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1. Materials and equipment 

Materials. All the reagents were used as received without further purification. N,N-
diisopropylethylamine (DIPEA), N,N'-diisopropylcarbodiimide (DIC), O-benzotriazole-
N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate (HBTU), N-hydroxysuccinimide (NHS), 
and taurine were purchased from ACROS Organics USA. All amino acid derivatives were 
purchased from GL Biochem (Shanghai) Ltd.   

Instruments. Products were purified using a Waters Delta600 HPLC system equipped with an 
XTerra C18 RP column and an in-line diode array UV detector. LC-MS spectra were acquired on 
a Waters Acquity Ultra Performance LC with Waters MICROMASS detector. TEM images on 
were taken on a Morgagani 268 transmission electron microscope. Rheology was performed on a 
TA ARES-G2 rheometer. Proton NMR spectra were collected on a Varian Unity Inova 400 with 
DMSO as solvent. MTT assay for cell cytotoxicity was carried out on a DTX880 Multimode 
Detector. 

2. Synthesis and characterizations 

Scheme S1. General synthetic route of the precursor (LD-1-SO3 as an example).  



S4 
 

 

 

 

 

 



S5 
 

 

Figure S1. 1H NMR spectrum of LD-1-SO3 in DMSO-d6 and its LC-MS spectrum. 
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Figure S2. 1H NMR spectrum of DL-1-SO3 in DMSO-d6 and its LC-MS spectrum. 
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Figure S3. 1H NMR spectrum of DD-1-SO3 in DMSO-d6 and its LC-MS spectrum. 
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Figure S4. Optical and TEM images of hydrogels formed by addition of CES (1 U/mL) to 0.2 wt 
% solutions of the three precursors in PBS buffer (scale bar = 100 nm). 
 

 

Figure S5. Circular dichroism (CD) spectra of 0.2 wt% hydrogels of the precursors LD-1-SO3, 
DL-1-SO3 and DD-1-SO3 in PBS buffer at pH = 7.4 with addition of CES for 24 h (1 U/mL). 
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Figure S6. (A) Strain and (B) frequency dependence of dynamic storage moduli G’ and loss 
moduli G’’ of the gels formed by LD-1-SO3, DL-1-SO3 and DD-1-SO3 at 0.2 wt% upon 
treatment with 1 U/mL of CES at pH 7.4 in PBS buffer for 24 h. 
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Figure S7. Viability of OVSAHO cells after being treated with (A) LD-1-SO3; (B) LD-1-SO3 
with 10 µM troglitazone (CES1 inhibitor); (C) LD-1-SO3 with 10 µM loperamide (CES2 
inhibitor); (D) LD-1-SO3 with 10 µM troglitazone and 10 µM loperamide; (E) LD-1-SO3 with 
100 µM BNPP (CES inhibitor); (F) DL-1-SO3; (G) DL-1-SO3 with 10 µM troglitazone; (H) DL-
1-SO3 with 10 µM loperamide; (I) DL-1-SO3 with 10 µM troglitazone and 10 µM loperamide; 
(J) DL-1-SO3 with 100 µM BNPP; (K) DD-1-SO3; (L) DD-1-SO3 with 10 µM troglitazone; (M) 
DD-1-SO3 with 10 µM loperamide; (N) DD-1-SO3 with 10 µM troglitazone and 10 µM 
loperamide; (O) DD-1-SO3 with 100 µM BNPP. 
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Figure S8. Viability of HeLa cells after being treated with (A) LD-1-SO3; (B) LD-1-SO3 with 10 
µM troglitazone (CES1 inhibitor); (C) LD-1-SO3 with 10 µM loperamide (CES2 inhibitor); (D) 
LD-1-SO3 with 10 µM troglitazone and 10 µM loperamide; (E) LD-1-SO3 with 100 µM BNPP 
(CES inhibitor); (F) DL-1-SO3; (G) DL-1-SO3 with 10 µM troglitazone; (H) DL-1-SO3 with 10 
µM loperamide; (I) DL-1-SO3 with 10 µM troglitazone and 10 µM loperamide; (J) DL-1-SO3 
with 100 µM BNPP; (K) DD-1-SO3; (L) DD-1-SO3 with 10 µM troglitazone; (M) DD-1-SO3 
with 10 µM loperamide; (N) DD-1-SO3 with 10 µM troglitazone and 10 µM loperamide; (O) 
DD-1-SO3 with 100 µM BNPP. 

