would have been 

expected to be observed by chance (maybe some phenotype label permutations can be done to 

assess this?).  

 

- Add a line to explain please why the MHC excluded. I am sure this is a good thing to have done, 

please just explain for the reader.  

 

- "genes in or near the MHC" please show how "near" is defined in the main text.  

 

- the celiac risk allele is probably DQ2 (B8 in strong LD).  

 

- I also like the Phewas of selected genes/variants. However I am unclear from the main text how 

multiple testing was controlled for.  

 

- Might be worth referencing the Narasimhan Science 2016 paper which had a drug discovery 

analysis of human knockouts.  

 

- some knockout papers use instead the term "loss of function". Perhaps that could be stated 

somewhere so readers more familiar with that term realise both PTV and "loss of function" mean 

the same thing. It is fine if the authors prefer to use the term PTV.  

 

- There is an issue in UK Biobank phenotypes in that hospital data and self-reported data do not 

always perfectly overlap. For example myocardial infarction. I think the authors just took any 

report of a phenotype in either dataset and merged, but perhaps this could be explained a bit 

more clearly.  
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We would like to thank the reviewers for their thoughtful comments on our manuscript. 
We have made changes in the manuscript to address these points that we believe have 
both strengthened our results and the readability of the manuscript. Please see below for 
our response (in bold) to each comment (in italics). We have quoted changes in the 
manuscript below and bolded the changes in the manuscript as well. 
 
Reviewer #1 (Remarks to the Author): 
 
Summary 
This was an excellent study on studying the impact of PTVs on the phenotypes that are 
obtainable from the UK biobank dataset and one that is very timely and relevant. After filtering 
and QC, they identified 18,228 PTVs that were segregating in 337,208 people, and obtained 
phenotypes based on the health registries and self-reported status. They then performed 
GWAS, PheWAS and collapsed association and additivity analysis on their candidate hits. 
 
Phenotyping 
In Figure S2, they show the numbers of cases reported for various cancers that they identified 
from self-reported status and those obtained from their curation of health records. This is not a 
criticism of the authors choice to include both sources of phenotypes, but it would be a useful 
addition to the paper to show the overlap between the health records and self-reported status 
on the same patients to understand the confidence we have in the phenotyping status. 
 
We have added the overlap between the two phenotyping methods to Figures S2 and S6. 
These figures now show the number of cases obtained only from hospital records, only 
from questionnaire data, or from both sources. 
 
GWAS procedure 
The major comment I have on their paper is on their use of three different thresholds for MAF of 
the PTVs and their separate multiple hypothesis testing correction by FDR-BY. This is unusual 
in the field (see Sham & Purcell, Nature Reviews Genetics, 2014) at least in settings of case-
control designs, and perhaps quite lenient and I would suggest that the authors report standard 
Bonferroni corrected statistics in their results section. I understand that there are differences in 
power at different MAF thresholds, as reported in Figure S3, but perhaps the authors could 
justify their choice of using this procedure in this setup further. 
 
We have added Bonferroni-corrected statistics to the results in Table S3 where we also 
used the BY method. We have noted this in the Methods: “We also applied the Bonferroni 
correction for each MAF bin and for all tests for reference(Table S3).”  
 
We chose to stratify the PTVs by MAF due to the expected power differences for variants 
at different MAF as shown in Figure S3. We used the BY method for false discovery rate 
control because it is designed to be robust to arbitrary correlation between the statistical 
tests. Since we are considering many phenotypes that have correlated genetic effects as 
well as testing multiple PTVs in some genes, we expect correlation between our 
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statistical tests. Given that we are (1), testing a subset of genetic variants that are likely 
enriched for associations, (2) looking across multiple correlated traits, and (3) testing 
mostly rare variants, we think that stratifying the PTVs and applying the BY method 
offers the best balance between controlling FDR and identifying new associations. 
Previous work has argued that the Bonferroni correction is likely too stringent for 
phenome-wide studies such as this (10.1093/bioinformatics/btq126). 
 
Of particular note is their use of family history information to confirm some of their results and 
shows that this is an effective approach at getting confidence with variants that are extremely 
rare. 
 
