Paolo Mellini, Biagina Marrocco, Diana Borovika, Lucia Polletta, Ilaria Carnevale, Serena Saladini, Giulia Stazi, Clemens Zwergel, Peteris Trapencieris, Elisabetta Ferretti, Marco Tafani,* Sergio Valente,* and Antonello Mai*

Pyrazole-based inhibitors of Enhancer of Zeste Homolog 2 induce apoptosis and autophagy in cancer cells

SUPPLEMENTARY MATERIAL

Content:

Chemistry. Scheme S1. Experimental Section	p. S2
Table S1. Chemical and Physical Data of Compounds 1a-r	p. 54
Table S2. Chemical and Physical Data of the Intermediates 3a-e	p. S8
Table S3. Chemical and Physical Data of the Intermediates 2a-d and 4a-q.	p. S9
Table S4. Chemical and Physical Data of the Intermediates 5a-q.	p. S11
Table S5. Elemental Analyses for Compounds 1a-r.	p. S13
Spectral Data for Compounds 1a-r.	p. S14
Figure S1. Determination of IC ₅₀ values against EZH2/PRC2 for 1n , 1o , 1p , and 1q .	p. S18
Figure S2. SAM competition experiments.	p. S19
Figure S3. Cytotoxicity of 1o and GSK126 in non-cancer cells.	p. S20
Figure S4. SK-N-BE and K562 cells were either left untreated or treated with 0.5, 1 and 5 μ M 1o for 2, 4 and	6 days. Cell morphology
was evaluated by optical microscopy and picture taken.	p. S21
Figure S5. Western blot analysis showing the levels of H3K4me3 and histone H3 after treatment with GSK1.	26 and 1ο (both at 1 μM) in
SK-N-BE and K562 cells.	p. S22
References	p. S23

Chemistry

The ethyl esters **4a-q**, key intermediate compounds for the synthesis of the desired pyrazoles **1a-q**, were prepared either by Clauson-Kaas reaction between the known 5-amino-4-ethoxycarbonyl pyrazoles **2a-d** [1] and 2,5-dimethoxytetrahydrofuran in glacial acetic acid at 80°C (compounds **4a-d**), or from the enamines **3a-e** prepared according to the literature [2], which underwent cyclocondensation with the proper commercial hydrazines in ethanol at 80°C (compounds **4e-q**). The esters **4a-q** were hydrolyzed in basic conditions with 2 N potassium hydroxide in ethanol to give the corresponding 4-pyrazolecarboxylic acids **5a-q**, which in presence of triethylamine, *N*,*N*,*N'*,*N'*tetramethyl-*0*-(benzotriazol-1-yl)uronium tetrafluoroborate (TBTU), dry *N*,*N*-dimethylformamide were coupled under nitrogen atmosphere with the amine **6** [3] to yield the final amides **1a-q** (see ref. 4 for **10,p**) (Scheme S1).

The *N*-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-(5-methyl-1-phenyl-1*H*-pyrazol-4-yl)acetamide **1r** was prepared by coupling the known 2-(5-methyl-1-phenyl-1*H*-pyrazol-4-yl)acetic acid [5] with **6** following the same procedure described for **1a-q**.

Physical, chemical and spectral data for intermediate compounds **2-5** and the final compounds **1a-r** are reported below in Tables S1-S5.

Scheme S1. Synthesis of 1a-q.

Reagents and conditions (a) 2,5-dimethoxytetrahydrofuran, glacial acetic acid, 80°C, (1-6 h); (b) proper hydrazine, ethanol, 80°C or rt; (c) 2 N potassium hydroxide, ethanol, rt, overnight; (d) TBTU, triethylamine, dry DMF, N2, rt, overnight.

Experimental Section

General procedure for the synthesis of 5-pyrrolyl-pyrazole ethyl esters 4a-d. 2,5-Dimethoxytetrahydrofuran (6.72 mmol) was added to a solution of the known appropriate 1-substituted ethyl 5-amino-1*H*-pyrazole-4-carboxylate **2** (4.48 mmol) in acetic acid (6 ml), and the reaction mixture was refluxed for 1 h. Then, 5 ml of toluene were added, the solution was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (eluent: ethyl acetate:*n*-hexane = 1:8) to furnish the desired pyrrole derivative (see Table S3).

General procedure for the synthesis of pyrazole esters 4e-q. The proper hydrazine (1.01 mmol) and triethylamine (2.02 mmol) were added to a solution of the known appropriate ethyl 2-acyl-3-(dimethylamino)acrylate **3** (1.01 mmol) in ethanol (5 ml), and the reaction mixture was refluxed for 2 h. After the completion of the reaction, the solvent was evaporated by 90% and water (20 ml) was added to the residue. The aqueous phase was extracted with dichloromethane (3 \times 50 ml), the organic phase washed with sodium hydrogen carbonate (2 \times 15 ml) and sodium chloride (2 \times 10 ml) saturated solutions, dried over sodium sulphate and concentrated under reduced pressure to obtain the ethyl 1*H*-pyrazole-4-carboxylates **4e-q** (see Table S3), differently substituted at the N1 and C5 positions, which were used in the following step without further purification.

General procedure for the synthesis of pyrazole-4-carboxylic acids 5a-q. The appropriate ethyl 1*H*-pyrazole-4-carboxylate **4** (1.82 mmol) was suspended in ethanol (6 ml), then 2 N KOH (3.64 ml) was added and the resulting mixture was left stirring at room temperature. After 16 h the reaction was complete, the ethanol was concentrated under vacuum and 2 N HCl was added to the residue till pH = 2. The obtained precipitate was filtered off, washed with distilled water (3 × 3 ml) and dried at 60°C to give the corresponding 1,5-disubstituted 1*H*-pyrazole-4-carboxylic acid **5** (see Table S4).