 

Table S1. CMC values of the precursors and the hydrogelators. 

 average st.dev  average st.dev 
DL-1-SO3 916.4 8.21 DL-1 76.1 1.22 
LD-1-SO3 929.8 6.73 LD-1 45.7 2.43 
DD-1-SO3 939.2 5.16 DD-1 22.1 0.89 

 

Table S2. Compositions and concentrations of the precursors and the hydrogelators. 

  Precursor (µM) Hydrogelator (µM)[a] 
LD-1-SO3  0 487 
DL-1-SO3  0 484 
DD-1-SO3  0 491 

[a]We initially mix the hydrogelator (500 µM) with 4-oxo-4-((2-sulfoethyl)amino)butanoic acid 
and esterase for 48 h, and the composition of the mixture is analyzed. 
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Table S3. Intracellular concentrations of the precursors and the hydrogelators in HeLa cells.  

LD-1-SO3
[a]  Precursor (µM) Hydrogelator (µM)

 average st. dev average st. dev 
1 h 147.5 2.12 191.5 2.12 
2 h 161.0 1.41 258.5 4.95 
4 h 180.5 0.71 725.5 7.78 
8 h 209.0 1.41 1242.0 5.66 
12 h 232.0 1.41 1699.5 4.95 

DL-1-SO3    

1 h 119.0 1.41 188.5 3.54 
2 h 133.5 4.95 266.5 7.78 
4 h 153.5 2.12 698.5 3.54 
8 h 174.0 2.83 1177.5 21.92 
12 h 216.5 2.12 1644.5 9.19 

DD-1-SO3   
1 h 151.5 3.54 165.5 4.95 
2 h 168.0 2.83 227.0 5.66 
4 h 186.0 5.66 694.0 11.31 
8 h 219.5 2.12 1169.5 3.54 
12 h 239.0 1.41 1527.5 12.02 

[a]The cell lysates of HeLa cells are collected after 1, 2, 4, 8, 12 h incubation with 100 µM of 
precursors at 37 ˚C. 

Table S4. Extracellular concentrations of the precursors and the hydrogelators in culture 
medium. 

LD-1-SO3
[a]  Precursor (µM) Hydrogelator (µM)

 average st. dev average st. dev 
1 h 88.8 1.06 5.0 0.21 
2 h 80.3 0.42 7.8 0.07 
4 h 74.1 1.56 10.7 0.28 
8 h 70.8 0.21 14.9 0.29 
12 h 66.4 0.57 19.4 0.85 

DL-1-SO3    

1 h 88.5 0.71 6.5 0.28 
2 h 80.4 0.78 8.3 0.21 
4 h 73.9 1.63 12.4 0.49 
8 h 66.3 0.57 19.1 0.29 
12 h 61.6 0.78 25.2 0.21 

DD-1-SO3   
1 h 90.5 0.71 3.8 0.28 
2 h 83.0 1.41 6.9 0.14 
4 h 78.0 2.83 8.8 0.27 
8 h 74.6 0.57 12.6 0.57 
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12 h 71.9 0.21 15.5 0.49 
[a]The culture media after incubating HeLa cells are collected after 1, 2, 4, 8, 12 h incubation 
with 100 µM of precursors at 37 ˚C. 

Table S5. Intracellular concentrations of esterase inhibitors. 

 Intracellular concentration (µM)[a] 
loperamide / 
troglitazone / 

BNPP / 
[a]HeLa cells are incubated with loperamide (10 µM), troglitazone (10 µM) and BNPP (100 µM), 
respectively for 24 h. Intracellular concentrations are analyzed by using LC-MS. 

Table S6. Compositions of precursors and hydrogelators after incubating with protease. 

 Precursor (µM)[a] Hydrogelator (µM)[a] 
LD-1-SO3 483 / 
DL-1-SO3 479 / 
DD-1-SO3 489 / 

[a]Precursors (500 µM) are incubated together with protease K (1U/mL) for 24 h. 