PheWAS analysis 
One of the strongest parts of the paper should have been their PheWAS analysis. As their UK 
biobank dataset was not initially conceived as a targeted, case control dataset for a particular 
phenotype, one advantage is to be able to screen across a large number of phenotypes for 
large effect variants (i.e. PTVs) that might have pleiotropic effects. I was a bit disappointed to 
see that they had restricted this analysis to a set of candidates that were first identified using 
their GWAS procedure. PTVs have been shown to be associated in many previous GWAS 
studies in a host of other diseases, and there has already been strong work in the area of 
neuropsychiatric-disorders by the senior authors of this study. It would be relevant here, for 
them to conduct their analysis on a larger gene set or for genes that are already known to affect 
phenotypes for which they had a large enough number of cases observed in their dataset and 
include all these associations as part of their results. 
 
We have included all PTV associations with p < 0.01 in Table S3 and added two gene set 
analyses to the manuscript. We have plotted pheWAS results for genes in different genes 
sets from the MacArthur lab gene lists (https://github.com/macarthur-lab/gene_lists), 
Fuchsberger et al. 2016, and Purcell et al. 2014 in Figures S5. We also performed a 
burden test for PTVs in the genes in each gene set versus 206 phenotypes with more 
than 2,000 cases. We report these results in Table S3. We describe these results in the 
manuscript as follows: 
 

We extended the pheWAS analysis to 47 sets of genes including gene sets of 
importance for diabetes and schizophrenia (Purcell 2014, Fuchsberger 2016) as 
well as more general gene sets such as genes with associations in ClinVar and 
genes near GWAS peaks (Methods) (Landrum 2014, Welter 2014). We found a 
number of associations in important gene sets that were near significance in this 
study, particularly in genes near GWAS peaks (Table S3, Figure S5).  We also 
performed PTV burden tests by counting the number of PTVs present in each 
subject for  each gene set and performing association analyses with the 135 
phenotypes with more than 2,000 cases. We found seven associations between 
gene sets and phenotypes (BY-adjusted p<0.05, Table S3). Five of the seven 
associations were between cancer phenotypes and gene sets that included 
BRCA2 which had a large number of PTVs on the genotyping array. These results 
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indicate that exome sequencing may be needed to identify associations between 
PTV burden across multiple genes association and disease. 

 
We describe the methodology in the Methods: 
 

We also report pheWAS results  for gene sets from https://github.com/macarthur-
lab/gene_lists and (Fuchsberger 2016, Purcell 2014). We plotted the p-values and 
odds ratios for associations with p<0.01 between PTVs in the genes from each 
gene set and 135 traits with more than 2,000 cases in Figure S5. We also 
performed a burden test by counting the number of PTVs present in each subject 
in each gene in a gene set to create a polygenic score. If a subject had more than 
two PTVs present in a gene, we only counted two PTVs for that gene. We 
regressed the polygenic score for each gene set against disease status for 135 
phenotypes with more than 2,000 cases using logistic regression in R. We 
adjusted the p-values for each gene set using the BY method. The significant 
associations are reported in Table S3. Note that due to the rarity of PTVs, some 
gene sets with a small number of genes had little or no variation in the polygenic 
score because we  observed few polymorphic PTVs in those gene sets. We have 
included all PTV associations with nominal p<0.01 in Table S3 ("all_phewas" tab). 

 
Homozygote carriers 
Can the authors confirm if in their additivity analysis, they included compound heterozygotes, or 
if their assumption was genes with two or more PTVs, occurred on different haplotypes? 
Perhaps their results might be different if they looked at strict homozygotes in which a PTV in 
the same position is in homozyogote stat. Further, in cases where no homozygote carriers were 
available, probably because these mutations were rare enough, that not one could be identified 
on average in a dataset of >300,000 individuals, if homozygote carriers can be observed either 
in the ExAC/gnomAD dataset, or the recently published studies on Pakistani subjects from 
consanguineous families, (Salaheen et al, Nature 2017, Narasimhan et al. Science 2016). As 
protective PTVs make extremely promising drug targets, outside of just additivity analysis, these 
would also serve as a way to check on safety of knocking out these genes in humans. 
 
For the additivity analysis, we did assume that an individual who was heterozygous for 
two different PTVs in the same gene was a homozygous KO for that gene. Since most 
PTVs are rare, PTVs in the same gene are not likely to be on the same haplotype. 
Nonetheless, exceptions do exist and we did not explicitly handle them separately. To 
make it clear to the readers we have added a sentence in the Methods: “If an individual 
was heterozygote for two different PTVs in the same gene, we considered the individual 
as a homozygous KO.” We observe 1,173 genes with at least one KO knockout when 
counting compound heterozygotes as KOs. This number drops to 1,044 when we do not 
count compound heterozygotes. For the genes reported in our additivity analysis, the 
number of homozygote KOs is mostly unaffected by not counting compound 
heterozygotes. We have added a column “num_ko_no_compound_hets” to Table S6 that 
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shows the number of homozygous KOs observed for the genes with non-additive 
associations when we do not include compound heterozygotes. 
 