Cpd	Lab Code	Molecule structure	m. p. (°C)	recrystallization solvent	yield (%)
1a	MC3600		229-231	methanol	66
1b	MC3601		208-210	acetonitrile/metha nol	61
1c	MC3584	H ₃ C H ₃ H _N C H _N H _N C H _N H _N C H _N H _N C H _N	232-235	methanol	68
1d	MC3589	H ₃ C H ₃ H _N H _N H _N H _N H _N	187-189	acetonitrile	65
1e	MC3599	H ₃ C H ₃ H _N H _N O H _N N	211-213	acetonitrile/metha nol	67

Table S1. Chemical and Physical Data of Compounds 1a-r.

1f	MC3602	H ₃ C H ₃ HN HN N	213-215	acetonitrile/metha nol	59
1g	MC3590	H ₃ C H ₃ H ₁ C H _N H _N H _N H _N	206-208	acetonitrile/metha nol	57
1h	MC3598	H ₃ C H ₃ H _N C H _N H _N H _N H _N H _N H _N H _N H _N	181-183	acetonitrile	62
1i	MC3625	H ₃ C H ₃ H _N H _N H _N H _N	223-225	methanol	64
1j	MC3627	H ₃ C H ₃ H _N C H _N H _N C H _N H _N C H _N H _N C H _N	192-194	acetonitrile	63

1k	MC3648	H ₃ C-H ₃ H _N C-H _N H _N H _N C-H _N H _N H _N H _N H _N H _N H _N H _N	231-233	methanol	62
11	MC3630	H ₃ C H _N O H _N H _N V	195-197	acetonitrile	58
1m	MC3715	H ₃ C H ₃ HN HN HN N	>250	methanol	67
1n	MC3690	H ₃ C H ₃ HN HN H ₃ C K	194-196	acetonitrile	57
1o [4,6]	MC3629	$H_{3}C \rightarrow H_{N} \rightarrow H_{3}C \rightarrow H_$	225-227	methanol	60
1p [4]	MC3702	H ₃ C H ₃ H _N H _N	219-221	methanol	51

1q	MC3623	H ₃ C H ₃ H ₃ C H _N H ₃ C N H ₃ C	204-206	acetonitrile/metha nol	60
1r	MC3710	H ₃ C HN O H ₃ C NH O H ₃ C N	215-217	acetonitrile/metha nol	66

Table S2. Chemical and Physical Data of the Intermediates 3a-e

		2	a-d, 4a-q			
Cpd	R	R ₁	m. p. (°C)	recrystallization solvent	yield (%)	
2a [11]	-NH ₂	<i>i</i> -Pr	62-63	cyclohexane	92	
2b [12]	-NH ₂	cyclopentyl	oil	-	95	
2c [13]	-NH ₂	Ph	107-109	cyclohexane	81	
2d [14]	-NH ₂	Bn	109-111	cyclohexane	82	
4a		<i>i</i> -Pr	oil	-	67	
4b	-N	cyclopentyl	oil	-	77	
4c [15]	-N	Ph	111-113	cyclohexane	88	
4d		Bn	44-45	<i>n</i> -hexane	77	
4e	\bigcirc	<i>i</i> -Pr	oil	-	75	
4f	\bigcirc	cyclopentyl	oil	-	68	
4g [16]	\bigcirc	Ph	113-115	cyclohexane	66	
4h [17]	\bigcirc	Bn	68-70	<i>n</i> -hexane	73	
4i	-CH=CHPh	<i>i</i> -Pr	oil	-	70	

4j	-CH=CHPh	cyclopentyl	oil	-	67
4k [18]	-CH=CHPh	Ph	oil	-	69
4I [19]	-CH=CHPh	Bn	oil	-	65
4m [20]	-Н	Ph	98-100	cyclohexane	66
4n [21]	-CH3	<i>i</i> -Pr	oil	-	70
4o [22]	-CH3	Ph	56-58	<i>n</i> -hexane	88
4р	-CH3	Bn	oil	-	82
4q [16]	-CH ₂ CH ₂ CH ₃	Ph	112-114	cyclohexane	92

O N N N R R R						
			5a-q			
Cod	D	D	m n (°C)	recructallization columnt	yield	
Cpu	n	nı	m. p. (C)	recrystallization solvent	(%)	
5a		<i>i</i> -Pr	138-140	toluene	87	
5b		cyclopentyl	167-168	toluene/acetonitrile	93	
5c [23]		Ph	184-186	acetonitrile	89	
5d		Bn	170-172	toluene/acetonitrile	77	
5e	\square	<i>i</i> -Pr	164-166	toluene/acetonitrile	73	
5f	$\mathbf{\hat{\mathbf{C}}}$	cyclopentyl	196-197	acetonitrile	68	
5g [22]	$\mathbf{\nabla}$	Ph	177-178	toluene/acetonitrile	83	
5h [24]	\bigcirc	Bn	166-168	toluene/acetonitrile	76	
5i	-CH=CHPh	<i>i</i> -Pr	167-170	toluene/acetonitrile	80	
5j	-CH=CHPh	cyclopentyl	191-193	acetonitrile	85	
5k	-CH=CHPh	Ph	176-177	toluene/acetonitrile	83	
51	-CH=CHPh	Bn	136-140	toluene	78	
5m [25]	-Н	Ph	225-227	methanol	88	
5n [21]	-CH ₃	<i>i</i> -Pr	151-153	toluene	92	

Table S4. Chemical and Physical Data of the Intermediates 5a-q.