3. Kinetic analysis 

3.1 Introduction and notation 

In this section, we discuss the derivation of the mathematical model used for the kinetic analysis.  

The fundamental reaction we want to model is the formation of a supramolecular hydrogel of 
dipeptide monomers having a terminal alcohol group from the enzyme-catalyzed hydrolysis of 
an ester precursor. For simpler notation, we use the symbol E for the enzyme, S and P 
respectively for the molecules of precursors and hydrogelators in solution, and G for the 
hydrogelators in the assemblies (gel). In the following, we use the terms assemblies and gel 
interchangeably. We account for the possibility of having precursors trapped in the gel matrix 
and therefore unable to undergo hydrolysis: in this case we use the symbol Z. 

The typical experimental setup consists of a Petri dish where a certain number of tumor cells are 
put in a cell culture medium with a certain initial concentration of the precursors. The enzyme is 
present at different concentrations inside the cell and in the culture medium. Hydrolysis and 
subsequent gel formation can occur both inside and outside the cells, because some of the 
molecular species in solution cross the cell membrane. In order to distinguish between molecules 
of a species inside and outside the cells, we use the subscript M for the culture medium and C for 
the intracellular space. The symbol C without subscripts represents the population of tumor cells 
in the system. 
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3.1.1 Concentration bracketing 

Having different media means that we can define different concentrations for the same species 
depending on the reference volume. In our model we take into account these different volumes: 

 MV   is the volume of the culture medium; 

 cellV  is the average volume of one single cell; 

 C cell cellV N V   is the total volume of intracellular space, with cellN  being the total number 

of cells; 

 tot M CV V V    is the total volume of the system. 

We assume that the total system is small enough for the diffusive effects to homogenize the 
concentration profiles across the system on a very fast time scale. We can therefore work with 
spatially averaged concentrations- rather than with local concentrations at each point - defined by 

simply dividing the number of molecules 
X

N   or the number of moles 
X

n   of species X in the 

reference compartment Φ (either M or C) by the appropriate reference volume. We employ the 
following system of concentration bracketing: 

 X

tot

N
X

V

  , molecular concentration in total volume (unit L−1); 

 X

tot

n
X

V

  , molar concentration in total volume (unit M = mol L−1); 

 [ ] X
n

X
V





 , molar concentration in the reference compartment's volume (unit M = mol 

L−1). 

A convenient quantity for the present system is the number of cells CN  per unit total volume totV , 

which can formally be defined as C . This quantity allows us to write a number of useful 

relations – e.g., 1M
cell

tot

V
CV

V
   - to swap from one concentration bracket to another without 

having to explicitly write the total volume of total cellular space MV , which varies in time with 

the number of tumor cells. 

3.2 Derivation of the model 

In this section we derive the evolution equations for all the different species in the system. Since 
we use a continuous, deterministic approach, these equations consist of a set of coupled ordinary 
differential equations (ODEs). We make the following approximations 
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 The volume of gel is negligible compared to the volume of the compartment where the 
gel is formed, so that both VM and VC are constant with respect to the gel formation. This 
is of course true only if the initial concentration of S is not too large, which is always the 
case in our experiments. 

 When a new cell is born or an existing cell dies, the total volume totV  is unaffected. This 

assumption is justified if the cells are essentially membranes surrounding water solutions. 
Since the amount of total water solution is conserved, when a cell dies (is born) VC will 
decrease (increase) while VM will increase (decrease) by roughly the same amount. 
 

3.2.1 General overview and balance equations 

The cellular and molecular species in the system undergo a series of coupled chemical, physical 
and biological processes sketched in Scheme 3. In general, the molecular species both in the 
culture medium and in the intracellular space can undergo three types of processes: chemical 
reactions within the medium where they are contained, physical transport between the two media 
due to the crossing of the cell membrane, and changes due to cellular birth and death. On the 
other hand, tumor cells can only undergo two types of biological processes: they can duplicate 

with constant rate kd, and they can be killed at varying rate ([ ])C
kk G  depending on the 

intracellular concentration of the gel (i.e., assemblies). The idea behind the latter process is that 
the chemotherapeutic agent is the gel, which is formed inside the cell and whose killing efficacy 
increases in a nonlinear fashion with its amount. When the gel kills a tumor cell, we assume that 
the cell's structure is destroyed so that its original volume and content become part of the culture 
medium (formally represented by the symbol M in the network at the bottom of Scheme 3). 