We have added Table S1 that compares the genes with observed homozygous loss-of-
function variants in our study, Salaheen et al. 2017, Narasimhan et al. 2017, ExAC, and 
Icelanders from Sulem et al. 2015. In total, 3,934 genes have at least one observed 
homozygous loss-of-function carrier in these studies. We reference these results in the 
Results section: “We observed 291 genes that had at least one observed homozygous 
PTV carrier in our study but had no observed homozygous loss-of-function carriers in 
previous studies (Table S1).” 
 
Reviewer #2 (Remarks to the Author): 
 
I like this paper. I like the further missense variant analysis of genes with associated PTVs. I like 
the phewas analysis of selected variants. 
 
The paper is very well written and the analysis is high quality. 
 
I have minor comments only, however I would expect these to be addressed or reasonably 
rebutted: 
 
- page 1 "standing germline PTVs" - peculiar use of "standing" to this reviewer. what does it 
mean? suggest revise 
 
We have removed the word “standing” as it is not necessary. The sentence now reads: 
“Although tens of thousands of  germline PTVs have been identified (Rivas 2015, Lek 
2016, Saleheen 2015, Narasimhan 2016, Sulem 2015), their medical relevance across a 
broad range of phenotypes has not been characterized.” The point of the sentence is that 
many segregating PTVs have been identified in previous studies though there medical 
impact has not been studied broadly. 
 
- "predicted PTVs". Please can the accuracy of "predicted" be discussed? Perhaps especially 
for the splice variants. 
 
The methods for predicting PTVs are still in flux and in large part have not been 
systematically evaluated due to the difficulty of actually demonstrating loss-of-function 
in vivo. Narasimhan, Xue, and Tyler-Smith 2016 (10.1016/j.molmed.2016.02.006) discuss 
the difficulties with prediction of PTVs. We’ve added the following on the prediction of 
PTVs to the first paragraph of the Results section: “While  methods to predict PTVs, also 
referred to as loss-of-function (LoF)  or knockouts variants (Narasimhan 2016, MacArthur 
2010), are still being improved and validated (Narasimhan 2016a), previous work has 
found 70% of nonsense PTVs  predicted to cause NMD have evidence for decreased 
expression of the corresponding transcript and 79% of splice-site  variants disrupt 
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splicing  (Rivas 2015), indicating that predicted PTVs are likely to affect gene expression 
or function.” 
 
- In the Quality Control methods, state a bit more clearly how closely related were removed. 
 
We have added information to the methods that states the exact file from the UK Biobank 
and the specific columns that we used to filter out related individuals:  
 

To minimize the impact of cofounders and unreliable observations, we used a 
subset of individuals that satisfied all of the following criteria: (1) self-reported 
white British ancestry, (2) used to compute principal components, (3) not marked 
as outliers for heterozygosity and missing rates, (4) do not show putative sex 
chromosome aneuploidy, and (5)  have at most 10 putative third-degree relatives. 
These criteria are reported by the UK Biobank in the file "ukb_sqc_v2.txt" in the 
following columns respectively: (1) "in_white_British_ancestry_subset," (2) 
"used_in_pca_calculation," (3) "het_missing_outliers," (4) 
"putative_sex_chromosome_aneuploidy", and (5) "excess_relatives." We removed 
151,169 individuals that did not meet these criteria. 

 
- "hospital in-patient record data" I think it is UK NHS Hospital Episode Statistics that UK 
Biobank currently has. Which is not quite the same. Suggest revise. 
 
We have updated the text to read “hospital in-patient data (National Health Service 
Hospital Episode Statistics)” which is consistent with the description from the UK 
Biobank (http://biobank.ctsu.ox.ac.uk/showcase/docs/HospitalEpisodeStatistics.pdf).  
 
- "identified 74 significant associations between PTVs and medical phenotype (BY-adjusted p < 
0.05,". This might be all fine (I am not familiar with the BY method), but loses this reviewer and 
possibly other readers a bit. Can you add something like how many associations would have 
been expected to be observed by chance (maybe some phenotype label permutations can be 
done to assess this?). 
 