50 [22]	-CH3	Ph	163-165	toluene/acetonitrile	86
5p [4]	-CH3	Bn	167-169	toluene/acetonitrile	77
5q [22]	-CH ₂ CH ₂ CH ₃	Ph	111-113	cyclohexane	71

compd	M\\\/		calculated, %		found, %		
Compu	14144	C	Н	Ν	C	Н	Ν
1a	353.43	64.57	6.56	19.82	64.78	6.67	19.59
1b	379.46	66.47	6.64	18.46	66.23	6.51	18.72
1c	387.44	68.20	5.46	18.08	68.04	5.55	18.32
1d	401.47	68.81	5.77	17.44	68.59	5.65	17.69
1e	364.45	69.21	6.64	15.37	69.44	6.75	15.19
1f	390.49	70.75	6.71	14.35	70.98	6.84	14.11
1g	398.47	72.34	5.57	14.06	72.59	5.68	13.82
1h	412.49	72.80	5.86	13.58	73.04	5.99	13.27
1i	390.49	70.75	6.71	14.35	70.57	6.59	14.52
1j	416.53	72.09	6.78	13.45	71.88	6.70	13.64
1k	424.50	73.56	5.70	13.20	73.82	5.88	12.95
11	438.53	73.95	5.98	12.78	74.17	6.08	12.54
1m	322.37	67.07	5.63	17.38	67.29	5.74	17.17
1n	302.38	63.55	7.33	18.53	63.89	7.45	18.28
10	336.40	67.84	5.99	16.66	68.02	6.10	16.39
1p	350.42	68.55	6.33	15.99	68.36	6.29	16.17
1q	364.45	69.21	6.64	15.37	69.44	6.79	15.08
1r	350.42	68.55	6.33	15.99	68.42	6.39	16.13

Table S5. Elemental Analyses for Compounds 1a-r.

Spectral Data for Compounds 1a-r.

1a, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-isopropyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 1.32 (d, 6H, (*CH*₃)₂CH-, *J*= 6.4 Hz), 2.09 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 3.88 (m, 1H, (CH₃)₂CH-), 4.13 (d, 2H, -CH₂NH-, *J*= 3.6 Hz), 5.82 (s, 1H, -CH- pyridone proton), 6.29 (dd, 2H, pyrrole protons, *J*= 5.6 Hz), 6.95 (dd, 2H, pyrrole protons, *J*= 2.0 Hz), 7.14 (d, 1H, -CH₂NH-, *J*= 3.6 Hz), 8.00 (s, 1H, pyrazole proton), 11.46 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 21.7 (2C), 32.8, 51.4, 100.2, 111.1, 112.9 (2C), 116.0, 121.6 (2C), 138.1, 147.3, 151.6, 158.0, 163.6, 165.1 ppm; MS (El) calc: *m/z*: 353.1852 [M]⁺ found: *m/z*: 353.1845 [M]⁺

1b, 1-Cyclopentyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(1H-pyrrol-1-yl)-1H-pyrazole-4 carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 1.53 (m, 2H, cyclopentyl protons), 1.78 (m, 2H, cyclopentyl protons), 1.87 (m, 4H, cyclopentyl protons), 2.09 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.07 (m, 1H, cyclopentyl (CH₂)₂CH-), 4.12 (d, 2H, -CH₂NH-, *J* = 4.8 Hz), 5.82 (s, 1H, -CH- pyridone proton), 6.29 (d, 2H, pyrrole protons, *J* = 5.4 Hz), 6.94 (d, 2H, pyrrole protons, *J* = 2.0 Hz), 7.15 (t, 1H, -CH₂NH-, *J* = 3.6 Hz), 7.98 (s, 1H, pyrazole proton), 11.46 (s, 1H, pyridone -NH) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 24.6 (2C), 32.8, 33.4 (2C), 62.2, 99.8, 111.1, 112.9 (2C), 116.0, 121.6 (2C), 139.1, 146.4, 151.6, 158.0, 163.6, 165.1.ppm; MS (El) calc: *m/z*: 379.2008 [M]⁺ found: *m/z*: 379.2011 [M]⁺

1c, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.11 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.50 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.17 (d, 2H, -*CH*₂NH-, *J*= 4.8 Hz), 5.84 (s, 1H, -C*H*- pyridone proton), 6.17 (d, 2H, aromatic protons, *J*= 1.6 Hz), 6.85 (d, 2H, aromatic protons, *J*= 1.6 Hz), 7.11 (d, 2H, aromatic protons, *J*= 8.0 Hz), 7.36 (d, 2H, aromatic protons, *J*= 6.4 Hz), 7.49 (t, 1H, -CH₂N*H*-, *J*= 4.0 Hz), 8.24 (s, 1H, pyrazole proton), 11.48 (s, 1H, pyridone -N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 101.3, 111.1, 112.9 (2C), 116.0, 121.6 (2C), 125.2 (2C), 127.2, 129.5 (2C), 138.5, 139.6, 141.7, 151.6, 158.0, 163.6, 165.1 ppm; MS (EI) calc: *m/z*: 387.1695 [M]⁺ found: *m/z*: 387.1689 [M]⁺

1d, 1-Benzyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(1H-pyrrol-1-yl)-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.09 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.13 (d, 2H, – *CH*₂NH-, *J*= 4.8 Hz), 5.01 (s, 2H,-NC*H*₂Ph), 5.82 (s, 1H, –*CH*– pyridone proton), 6.26 (s, 2H, pyrrole protons), 6.87 (s, 2H, pyrrole protons, *J*= 1.6 Hz), 6.96 (d, 2H, aromatic protons, *J*= 6.8 Hz), 7.27 (m, 3H, aromatic protons), 7.36 (t, 1H, –CH₂N*H*–, *J*= 4.0 Hz), 8.02 (s, 1H, pyrazole proton), 11.46 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 51.1, 100.5, 111.1, 112.9 (2C), 116.0, 121.6 (2C), 127.6, 128.4 (2C), 129.0 (2C), 136.3, 139.6, 141.5, 151.6, 158.0, 163.6, 165.1 ppm; MS (El) calc: *m/z*: 401.1852 [M]⁺ found: *m/z*: 401.1845 [M]⁺