Based on the above considerations, we can write the general balance equations for the 

concentrations of all the species with respect to the total volume totV  in the compact form: 

([ ])C
d k

d C
k C k G C

dt
                                                                                                                                       (1) 

( ) ( ) ( )t react t trans t bio

d X
d X d X d X

dt


                                                                                              (2) 

With X = {S, P, G, Z} and Φ = {M, C}. The three terms on the right-hand side (RHS) of 
equations (2) respectively account for the reactive processes of hydrolysis plus gel formation, the 
transport processes across the cell membrane and the variations due to the biological processes of 
cell birth and death. Since the physically relevant quantities, which enter the reaction and 
transport terms, are the molar concentrations of the chemical species in the volume of their 
reference compartment, the first thing that we want to do is to write the left-hand side (LHS) of 
equations (2) in terms of these variables. For concentrations in the culture medium we have 
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[ ] [ ]
[ ] ( ) (1 ) [ ]

M M M
M MM M

cell cell
tot tot

d X d CV Vd X d d X
X CV V X

dt V dt dt V dt dt
    

 

              
[ ]

(1 ) ( ([ ])) [ ]
M

C M
cell d k cell

d X
CV k k G CV X

dt
                                                                             (3) 

By using analogous arguments, we can also write for the concentrations in the intracellular space 

[ ]
( ([ ])) [ ]

C C
C C

cell d k cell

d X d X
CV k k G CV X

dt dt
                                                                                       (4) 

By combining equations (2), (3) and (4) we obtain: 

( ) ( ) ( ) ( ([ ])) [ ][ ]

1 1

M M M C MM
t react t trans t bio d k cell

cell cell

d X d X d X k k G CV Xd X

dt CV CV

  
 

 
                             (5) 

( ) ( ) ( )[ ]
( ([ ]))[ ]

C C CC
t react t trans t bio C C

d k

cell cell

d X d X d Xd X
k k G X

dt CV CV


                                                 (6) 

The advantage of this formulation with respect to deriving kinetic laws directly for the local 
concentration [XΦ] is that, for the transport and the biological terms, it is more straightforward to 
derive constitutive relations in terms of concentrations over the total volume. This is however not 
true for the reactive term, since the natural way to derive the associated kinetic law is through the 
mass action law, which acts by definition on the local concentrations [XΦ] within each 
compartment. One thing to notice in the above equations is that each term on the RHS takes into 
account processes that are independent of one another: this means that in the absence of both 
transport and biological effects, the first term on the RHS of both equations (5) and (6) would be 
exactly the same. In this case equations (5) and (6) would just describe the chemical kinetics of 
hydrolysis and gel formation within either the M or the C compartment, which respectively 
depends only on the local concentrations [XM] and [XC]. In other words, the first terms on the 
RHS of equations (5) and (6) must have the form of the chemical kinetics that can be 
straightforwardly derived from the mass action law in terms of local concentrations, so we can 
write: 

( ([ ]))C
d k

d C
k k G C

dt
                                                                                                                                         (7) 

( ) ( ) ( ([ ])) [ ][ ]
( [ ])

1

M M C MM
t trans t bio d k cellM

t react

cell

d X d X k k G CV Xd X
d X

dt CV

  
 


                             (8) 
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( ) ( )[ ]
( [ ]) ( ([ ]))[ ]

C CC
t trans t bioC C C

t react d k

cell

d X d Xd X
d X k k G X

dt CV


                                                 (9) 

The next steps will be to write appropriate constitutive relations for each of the unknown terms 
in equations (7)-(9). 