The BY method is a false discovery rate approach similar to the Benjamini-Hochberg 
(BH) procedure. Setting the BY cutoff at 0.05 means that we expect 5% of our significant 
results to be false positives. Since we identified 74 significant associations, we would 
expect ~4 false positive associations. We have noted this in the Methods: “We 
considered associations with BY-corrected p-values less than 0.05 as significant which 
controls the false discovery rate at 5%. Since we identified 74 significant associations in 
our main analysis, we would expect ~4 false positive associations.” 
 
- Add a line to explain please why the MHC excluded. I am sure this is a good thing to have 
done, please just explain for the reader. 
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We’ve added a line in the results explaining why we focus on variants outside of the 
MHC: “Since PTVs in or near the MHC likely tag HLA risk alleles, we focused on 
associations for PTVs outside of the MHC.” 
 
- "genes in or near the MHC" please show how "near" is defined in the main text. 
 
We’ve added the MHC definition to the main text: “Among the 74 PTV-phenotype 
associations we identified, 27 involved PTVs in genes outside of the MHC (chr6-
25477797-36448354).” 
 
We’ve also added information on the MHC definition to the Methods: “We defined the 
MHC region as chr6:25477797-36448354 according to the Genome Reference Consortium 
definition (https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37). We 
considered any PTV in this region or within 3,000,000 base pairs of this region (to avoid 
including PTVs in LD with variants in the MHC) as in or near the MHC for all analyses.” 
 
- the celiac risk allele is probably DQ2 (B8 in strong LD). 
 
We have updated the sentence that mentions the Celiac risk allele to read “However, 
conditioning upon the presence of HLA-B8, which is on the same haplotype as the HLA-
DQ2 Celiac risk allele, reduced the p-value of the association between rs72841509 and 
Celiac disease to p=0.92 (Tjon 2010, Price 1999).” 
 
For the purposes of this study, we were interested in whether conditioning on any HLA 
allele would remove the association between a particular PTV and phenotype. Therefore, 
for each PTV, we report which HLA allele resulted in the largest p-value for that PTV 
when conditioned on the HLA allele. This demonstrates that at least one HLA allele 
explains the PTV association. However, this HLA allele may not actually be the HLA allele 
associated with the trait due to LD or other factors. We have noted this in the “HLA 
Conditional Analysis” section in the Methods: “Note that this HLA allele is not 
necessarily the associated with the reported trait since LD exists between different HLA 
alleles.” 
 
- I also like the Phewas of selected genes/variants. However I am unclear from the main text 
how multiple testing was controlled for. 
 
We did not explicitly control for multiple testing in the pheWAS section since we are only 
investigating associations for a relatively small number of PTVs. The motivation for the 
pheWAS section is that given a strong association between a PTV and a particular 
phenotype, we are interested in other phenotypes the PTV may be associated with. The 
initial strong association provides strong prior evidence that the PTV may be functional. 
Therefore, we report associations with a nominal p-value less than 0.01 for that PTV. This 
gives readers the opportunity to evaluate potential associations that we may not be 
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powered to detect here (due to number of cases for instance) in the context of other data 
or results.  
 
- Might be worth referencing the Narasimhan Science 2016 paper which had a drug discovery 
analysis of human knockouts.  
 
We have added a reference to this paper at the beginning of the results section: 
“Although tens of thousands of  germline PTVs have been identified (Rivas 2015, Lek 
2016, Saleheen 2015, Narasimhan 2016, Sulem 2015), their medical relevance across a 
broad range of phenotypes has not been characterized.” We have also included the 
results from this paper in our comparison of genes with observed homozygous loss-of-
function in Table S1. 
 
- some knockout papers use instead the term "loss of function". Perhaps that could be stated 
somewhere so readers more familiar with that term realise both PTV and "loss of function" 
mean the same thing. It is fine if the authors prefer to use the term PTV. 
 
We’ve added the following to the first paragraph of the Results section to indicate that 
others use the terms “loss of function” or “knockout” where we use PTV: “While  
methods to predict PTVs, also referred to as loss-of-function (LoF) or knockouts variants 
(Narasimhan 2016, MacArthur 2010), are still being improved and validated (Narasimhan 
2016a), previous work has found 70% of nonsense PTVs  predicted to cause NMD have 
evidence for decreased expression of the corresponding transcript and 79% of splice-
site variants disrupt splicing  (Rivas 2015), indicating that predicted PTVs are likely to 
affect gene expression or function.” 
 
- There is an issue in UK Biobank phenotypes in that hospital data and self-reported data do not 
always perfectly overlap. For example myocardial infarction. I think the authors just took any 
report of a phenotype in either dataset and merged, but perhaps this could be explained a bit 
more clearly. 
 