1e, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-isopropyl-5-phenyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d₆*, 400 MHz, δ, ppm): δ 1.31 (d, 6H, (*CH*₃)₂CH-, *J*= 5.6 Hz), 2.07 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.15 (d, 2H, -*CH*₂NH-, *J*= 4.8 Hz), 4.17 (m, 1H, (CH₃)₂CH-), 5.82 (s, 1H, -*CH*- pyridone proton), 7.28 (t, 1H, -*CH*₂N*H*-, *J*= 4.0 Hz), 7.35 (m, 2H, aromatic protons), 7.48 (m, 3H, aromatic protons), 7.96 (s, 1H, pyrazole proton), 11.44 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d₆*, 100 MHz, δ, ppm): δ 18.5, 19.1, 21.7 (2C), 32.8, 53.1, 111.1, 116.0, 124.5, 128.5 (2C), 128.6, 128.9 (2C), 130.8, 141.5, 151.6, 153.9, 158.0, 163.6, 165.3 ppm; MS (EI) calc: *m/z*: 364.1899 [M]⁺ found: *m/z*: 364.1901 [M]⁺

1f, 1-Cyclopentyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-phenyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 1.51 (m, 2H, cyclopentyl protons), 1.80 (m, 2H, cyclopentyl protons), 1.89 (m, 4H, cyclopentyl protons), 2.07 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.10 (d, 2H, -C*H*₂NH-, *J*= 5.2 Hz), 4.33 (m, 1H, cyclopentyl proton -N-C*H*-), 5.82 (s, 1H, -C*H*- pyridone proton), 7.30 (t, 1H, -CH₂N*H*-, *J*= 4.8 Hz), 7.34 (m, 2H, aromatic protons), 7.48 (m, 3H, aromatic protons), 7.95 (s, 1H, pyrazole proton), 11.44 (s, 1H, pyridone -N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 24.6 (2C), 32.8, 33.4 (2C), 64.1, 111.1, 116.0, 122.8, 128.5 (2C), 128.6, 128.9 (2C), 130.8, 142.0, 151.6, 154.1, 158.0, 163.6, 165.3 ppm; MS (EI) calc: *m/z*: 390.2056 [M]⁺ found: *m/z*: 390.2060 [M]⁺

1g, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1,5-diphenyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.10 (s, 3H, 4,6 dimethylpyridone -CH₃), 2.11 (s, 3H,4,6 dimethylpyridone -CH₃), 4.17 (d, 2H, -*CH*₂NH-, *J*= 5.2 Hz), 5.84 (s, 1H, -*CH*- pyridone proton), 7.17 (d, 2H, aromatic protons, *J*= 6.4 Hz), 7.24 (d, 2H, aromatic protons, *J*= 6.4 Hz), 7.32 (m, 6H, aromatic protons), 7.60 (t, 1H, -CH₂N*H*-, *J*= 4.8 Hz), 8.15 (s, 1H, pyrazole proton), 11.46 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 111.1, 116.0, 124.1 (2C), 125.8, 127.1, 128.4 (2C), 128.6, 128.9 (2C), 129.1 (2C), 130.6, 139.6, 140.2, 146.0, 151.6, 158.0, 163.6, 165.3 ppm; MS (EI) calc: *m/z*: 398.1743 [M]⁺ found: *m/z*: 398.1740 [M]⁺

1h, 1-Benzyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-phenyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.08 (s, 3H, 4,6 dimethylpyridone -CH₃), 2.10 (s, 3H, 4,6 dimethylpyridone -CH₃), 4.11 (d, 2H, -*CH*₂NH-, *J*= 4.0 Hz), 5.14 (s, 2H, -N*CH*₂Ph), 5.82 (s, 1H, -*CH*- pyridone proton), 6.90 (d, 2H, aromatic protons, *J*= 5.6 Hz), 7.27 (m, 5H, aromatic protons), 7.43 (m, 4H, aromatic protons and -CH₂N*H*-), 8.01 (s, 1H, pyrazole proton), 11.45 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 52.9, 111.1, 116.0, 120.6, 127.6, 128.0 (2C), 128.4 (2C), 128.6 (3C), 128.9 (2C), 130.9, 136.0, 140.6, 142.5, 151.6, 158.0, 163.6, 165.3 ppm; MS (EI) calc: *m/z*: 412.1899 [M]⁺ found: *m/z*: 412.1893 [M]⁺

1i, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-isopropyl-5-styryl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ , ppm): δ 1.40 (d, 6H, (C*H*₃)₂CH-, *J*= 5.6 Hz), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.15 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.24 (d, 2H, -C*H*₂NH-, *J*= 4.0 Hz), 4.82 (m, 1H, (CH₃)₂CH-), 5.84 (s, 1H, -CH- pyridone proton), 7.18 (d, 1H, vinyl proton, *J*= 16.8 Hz), 7.38 (m, 4H, aromatic protons and vinyl proton), 7.59 (m, 2H, aromatic protons), 7.83 (t, 1H, -CH₂NH-, *J*= 5.0 Hz),