3.2.2 Chemical reactions 

We start by deriving terms ( [ ])t reactd X   associated with the chemical reactions occurring within 

the M or the C compartment. In general, we assume that there are up to three independent 
chemical reactions that can occur between the different species in the system: hydrolysis, 
gelation, and trapping. So we can decompose the reactive term as 

( [ ]) ( [ ]) ( [ ]) ( [ ])t react t hydr t gel t trapd X d X d X d X                                                                                    (10) 

3.2.2.1 Hydrolysis 

The hydrolysis reaction is the one responsible for breaking the precursor S into an acid (whose 
concentration we do not keep track of) and the hydrogelator, alcohol P. This reaction is catalyzed 
by the enzyme E through the formation of the complex ES which then dissociates into P and E. 
We model this reaction according to the Michaelis-Menten mechanism 

f
cat

r

k k

k
E S ES E P                                                                                                                             (11) 

We experimentally tested the possibility for the above reaction to proceed backwards, i.e., from 
P to S, by preparing a fresh solution of the hydrogelator P and the enzyme E and measuring the 
concentrations of both P and S over time. Since no change in the concentration of P was 
observed, and we did not notice any production of S, we concluded that the conversion of ES 
into P and E must proceed in irreversibly. 

By invoking a quasi-steady state approximation for the concentration of ES, we obtain the classic 
Michaelis-Menten kinetics 

0

[ ]
[ ]

[ ]
cat

hydr
M

k S
v E

K S


 




  ,                                                                                                                                   (12) 

where the constant 0[ ]E  is the analytical concentration of enzyme in the compartment Φ and 

M
r cat

f

k k
K

k


 .                                                                                                                                                       (13) 
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Equation (12) is valid for both the species in the culture medium and those in the intracellular 
space. We also assume that the values of the kinetic constants kf, kr and kcat are the same in both 
compartments. 

3.2.2.2 Gelation 

The gelation is the reaction by which the hydrogelator monomers P organize into non-covalent 
polymeric aggregates, which then entangle to form a gel network. We model the gelation as a 
simple precipitation reaction whose kinetic law – which can be justified on thermodynamic 
arguments – reads:. 

1[ ] ([ ]) ([ ] ([ ]))gel g s g gsv k P k G k P K G           ,                                                                                  (14) 

where kg, ks and Kgs are constants and ([ ])G  is the step function 

0 0
( ) .

1 0

if x
x

if x


   

                                                                                                             (15)  

We added the step function ([ ])G to account for the fact that the chemical potential of G is 

defined only if there are molecules of G (or in other words, if [GΦ] > 0) in the Φ compartment; if 
no G molecules are present, the reaction proceeds irreversibly from P to G. 

Effect of the precursor on the gelation process. So far we have assumed that the only species 
responsible for the formation of the gel is the hydrogelator P. Experiments, however, show that 
the precursor S also has the ability to form hydrogels at large enough concentrations. Since both 
species can form hydrogels, we cannot a priori exclude the possibility that the presence of the 
precursor may affect the hydrogelation properties of the hydrogelator. In order to check if this is 
the case, we have experimentally measured the critical concentration for the gel formation - to 
which we refer as CMC, since the experimental technique we used is the same as the one to 
determine the critical micelle concentration in surfactant solutions - for solutions of hydrogelator 
and precursor with varying percentage of precursor: 0% (only the hydrogelator), 25%, 50%, 75% 
and 100% (only the precursor). The trend for the DL-1-SO3, LD-1-SO3 and DD-1-SO3 
stereoisomers (see Figure S9) shows that the larger the precursor percentage the higher the CMC. 
This can be due either to an interaction between the precursor and the hydrogelator or simply 
because of dilution effects of the hydrogelator content as its percentage decreases, which would 
therefore require higher total concentrations to reach the same CMC value of the hydrogelator-
only solution. To test the validity of this second hypothesis, we assumed that the hydrogelator 
concentration required to form the gel would be independent on the concentration of the 
precursor, so we projected the value CMC0 of the CMC for the hydrogelator-only solution for the 
different values of precursor percentage %s assuming that this would only entail a simple 
dilution effect according to the expression 
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0
mod 1 0.01%el

S

CMC
CMC 


                                                                                                                                       (16) 

