Joanna Bonnici, Anthony Tumber, Akane Kawamura & Christopher J Schofield

Supplementary Material

Figure S1: Time course assays using LC-MS showing the extent of KDM (A) or RDM (B) demethylation. KDM (A) and RDM (B) activities are represented as percentage of the dimethylated peptide demethylated (average \pm standard error of the mean (SEM), n=2 analytical repeats). *Conditions:* 5µM respective peptide, 10µM Fe(II), 100µM sodium L-ascorbate, 10µM 2OG, 1% DMSO. A: 0.25 µM KDM4E, B: 1 µM KDM4E. Due to different specific activities for KDM and RDM activities (A: 13 nmoles/min/mg, B: 0.3 nmoles/min/mg), different endpoints were used; A: 15 minutes, B: 25 minutes.

Joanna Bonnici, Anthony Tumber, Akane Kawamura & Christopher J Schofield

Figure S2. Comparison of the KDM and RDM activities of KDM4E. IC₅₀ determinations were performed using LC-MS (See Materials and Methods). Error bars represent SEM for n = 3 assay repeats, each with n = 3 with respect to analytical repeats, except for Defroxamine and EDTA which had n = 2 assays repeats each with n = 3 analytical repeats. *Conditions:* 5 μ M H3(1-15)K9me2/H3(1-15)R2me2a with 0.25 μ M/1 μ M KDM4E, respectively, 10 μ M (NH4)2Fe(SO4)2, 100 μ M sodium L-ascorbate, 10 μ M 2OG, with t = 15/25 mins, for KDM or RDM activities, respectively). Refer to Table 1 for pIC₅₀ values.

Joanna Bonnici, Anthony Tumber, Akane Kawamura & Christopher J Schofield

Figure S2 (cont). Comparison of the KDM and RDM activities of KDM4E. IC₅₀ determinations were performed using LC-MS (See Materials and Methods). Error bars represent SEM for n = 2 assay repeats each with n=3 analytical repeats. *Conditions:* 5 μ M H3(1-15)K9me2/H3(1-15)R2me2a with 0.25 μ M/1 μ M KDM4E, *respectively,* 10 μ M (NH₄)₂Fe(SO₄)₂, 100 μ M sodium L-ascorbate, 10 μ M 2OG, with t = 15/25 mins, for KDM or RDM activities, respectively). Refer to Table 1 for pIC₅₀ values.

Inhibitors of both the N-methyl lysyl- and arginyl- demethylase activities of the JmjC oxygenases.

Joanna Bonnici, Anthony Tumber, Akane Kawamura & Christopher J Schofield

Substrate	$K_{\rm M}/\mu{ m M}$	$k_{\rm cat} { m x} 10^{-3} / { m s}^{-1}$	$k_{\rm cat}/K_{\rm M}{\rm x}10^{-6}$
20G (1)	14.0 ± 1.8	0.087 ± 0.003	6.2
H3(1-15)K9me3 ⁽²⁾	17.8 ± 4.0	170.7 ± 15.2	9 <i>,</i> 575
H3(1-15)K9me2 ⁽³⁾	32.3 ± 7.4	70.0 ± 4.0	2167.2
H3(1-15)R2me2a (2)	86.9 ± 16.5	9.9 ± 1.0	114
H4(1-15)R3me2a (2)	121.5 ± 10.1	2.1 ± 0.1	17.7

Table S1: Kinetic parameters (K_{Mr} , k_{cat} and k_{cat} / K_{M}) for substrates and 2OG performed using the formaldehyde dehydrogenase based coupled assay measuring formaldehyde production as described in (4). Data show mean ± SEM (n = 3).

References

- 1. Sakurai M, et al. A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol Biosyst. 2010;6:357-364.
- 2. Walport LJ, et al. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun. 2016;7:11974.
- 3. Rose NR. Structural, mechanistic and inhibition studies on the histone lysine demethylases: Thesis (D.Phil.)--University of Oxford.; 2009.
- 4. Rose NR, et al. Inhibitor Scaffolds for 2-Oxoglutarate-Dependent Histore Lysine Demethylases. J Med Chem. 2008;51:7053-7056.