7.87 (s, 1H, pyrazole proton), 11.46 (s, 1H, pyridone -N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 21.7 (2C), 32.8, 52.3, 111.1, 116.0, 121.8, 122.0, 126.3 (2C), 129.0 (2C), 129.8, 131.6, 136.6, 143.8, 145.3, 151.6, 158.0, 163.6, 165.4 ppm; MS (EI) calc: *m/z*: 390.2056 [M]⁺ found: *m/z*: 390.2058 [M]⁺

1j, 1-Cyclopentyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-styryl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 1.64 (m, 2H, cyclopentyl protons), 1.83 (m, 2H, cyclopentyl protons), 1.97 (m, 2H, cyclopentyl protons), 2.06 (m, 2H, cyclopentyl protons), 2.10 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.16 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.24 (d, 2H, -C*H*₂NH-, *J*= 5.2 Hz), 4.98 (m, 1H, cyclopentyl proton -N-C*H*-), 5.84 (s, 1H, -C*H*- pyridone proton), 7.20 (d, 1H, vinyl proton, *J*= 16.8 Hz), 7.38 (m, 4H, aromatic protons and vinyl proton), 7.34 (m, 1H, aromatic proton), 7.41 (m, 3H, aromatic and vinyl protons), 7.60 (d, 2H, aromatic protons, *J*= 7.2 Hz), 7.85 (t, 1H, -CH₂NH- *J*= 5.1 Hz), 7.87 (s, 1H, pyrazole proton), 11.45 (s, 1H, pyridone -N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 24.6 (2C), 32.8, 33.4 (2C), 63.9, 111.1, 116.0, 120.6, 122.1, 126.3 (2C), 129.0 (2C), 129.8, 131.6, 136.6, 143.4, 144.3, 151.6, 158.0, 163.6, 165.4 ppm; MS (EI) calc: *m/z*: 416.2212 [M]⁺ found: *m/z*: 416.2215 [M]⁺

1k, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-phenyl-5-styryl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.12 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.19 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.31 (d, 2H, – *CH*₂NH-, *J*= 4.0 Hz), 5.87 (s, 1H, –*CH*- pyridone proton), 6.85 (d, 1H, vinyl proton, *J*= 16.8 Hz), 7.32 (m, 6H, aromatic protons and vinyl proton), 7.53 (m, 5H, aromatic protons), 8.09 (t, 1H, –CH₂N*H*-, *J*= 5.1 Hz), 8.12(s, 1H, pyrazole proton), 11.47 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 111.1, 116.0, 117.9, 122.2, 123.0 (2C), 126.3 (2C), 127.2, 129.0 (2C), 129.1 (2C), 129.8, 132.6, 136.6, 136.7, 139.5, 141.8, 151.6, 158.0, 163.6, 165.4 ppm; MS (EI) calc: *m/z*: 424.1899 [M]⁺ found: *m/z*: 424.1903 [M]⁺

11, 1-Benzyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-styryl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.11 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.18 (s, 3H, 4,6 dimethylpyridone –CH₃), 4.27 (d, 2H, – *CH*₂NH-, *J*= 4.4 Hz), 5.57 (s, 2H, -N*CH*₂-Ph), 5.86 (s, 1H, -*CH*- pyridone proton), 7.14 (d, 2H, aromatic protons), 7.24-7.40 (m, 7H, aromatic protons and vinyl protons), 7.47 (d, 3H, aromatic protons, *J*= 7.6 Hz), 7.95 (s, 1H, pyrazole proton), 7.97 (t, 1H, -CH₂N*H*-, *J*= 5.8 Hz), 11.46 (s, 1H, pyridone -N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 52.8, 111.1, 116.0, 118.8, 121.7, 126.3 (2C), 127.6, 128.0 (2C), 128.4 (2C), 129.0 (2C), 129.8, 131.1, 136.0, 136.6, 140.7, 142.8, 151.6, 158.0, 163.6, 165.4 ppm; MS (EI) calc: *m/z*: 438.2056 [M]⁺ found: *m/z*: 438.2051 [M]⁺

1m, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-phenyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.13 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.19 (s, 3H,4,6 dimethylpyridone –CH₃), 4.28 (d, 2H, – *CH*₂NH-, *J*= 4.8 Hz), 5.88 (s, 1H, –C*H*- pyridone proton), 7.35 (t, 1H, aromatic proton), 7.52 (m, 2H, aromatic protons), 7.82 (d, 2H, aromatic protons, *J*= 7.6 Hz), 8.05 (t, 1H, –CH₂N*H*-, *J*= 4.8 Hz), 8.15 (s, 1H, pyrazole proton), 8.98 (s, 1H, pyrazole proton), 11.50 (s, 1H, pyridone – *NH*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 18.5, 19.1, 32.8, 111.1, 116.0, 119.2 (2C), 119.4, 127.5, 129.4 (2H), 132.3, 136.8, 139.4, 151.6, 158.0, 162.3, 163.61.ppm; MS (El) calc: *m/z*: 322.1430 [M]⁺ found: *m/z*: 322.1433 [M]⁺

1n, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-isopropyl-5-methyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 1.33 (d, 6H, (C*H*₃)₂CH-, *J*= 4.4 Hz), 2.11 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.15 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.50 (s, 3H, 5 methylpyrazole –CH₃), 4.22 (d, 2H, -C*H*₂NH-, *J*= 4.8 Hz), 4.51 (m, 1H, (CH₃)₂CH-), 5.85 (s, 1H, -C*H*-pyridone proton), 7.76 (t, 1H, -CH₂N*H*-, *J*= 7.6 Hz), 7.87 (s, 1H, pyrazole proton), 11.47 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 11.9, 18.5, 19.1, 21.7 (2C), 32.8, 51.0, 111.1, 116.0, 125.9, 147.2, 148.8, 151.6, 158.0, 163.6, 165.9.ppm; MS (EI) calc: *m/z*: 362.1743 [M]⁺ found: *m/z*: 362.1744 [M]⁺