Figure S9 shows a direct comparison between the experimentally measured CMC values and the 
theoretical values CMCmodel. As we can see, the hypothesis behind equation (16) closely matches 
the experimental data for a very large range of compositions, at least up to 75% composition in 
precursor. The deviations between the model and the experiments are larger for the DL-1-SO3, 
than the LD-1-SO3 than the DD-1-SO3 stereoisomers, but in all three cases they may be 
noticeable only for highly concentrated solutions. Since in our experiments we work with 
solutions up to a maximum initial precursor concentration of 500 µM (for which no gelation is 
observed), we can therefore neglect both the gelation of S and any possible co-precipitation 
effects between S and P. We will therefore continue to assume - as we did so far - that the gel 
formation is exclusively driven by the precipitation of the hydrogelators. Under these conditions 
we have 

1
0gsK CMC                                                                                                                                                              (17) 

3.2.2.3 Trapping 

The third chemical reaction that we take into account is the trapping of precursor molecules 
within the gel network of the hydrogelator during gelation. We needed to include such a process 
in our model in order to rationalize the trends observed in experimental data for the hydrolysis of 
the DL-1-SO3, LD-1-SO3 and DD-1-SO3 ester in the absence of cells. 

Justification. When the enzyme E is added to a solution of the precursor S, we observe that the 
concentration of S decreases over time due to the hydrolysis reaction (11) and the subsequent gel 
formation. Since the second step of the Michaelis-Menten scheme (11) is irreversible, we should 
see the concentration of S drop to zero asymptotically in time. However this is not what happens 
when the reaction is run in an aqueous solution in the absence of cells (see Figure S12): what we 
observe instead is that for different initial concentrations, the measured concentration of S 
approaches different nonzero plateau. This trend, which is qualitatively true for all three 
stereoisomers, can be explained by assuming that some molecules of S are “trapped” within the 
gel network formed by the P molecules and are therefore unable to participate in the hydrolysis 
reaction (11): since what we measure experimentally is the total concentration of S molecules - 
whether trapped in the gel or free in the solution - this pool of trapped and nonreactive S 
molecules will keep the total measured concentration of S larger than zero even after all the S 
molecules in the solution have irreversibly been hydrolyzed. 

This trapping hypothesis is justified on the basis that in an aqueous solution of mostly S and a 
catalytic concentration of E, the newly formed gel clusters will have a high probability to 
encounter an S molecule and therefore include it in some of the vacancies of the gel network. 
The same process becomes however quite unlikely when the gel is formed in the highly crowded 



S20 
 

and structured intracellular space, especially given the fact that the S molecules are gradually 
transported inside the cell from the culture medium and they never get the chance to accumulate 
too much before being converted to P and then to G. We therefore assume no trapping 
mechanism for the intracellular gel formation. 
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Figure S9. Comparison between the experimentally measured CMC values (blue squares) and 
CMCmodel (red disks) for different percentages %S of precursor, for the three stereoisomers DL-1-
SO3 (top), LD-1-SO3 (middle), DD-1-SO3 (bottom). The CMC is expressed in µM units. 

Modeling. The trapping reaction occurs when some molecules of S get surrounded and trapped 
by polymers of P molecules as soon as the latter assemble into the gel G. A simple but effective 
way to model this situation is to idealize the trapping as an irreversible and immediate 
“adsorption” of S molecules on the newly formed layers of G according to the reaction scheme 

* ,trapk

GS Z                                                                                                                                                     (18) 

Where *G represents an empty spot in the gel network available to S, and Z is the symbol that we 
use to identify the trapped S molecules. The associated reaction rate reads 

[ ][* ]trap trap Gv k S                                                                                                                                                   (19) 

The concentration of free empty sites [* ]G
  directly (we assume linearly) depends on the 

concentration of G and is reduced by the concentration of Z: 

[* ] [ ] [ ]G G Z                                                                                                                                                  (20) 

Where ζ is a gel-specific constant representing the average number of empty sites in the gel 
structure per molecule of G available to the inclusion of one molecule of S. The velocity of the 
trapping reaction therefore reads 

[ ]( [ ] [ ])trap trapv k S G Z                                                                                                                                (21) 

It is important to notice that in order for the above model to be representative of the physical 

picture we outlined above, we must at some point let ktrap → ∞. This condition will be used 

afterwards in the form of a quasi-steady-state approximation for the concentration of Z when 
deriving the final form of the evolution equations in subsection 3.2.5.1. 

