1	Effects of pre-existing orthopoxvirus-specific immunity on the
2	performance of Modified Vaccinia virus Ankara-based influenza
3	vaccines
4	
5	Arwen F Altenburg ¹ , Stella E van Trierum ¹ , Erwin de Bruin ¹ , Dennis de Meulder ¹ ,
6	Carolien E van de Sandt ¹ , Fiona RM van der Klis ² , Ron AM Fouchier ¹ , Marion PG
7	Koopmans ¹ , Guus F Rimmelzwaan ^{1§} , Rory D de Vries ¹ *
8	
9	¹ Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC,
10	Rotterdam, the Netherlands
11	² Centre for Infectious Disease Control (Cib), National Institute of Public Health and the
12	Environment (RIVM), Bilthoven, the Netherlands
13	
14	$^{\$}$ Current address: Research Center for Emerging Infections and Zoonoses (RIZ),
15	University of Veterinary Medicine, Hannover, Germany
16	
17	* Corresponding author: Dr. Rory D de Vries, Department of Viroscience, Erasmus MC,
18	PO Box 2040, 3000 CA Rotterdam, the Netherlands, email address:
19	r.d.devries@erasmusmc.nl

Supplemental Figure 1. VACV-Elstree dose-finding. C57BL/6 mice (n=6 per group) were inoculated with 21 10^4 , 10^5 , 10^6 or 10^7 PFU via tail scarification. (**A**) Mean body weight post-inoculation per group. (**B**) 22 23 Representative images of blister formation at 2, 8 and 14 days post-inoculation (dpi). (C) VACV-Elstree 24 specific antibody responses at 14 dpi were measured by ELISA using VACV-infected HeLa cell lysate. The 25 background signal on mock-infected cell lysate was subtracted. The mean is indicated. (D-E) Percentage of 26 interferon (IFN)- γ producing CD3⁺CD4⁺ (**D**) and CD3⁺CD8⁺ (**E**) splenocytes after stimulation with wild-type 27 (wt)MVA or VACV at 14 dpi. Unstimulated samples were included as negative control and are shown in 28 grey. The mean is indicated. 29

30

Supplemental Figure 2. H1N1pdm09 dose-finding. C57BL/6 mice (n=6 per group) were inoculated with 10³, 10⁴, 10⁵ or 10⁶ TCID₅₀ influenza virus H1N1pdm09. (**A**) Mean body weight post-inoculation per group. (**B**) Survival curves per group. (**C**) HI antibody titers against H1N1pdm09 of individual mice at 14 dpi. The mean is indicated. (**D**) Number of IFN- γ producing CD3⁺CD8⁺ splenocytes of individual mice after stimulation with NP₃₆₆₋₃₇₄ peptide. Unstimulated samples were included as negative control and are shown in grey. The mean is indicated.

38

39

40

41 Supplemental Figure 3. Pre-existing immunity does not impair protective capacity of a single rMVA-

42 H5 vaccination. (A) Body weight for each of the priming groups after challenge with a lethal dose H5N1

43 influenza virus, shown for group 5 (one rMVA-H5 vaccination) and group 7 (one rMVA-H1 and one rMVA-H5

44 vaccination). Mean and standard deviation (SD) are indicated per priming group. (B) Viral load in the lungs

```
45 shown as TCID<sub>50</sub> per gram lung for each individual animal. Mean is indicated per priming group.
```

46

47

49 Supplemental Figure 4. Quantification of MVA neutralization in plaque reduction assay. Two-fold 50 serial dilutions of mouse sera (A) or human sera (B) were incubated with 200 PFU/well wtMVA or rMVA-51 GFP, respectively. After 2h, the serum-virus mixtures were transferred to CEF cells and incubated for 44-52 48h. (A) For the plaque reduction assay using mouse sera, cells were fixated with acetone and methanol in 53 a 1:1 ratio, followed by staining with rabbit anti-VACV and a goat-anti-rabbit HRP conjugate. Substrate was 54 revealed using True Blue. Shown is a representative image of an CTL immunospot scan. (B) For the plaque 55 reduction assay using human sera, cells were fixated with 2% PFA and directly scanned for GFP 56 fluorescence. Shown is a representative image of a Typhoon scan. Neutralization titer was determined as

- 57 the reciprocal of the highest dilution at which the area covered by plaques was below background (defined
- as 50% of the average percentage of the area covered in n=12 wells without any added serum). Wells with
- values below the cutoff are indicated with a green outline. #1-4 = number of mouse or human samples, x =
- 60 no serum added.
- 61