1o, N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.13 (s, 3H, 4,6-dimethylpyridone -CH₃), 2.19 (s, 3H, 4,6-dimethylpyridone -CH₃), 2.51 (s, 3H, 5methylpyrazole -CH₃), 4.27 (d, 2H, -C*H*₂NH, *J*= 4.8 Hz), 5.87 (s, 1H, -CH pyridone proton), 7.53 (m, 5H, aromatic protons), 7.96 (t, 1H, -CH₂N*H*, *J*= 4.8 Hz), 8.13 (s, 1H, pyrazole proton), 11.48 (br s, 1H, pyridone NH) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 11.1, 18.5, 19.1, 32.8, 111.1, 116.0, 123.3 (2C), 126.9, 127.2, 129.1 (2C), 139.2, 142.6, 146.6, 151.5, 158.0, 163.6, 165.9 ppm; MS (EI) calc: m/z: 336.1586 [M]⁺ found: m/z: 336.1590 [M]⁺.

1p, 1-Benzyl-N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-methyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.11 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.16 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.44 (s, 3H, 5 methylpyrazole –CH₃), 4.22 (d, 2H, -C*H*₂NH-, *J*= 5.2 Hz), 5.31 (s, 2H, -NC*H*₂-Ph), 5.85 (s, 1H, -C*H*- pyridone proton), 7.09 (d, 2H, aromatic protons, *J*= 6.8 Hz), 7.31 (m, 3H, aromatic protons), 7.84 (t, 1H, -CH₂N*H*-, *J*= 4.8 Hz), 7.94 (s, 1H, pyrazole proton), 11.47 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 11.8, 18.5, 19.1, 32.8, 52.6, 111.1, 116.0, 123.6, 127.6, 128.4 (2C), 128.7 (2C), 136.1, 147.4, 150.1, 151.6, 158.0, 163.6, 165.9 ppm; MS (EI) calc: *m/z*: 350.1743 [M]⁺ found: *m/z*: 350.1739 [M]⁺

1q, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-1-phenyl-5-propyl-1H-pyrazole-4-carboxamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 0.72 (t, 3H, *CH*₃CH₂CH₂-, *J*= 7.2 Hz), 1.40 (m, 2H, CH₃CH₂CH₂-), 2.13 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.17 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.92 (t, 2H, CH₃CH₂CH₂-), 4.28 (d, 2H, -CH₂NH-, *J*= 7.6 Hz), 5.87 (s, 1H, -CH- pyridone proton), 7.50 (m, 5H, aromatic protons), 7.95 (t, 1H, -CH₂N*H*-, *J*= 4.0 Hz), 8.11 (s, 1H, pyrazole proton), 11.50 (s, 1H, pyridone –N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 13.6, 18.5, 19.1, 21.8, 25.0, 32.8, 111.1, 116.0, 119.9, 124.2 (2C), 127.2, 128.9 (2C), 139.8, 145.7, 146.6, 151.6, 158.0, 163.6, 165.6 ppm; MS (EI) calc: *m/z*: 364.1899 [M]⁺ found: *m/z*: 364.1904 [M]⁺

1r, N-((4,6-Dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-(5-methyl-1-phenyl-1H-pyrazol-4-yl)acetamide

¹H NMR (DMSO-*d*₆, 400 MHz, δ, ppm): δ 2.11 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.13 (s, 3H, 4,6 dimethylpyridone –CH₃), 2.27 (s, 3H, pyrazole –CH₃), 3.26 (s, 2H, -C*H*₂CONH-), 4.09 (d, 2H, -C*H*₂NH-, *J*= 5.2 Hz), 5.85 (s, 1H, -C*H*- pyridone proton), 7.39 (t, 1H, aromatic proton, *J*= 7.6 Hz), 7.42-7.54 (m, 5H, aromatic and pyrazole protons), 7.91 (t, 1H, -CH₂N*H*-, *J*= 4.4 Hz), 11.47 (s, 1H, pyridone -N*H*) ppm; ¹³C NMR (DMSO-*d*₆, 100 MHz, δ, ppm): δ 10.3, 18.5, 19.1, 30.3, 33.0, 109.1, 111.1, 116.0, 123.3 (2C), 127.2, 129.1 (2C), 136.6, 138.0, 139.3, 151.6, 158.0, 163.6, 170.8 ppm; MS (El) calc: *m/z*: 356.1743 [M]⁺ found: *m/z*: 356.1747 [M]⁺

Figure S1. Determination of IC₅₀ values against EZH2/PRC2 for 1n, 1o, 1p, and 1q. SAH and GSK126 have been used as reference drugs.

Figure S2. SAM competition experiments. Left, dependence of **1o** IC₅₀ values with increasing SAM concentration. Right, inhibitory effects of **1o** vs EZH2/PRC2 at increasing SAM concentrations.

Figure S3. Cytotoxicity of **1o** and GSK126 in non-cancer cells. Antiproliferative effects of GSK126 (up) and of **1o** (down) in human embryonic kidney HEK293 cells treated with 1, 10 and 25 µM of the compound for 5 days (MTS Cell Proliferation Assay).

Figure S4. SK-N-BE and K562 cells were either left untreated or treated with 0.5, 1 and 5 µM **1o** for 2, 4 and 6 days. GSK126 (1 µM) was used as a reference drug. Cell morphology was evaluated by optical microscopy and picture taken.