3.2.3 Transmembrane transport 

Now we want to derive suitable expressions for the rates of transport X
inv  and X

outv  of a certain 

species X from the culture medium to the intracellular space and from the intracellular space to 
the culture medium. In order to model the transport of molecules across the cell membrane, we 
start from microscopic arguments and then derive appropriate average mean-field equations. 

We start by breaking down the transport process in the sum of two independent processes: 
transport of molecules from the culture medium M to the intracellular space C and transport from 
C to M. We assume that both these transport processes are passive and driven only by simple 
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random motion of the molecules, and we also approximate the cell membrane to a simple 
semipermeable membrane. 

 

Figure S10. Schematic representation of the two ideal systems used to derive the transport term. 
On the left, a system composed by two compartments (I and II) separated by a semipermeable 
membrane. On the right, a system composed by a number of vesicles (idealizing the cells, whose 
total inside space we refer as C) surrounded by an external medium (in our case being the culture 
medium, labeled as M). 

In order to gain insight on these two processes, we first notice that if we have two compartments 
I and II (see left picture in Figure S10) separated by a membrane, which is permeable to the 
molecules of a certain species X, the transport from - say - compartment I to compartment II will 
be possible only if there is a molecule in compartment I that will hit the membrane with the right 
energy and orientation and if there is enough room for the molecule in compartment II after it 
has crossed the membrane. From these considerations, we can estimate that  

[ ][* ]I II
X

surfX
I II

tot

A
v X

V                                                                                                                   (22)   

[ ][* ]II I
X

surfX
II I

tot

A
v X

V   .                                                                                                              (23) 

Notice that the reference bulk concentrations of XI, XII, *I
X  and *II

X  must be relative to the 

volume of the respective compartments, and not to the total volume. 

If we now consider the situation (see right picture in Figure S10) where one of the two 
compartments - let's call it C - is a collection of small volumes entirely surrounded by the 
semipermeable membrane and immersed in the volume of the other compartment - which we 

now call M - the above physical arguments remain exactly the same with X
M Cv   and X

I IIv   being 

exactly X
inv  and X

outv . If we call Acell the average area of one single cell, we can express the total 

area of cell membrane per total volume as 
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surf C
cell cell

tot tot

A N
A A C

V V
  ,                                                                                                             (24) 

So that the two transport rates read 

[ ][* ]X M C
in cell Xv A C X                                                                                                                   (25) 

[ ][* ]X C M
out cell Xv A C X  .                                                                                                               (26) 

If we assume that the concentrations of empty sites [* ]M
X  and [* ]C

X  both in the medium and in the 

intracellular space is large enough to be considered as a constant, we can express the rates for the 
inside and outside transport processes as 

[ ]X X M
in in cellv k V C X                                                                                                                                               (27) 

[ ]X X C
out out cellv k V C X ,                                                                                                                                            (28) 

Where for convenience reasons we have explicitly multiplied by the cell volume and included 

the area dependence inside the two proportionality constants X
ink  and X

outk , which are entirely 

system specific. 

In our model, we assume that only S can cross the membrane. The species G and Z cannot cross 
the membrane because they are part of a gel network which is too large. In principle P could also 
cross the membrane, but for the sake of simplicity we will neglect its transport. The reason is that 
the concentration of P quickly equilibrates to its constant CMC value because of the gelation 
process both inside and outside the cells, thus creating a zero gradient across the membrane and 

instantly reverting any change due to transport. This makes the precise fitting of P
ink  and P

outk  

from our available data particularly difficult and unreliable. We therefore prefer to incorporate 
all the possible kinetic effect due to the transport of molecules that would eventually produce G 

in S
ink  and S

outk , which then play the role of defining an overall effective diffusion of molecules 

between the inside and the outside of the cells. 

3.2.4 Cellular proliferation and death  

In this subsection, we derive appropriate expressions for the terms ( )t biod X   which represent 

the changes that occur to the total concentrations |XΦ| of the molecular species when cells are 
born and killed. Since the two biological processes that occur to the tumor cells are the birth of 
new cells and the death of existing cells induced by the intracellular gel, we can divide the above 
term as the sum of two quantities: 
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( ) ( ) ( )t bio t birth t deathd X d X d X    .                                                                                                       (29) 

3.2.4.1 Cell proliferation 

A preliminary consideration is that we do not take into account any natural death process for the 
tumor cells: one of the problems of tumor cells is that they do not naturally die, but they just 

keep on doubling their population with rate dk C . We refer to this process as the cell 

proliferation or doubling. 