We have added the overlap between the diagnoses from hospital data and self-reported 
data to Figures S2 and S6. We describe how the phenotypes were defined in sections 
“Cancer Phenotype Definitions” and “High Confidence Phenotype Definitions” in the 
methods. We’ve added the following sentences at the front of those sections to clarify 
our overall approach: “We combined cancer diagnoses from the UK Cancer Register with 
self-reported diagnoses from the UK Biobank questionnaire to define cases and controls 
for cancer GWAS.” and “We combined disease diagnoses from the UK National Health 
Service Hospital Episode Statistics with self-reported diagnoses from the UK Biobank 
questionnaire to define cases and controls for non-cancer phenotypes.” 



Reviewer #1 (Remarks to the Author):  

 

Phenotyping  

 

The authors have provided a clear description of the overlap of the self-reported and NHS records,  

 

GWAS procedure  

 

I thank the authors for providing global and maf stratified bonferroni corrected p-values. I agree 

that there is some correlation between genes and phenotypes and the signals might be correlated 

but it was good to see the explicit global bonferroni corrected statistics. At this level of 

significance, overstrict or otherwise, it seems that we lose some of the associations. However, 

their approach is vindicated by their experimental follow up of the gene NOL3 which initially 

appears to no longer be significant at a global bonferroni p-value but as shown in the experiment 

has clear biological significance.  

 

PheWAS  

 

The authors have gone over and beyond what I and the other reviewer asked for here, performing 

additional burden tests for each gene set. This new analysis was clear and the methodology is 

sound. I am in agreement with their choice of obtaining these sets from the Macarthur lab gene 

lists page. I also agree with their conclusion that we need exome sequence data to improve power 

using this framework - something I did not appreciate in my first review.  

 

Homozygous carriers  

 

I thank the authors for clarifying their choice of an additional column indicating compound hets. I 

agree that this will make little difference on their additivity analysis. Their reporting of newly 

discovered homozygous PTVs is also useful.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

line 126 "it is critical to evaluate whether the associated variant is causal in the context of 

neighboring variants":  

I completely agree. However I am not sure the authors have systematically checked the the causal 

variants are really the PTV, rather e.g. a non-coding variant close by in strong LD. This data is 

available for UK Biobank and some sort of conditional analysis (as the authors seem to present for 

some genes) should be straightforward. At least some comment needs to be made about this.  

 

no other comments  

 



We would like to thank the reviewers for their thoughtful comments on our manuscript. 
We have made changes in the manuscript to address the last point by the second 
reviewer. We have quoted changes in the manuscript below and bolded the changes in 
the manuscript as well. 
 
Reviewer #1 (Remarks to the Author): 
 
Phenotyping 
 
The authors have provided a clear description of the overlap of the self-reported and NHS 
records, 
 
GWAS procedure 
 
I thank the authors for providing global and maf stratified bonferroni corrected p-values. I agree 
that there is some correlation between genes and phenotypes and the signals might be 
correlated but it was good to see the explicit global bonferroni corrected statistics. At this level of 
significance, overstrict or otherwise, it seems that we lose some of the associations. However, 
their approach is vindicated by their experimental follow up of the gene NOL3 which initially 
appears to no longer be significant at a global bonferroni p-value but as shown in the 
experiment has clear biological significance.  
 
PheWAS 
 
The authors have gone over and beyond what I and the other reviewer asked for here, 
performing additional burden tests for each gene set. This new analysis was clear and the 
methodology is sound. I am in agreement with their choice of obtaining these sets from the 
Macarthur lab gene lists page. I also agree with their conclusion that we need exome sequence 
data to improve power using this framework - something I did not appreciate in my first review. 
 
Homozygous carriers 
 
I thank the authors for clarifying their choice of an additional column indicating compound hets. I 
agree that this will make little difference on their additivity analysis. Their reporting of newly 
discovered homozygous PTVs is also useful. 
 
We are glad that we were able to address the reviewer’s comments. 
 