Figure S5. Western blot analysis showing the levels of H3K4me3 and histone H3 after treatment with GSK126 and **10** (both at 1 μ M) in SK-N-BE and K562 cells. The relative densitometric analyses for H3K4me3 (arbitrary units) are reported. β -Actin was used for normalization.

References

- Xia, Y.; Chackalamannil, S.; Czarniecki, M.; Tsai, H.; Vaccaro, H.; Cleven, R.; Cook, J.; Fawzi, A.; Watkins, R.; Zhang, H. Synthesis and Evaluation of Polycyclic Pyrazolo[3,4-D]Pyrimidines as Pde1 and Pde5 Cgmp Phosphodiesterase Inhibitors. J. Med. Chem. 1997, 40, 4372-4377.
- Boldron, C.; Besse, A.; Bordes, M.-F.; Tissandie, S.; Yvon, X.; Gau, B.; Badorc, A.; Rousseaux, T.; Barre, G.; Meneyrol, J.; Zech, G.; Nazare, M.; Fossey, V.; Pflieger, A.-M.; Bonnet-Lignon, S.; Millet, L.; Briot, C.; Dol, F.; Herault, J.-P.; Savi, P.; Lassalle, G.; Delesque, N.; Herbert, J.-M.; Bono, F. N-[6-(4-Butanoyl-5-Methyl-1H-Pyrazol-1-yl)Pyridazin-3-yl]-5-Chloro-1-[2-(4-Methylpiperazin-1-yl)-2-Oxoethyl]-1H-Indole-3-Carboxamide (Sar216471), a Novel Intravenous and Oral, Reversible, and Directly Acting P2y12 Antagonist. J. Med. Chem. 2014, *57*, 7293-7316.
- Verma, S. K.; Tian, X.; LaFrance, L. V.; Duquenne, C.; Suarez, D. P.; Newlander, K. A.; Romeril, S. P.; Burgess, J. L.; Grant, S. W.; Brackley, J. A.; Graves, A. P.; Scherzer, D. A.; Shu, A.; Thompson, C.; Ott, H. M.; Aller, G. S.; Machutta, C. A.; Diaz, E.; Jiang, Y.; Johnson, N. W.; Knight, S. D.; Kruger, R. G.; McCabe, M. T.; Dhanak, D.; Tummino, P. J.; Creasy, C. L.; Miller, W. H. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase Ezh2. ACS Med. Chem. Lett. 2012, 3, 1091-1096.
- 4. Albrecht, B. K.; Audia, J. E.; Cook, A. S.; Dakin, L. A.; Duplessis, M.; Gehling, V. S.; Harmange, J.-C.; Naveschuk, C. G.; Vaswani, R. G. Preparation of Heteroaryl Amides as Modulators of Methyl Modifying Enzymes. W02013120104A2, 2013.
- Kurihara, T.; Uno, T.; Sakamoto, Y. Reaction of Ethyl 3-Ethoxymethylene-2,4-Dioxovalerate with Monosubstituted Hydrazines. J. Heterocycl. Chem. 1980, 17, 231-233.
- Blackledge, Charles William, Jr.; Burgess, Joelle Lorraine; Johnson, Neil W.; Kasparec, Jiri; Knight, Steven David; Lafrance, Louis V.,
 Ill; Luengo, Juan I.; Miller, William Henry; Newlander, Kenneth Allen; Romeril, Stuart Paul; et al. Preparation of *N*-[(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl] amides as enhancers of zeste homolog 2 (EZH2) inhibitors. PCT Int. Appl., WO 2014177982 A1 20141106, 2014.

- Svete, J.; Aljaz-Rozic, M.; Stanovnik, B. 2-Benzoyl-2-Ethoxycarbonylvinyl and 2-Benzoylamino-2-Methoxycarbonylvinyl as N-Protecting Groups in Peptide Synthesis. Their Application in the Synthesis of Dehydropeptide Derivatives Containing N-Terminal 3-Heteroarylamino-2,3-Dehydroalanine. *J. Heterocycl. Chem.* **1997**, *34* (1), 177-193.
- Cumming, J. G.; Debreczeni, J. E.; Edfeldt, F.; Evertsson, E.; Harrison, M.; Holdgate, G. A.; James, M. J.; Lamont, S. G.; Oldham, K.; Sullivan, J. E.; Wells, S. L. Discovery and Characterization of Mapk-Activated Protein Kinase-2 Prevention of Activation Inhibitors. *J. Med. Chem.* 2015, *58* (1), 278-293.
- 9. Kim, C. K.; Krasavage, B. A.; Maggiulli, C. A. A New Synthesis of 5,7-Dicarboxy-2,1-Benzisoxazolin-3-One. *J. Heterocycl. Chem.* **1985**, *22* (1), 127-128.
- Boldron, C.; Besse, A.; Bordes, M.-F.; Tissandie, S.; Yvon, X.; Gau, B.; Badorc, A.; Rousseaux, T.; Barre, G.; Meneyrol, J.; Zech, G.; Nazare, M.; Fossey, V.; Pflieger, A.-M.; Bonnet-Lignon, S.; Millet, L.; Briot, C.; Dol, F.; Herault, J.-P.; Savi, P.; Lassalle, G.; Delesque, N.; Herbert, J.-M.; Bono, F. N-[6-(4-Butanoyl-5-Methyl-1H-Pyrazol-1-yl)Pyridazin-3-yl]-5-Chloro-1-[2-(4-Methylpiperazin-1-yl)-2-Oxoethyl]-1H-Indole-3-Carboxamide (Sar216471), a Novel Intravenous and Oral, Reversible, and Directly Acting P2y12 Antagonist. *J. Med. Chem.* 2014, *57* (17), 7293-7316.
- Ohki, H.; Kawabata, K.; Inamoto, Y.; Okuda, S.; Kamimura, T.; Sakane, K. Studies on 3'-Quaternary Ammonium Cephalosporins— Iv. Synthesis and Antibacterial Activity of 3'-(2-Alkyl-3-Aminopyrazolium)Cephalosporins Related to Fk037. *Biorg. Med. Chem.* 1997, 5 (8), 1685-1694.
- Anderson, K. W.; Fotouhi, N.; Gillespie, P.; Goodnow, R. A., Jr.; Guertin, K. R.; Haynes, N.-E.; Myers, M. P.; Pietranico-Cole, S. L.; Qi, L.; Rossman, P. L.; Scott, N. R.; Thakkar, K. C.; Tilley, J. W.; Zhang, Q. Preparation of Pyrazole-4-Carboxamide Derivatives as 11-Beta-Hydroxysteroid Dehydrogenase Form I (11-Beta-Hsd1) Inhibitors. W02007107470A2, 2007.
- 13. Li, J.-F.; Zhu, Y.-Q.; Wang, X.; Yang, H.-Z. Synthesis and Herbicidal Activities of a Series of Di(Aminopyrazoly) Ketone Derivatives. *J. Heterocycl. Chem.* **2007**, *44* (4), 749-755.
- Xia, Y.; Chackalamannil, S.; Czarniecki, M.; Tsai, H.; Vaccaro, H.; Cleven, R.; Cook, J.; Fawzi, A.; Watkins, R.; Zhang, H. Synthesis and Evaluation of Polycyclic Pyrazolo[3,4-D]Pyrimidines as Pde1 and Pde5 Cgmp Phosphodiesterase Inhibitors. *J. Med. Chem.* 1997, 40 (26), 4372-4377.