Reviewer #2 (Remarks to the Author): 
 
line 126 "it is critical to evaluate whether the associated variant is causal in the context of 
neighboring variants": 
I completely agree. However I am not sure the authors have systematically checked the the 
causal variants are really the PTV, rather e.g. a non-coding variant close by in strong LD. This 



data is available for UK Biobank and some sort of conditional analysis (as the authors seem to 
present for some genes) should be straightforward. At least some comment needs to be made 
about this. 
 
no other comments 
 
We have performed conditional analyses for the 27 significant PTV-phenotype 
associations for PTVs outside of the MHC. We identified all genotyped variants within 
10kb of the PTV and used the genotype of those nearby variants as a covariate in the 
logistic regression. We found that for associations for PTVs with MAF < 1%, only one 
PTV had a nearby variant that could possibly account for the observed association. As 
expected for common variants, we found that several of the common PTVs (MAF > 1%) 
with associations had nearby variants that were in LD and could potentially explain the 
observed associations. We have added Figure S4 which shows the LD between the PTV 
and nearby variants. We have discussed these results in the text and cited functional 
studies that investigate the impact of the PTVs where appropriate: 
 

We performed conditional analyses for the remaining 27 associations outside of 
the MHC by identifying genotyped variants within 10kb of the associated PTV and 
using the genotypes of the nearby variants as covariates for logistic regression. 
For PTVs with MAF less than 1%, we found that only the association between a 
PTV in HEATR6 and retinal detachment was explained by a nearby variant 
rs3744375 (Table S3). Six of the common (MAF > 1%) PTVs with associations were 
in high linkage disequilibrium with other nearby common variants that may 
explain the observed associations (Table S3, Figure S4), though the PTVs remain 
strong functional candidate for these associations. For instance, the gain-of-
function PTV rs328 in LPL (MAF=10.1%) that we find to be associated with 
decreased risk for high cholesterol (p=3.9x10-15, OR=0.90, 95% CI: 0.88-0.93) and 
angina (p=1.3x10-7, OR=0.91, 95% CI: 0.87-0.94) and has been associated with 
coronary artery disease, lipid metabolism, and lower triglyceride levels (Ariza 
2010, Garcia-Rios 2011, Stitziel 2016). Similarly, a recent study found that the PTV 
rs11078928 in GSDMB that offers protection against asthma removes exon 6 from 
the transcript and eliminates the ability of GSDMB to induce cell death 
(Panganiban 2018). The PTV rs2004640 in IRF5 has previously been associated 
with rheumatoid arthritis and has been connected to pathogenesis in the mouse 
model (Jia 2013, Weiss 2015) and the PTV rs601338 in FUT2 determines secretor 
status for ABH blood groups which has been associated with susceptibility to 
infection and several diseases (Franke 2010, Smyth 2011, Parmar 2012, 
Lindesmith 2003, Mottram 2017). The PTV rs2884737 in VKORC1 associated with 
hypertension is in moderate LD (R2≈0.56R^2 \approx 0.56R2≈0.56) with several 
nearby common variants and the PTV rs776746 in CYP3A5 associated with 
hayfever/allergic rhinitis is in near perfect LD with one other nearby variant. 
Additional functional work may be needed to establish whether the PTVs are 
causal for these two associations. 



 
 
 
We describe the conditional analysis in the Methods section as follows: 
 

We performed conditional analyses for each of the 17 PTVs outside of the MHC 
with significant associations. We identified all variants genotyped on the UK 
Biobank array within 10kb of the PTVs that passed filtering and had MAF > 0.01%. 
For each variant within 10kb of a PTV, we ran a logistic regression as described 
above using PLINK but added the genotype of the nearby variant as a covariate. 
For each PTV-phenotype association, we identified which nearby variant resulted 
in the largest p-value for the PTV association. We report this  nearby variant 
(cond_variant), p-value for the PTV association (cond_p), and the MAF of the 
nearby variant (cond_maf) in Table S3. For Figure S4, we plotted  the linkage 
disequilibrium (LD) between the PTV and nearby variants (minimum LD 0.9) for 
PTVs with MAF > 1% and for which conditional analysis identified a nearby variant 
that reduced the p-value by at least one order of magnitude. For the PTV 
rs2884737 in VKORC1, we plotted variants with LD > 0.5. For rs2004640 in IRF5, we 
plotted variants with LD > 0.6. LD values were calculated using the same UK 
Biobank subjects used for the GWAS. 
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The authors have responded well to my comments. No further comments.  

 

Very minor: line 550 says "17 PTVs". I think this should be 27. This could be corrected at proof 
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We would like to thank the reviewers for their useful comments on our manuscript. We 
have updated this typo in the manuscript. 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have responded well to my comments. No further comments. 
 
Very minor: line 550 says "17 PTVs". I think this should be 27. This could be corrected at proof 
stage if manuscript now accepted. 
 
We have changed this from “17 PTVs” to “27 PTVs.” 