- Stefancich, G.; Corelli, F.; Massa, S.; Silvestri, R.; Di Santo, R. Heterocyclic Systems. Vii Synthesis of 1h-Pyrazolo[3,4-E]Indolizine Derivatives. J. Heterocycl. Chem. 1987, 24 (4), 1199-1202.
- 16. Menozzi, G.; Schenone, P.; Mosti, L.; Mattioli, F. Synthesis of 5-Substituted 1-Aryl-1h-Pyrazole-4-Acetonitriles, 4-Methyl-1-Phenyl-1h-Pyrazole-3-Carbonitriles and Pharmacologically Active 1-Aryl-1h-Pyrazole-4-Acetic Acids. *J. Heterocycl. Chem.* **1993**, *30* (4), 997-1002.
- 17. Momose, Y.; Maekawa, T.; Odaka, H.; Kimura, H. Preparation of Pyrazolyl- and Pyrrolylalkanoic Acid Derivatives with Hypoglycemic and Hypolipidemic Activity. W02001038325A1, 2001.
- Deshayes, C.; Chabannet, M.; Gelin, S. Synthesis of Some 1*H*, or 2*H*,4*H*-Benzo[4,5]Cyclohepta[1,2-c]Pyrazol-4-One Derivatives. *Heterocycles* 1983, 20 (8), 1581-1585.
- Deshayes, C.; Chabannet, M.; Gelin, S. Synthesis of Some 5-Aryl-4,5-Dihydropyrazolo[1,5-a]Quinolines and 5-Aryl-4,5-Dihydro-10*H*-Pyrazolo[1,5-b][2]Benzazepines from 1-Phenyl- or 1-Benzyl-5-Styrylpyrazoles. *Synthesis* **1982**, *1982* (12), 1088-1089.
- 20. Strah, S.; Golobič, A.; Golič, L.; Stanovnik, B. Alkyl (E,Z)-2-(2-Benzoyl-2-Ethoxycarbonyl-1-Ethenyl)Amino-3-Dimethylaminopropenoates in the Synthesis of Fused Pyrimidinones. A Facile Route to 3-Aminoazino-4*H*-Pyrimidin-4-Ones. *J. Heterocycl. Chem.* **1997**, *34* (5), 1511-1517.
- 21. Flynn, D. L.; Petillo, P. A.; Kaufman, M. D. Preparation of Pyridine-Based Compounds as Kinase Inhibitors Useful for Treatment of Proliferative Diseases. US20110189167A1, 2011.
- 22. Menozzi, G.; Mosti, L.; Schenone, P. Reaction of 2-Dimethylaminomethylene-1,3-Diones with Dinucleophiles. Vi. Synthesis of Ethyl or Methyl 1,5-Disubstituted 1h-Pyrazole-4-Carboxylates. *J. Heterocycl. Chem.* **1987**, *24* (6), 1669-1675.
- 23. Massa, S.; Mai, A.; Artico, M.; Corelli, F. Heterocyclic System. Xi. Synthesis of 1*H*,4*H*-Pyrazolo[4,3-b]Pyrrolizine and 2*H*,4*H*-Pyrazolo[4,3-b]Pyrrolizine Derivatives. *J. Heterocycl. Chem.* **1990**, *27* (6), 1805-1808.
- 24. Miura, S.; Shimada, M.; Marui, S.; Tamura, N.; Nakada, Y.; Tozawa, R.; Sakamoto, J.; Funabashi, Y.; Hosono, H. Preparation of Heterocyclic Amide Compounds as Fxr Inhibitors. W02007052843A1, 2007.

 Hohwy, M.; Spadola, L.; Lundquist, B.; Hawtin, P.; Dahmén, J.; Groth-Clausen, I.; Nilsson, E.; Persdotter, S.; von Wachenfeldt, K.; Folmer, R. H. A.; Edman, K. Novel Prostaglandin D Synthase Inhibitors Generated by Fragment-Based Drug Design. *J. Med. Chem.* 2008, *51* (7), 2178-2186.