Recall that a fundamental assumption we make in this model is that the total volume Vtot = 
VM+VC is constant. This means that when a new cell is born, thus increasing VC, it occupies 
some volume that was part of VM. But when this happens the number of molecules of any given 
species X that is present in either the M or C compartments do not change: when a cell duplicates, 
its content is now shared between the two new cells, which keeps the number of molecules inside 
the C compartment (given by the collection of all the cells) constant. As a result the 
concentrations [XM] of the species in the culture medium increase, while the concentrations [XC] 
of the species inside the intracellular space get more diluted. However, since both the number of 
molecules inside the two compartments and the total volume stay constant, the concentrations 

|XM| and |XC| hardly change because of the cell birth process. Since the term ( )t birthd X   

accounts for the changes of these latter concentrations, we can safely say that 

( ) 0t birthd X    .                                                                                                                                                    (30) 

3.2.4.2 Cell death  

Cells are killed with rate ([ ])C
kk G C  which depends on the average concentration of G inside 

the cells. Once again, the advantage of working with concentrations over total volume |XM| is 
that we do not need to care about the changes in the volume of M or C and just focus on which 
compartment the molecules of X are. When a cell dies, we assume that its structure is eventually 
lost and therefore its content and volume become part of the extracellular medium. If every cell 

contains a number of moles cell
Xn of X, when a number ([ ])C

kk G C of cells die in the unit time, 

they will release a number of moles ([ ])C cell
k Xk G C n  of X in the culture medium. We can 

therefore write 

([ ]) ([ ])
cell

X C cell C X
death k X k cell

cell

n
v k G C n k G V C

V
                                                                                                 (31) 

In our mean-field approach this means 
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[ ]
cell C

CX X

cell C

n n
X

V V
                                                                                                                                                     (32) 

And hence 

([ ]) [ ]X C C
death k cellv k G V C X  .                                                                                                                             (33) 

3.2.4.3 Killing rate constant 

Finally we want to derive an explicit expression for the killing rate constant kk([GC]). 
Unfortunately we do not have too much information about the microscopic interaction between 
the gel and the cells and how the killing process precisely occurs. We know that in general cells 
die more quickly when the concentration of gel inside the cells is large. So we know that kk([GC]) 
must be a direct function of [GC] and that kk([GC]) = 0 for [GC] = 0. The simplest function that 
comes to mind with these properties is of course a linear function kk([GC]) = cst [GC], but when 
we tried to fit the cytotoxicity data with this function we did not obtain a very good match 
between the model and the experimental data. 

 

Figure S11. Plot of the general shape of the killing rate constant kk([GC]) as a function of [GC]. 
The function defined by equation (34) is plotted in purple. The red and blue straight lines 
respectively show the position of kk

0 and [GC]tr, while the green straight line has the same slope 
as kk([GC])at the inflexion point. 

We therefore decided to use a nonlinear “S-shaped” functional which starts from zero, slowly 
increases until it comes in the proximity of a threshold value [GC]tr at which point the slope 

increases to a value σ, and then asymptotically approaches a plateau value 0
kk  (see Figure S11). 

Among all the possible sigmoidal functions with these properties, we chose to use the hyperbolic 
tangent functional 
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0

([ ]) (1 tanh(2 ([ ] [ ] )))
2

C C Ck
k tr

k
k G G G   .                                                                                                (34) 

3.2.5 Final equations 

Now that we have constitutive relations for all the processes occurring in our system, we can 
finally combine them to obtain the final form of the evolution laws for the concentration 
variables. Let's start by re-writing equations (8)-(9) in the more explicit form 

( )[ ]
( [ ] ( [ ]) [ ])

1

MM
t transM M M

t hydr t gel t trap

cell

d Xd X
d X d X d X

dt CV
   


 

                   
( )

( ( ([ ]))[ ]
1

M
t deathcell C M

d k

cell cell

d XCV
k k G X

CV CV
  


                                                                    (35) 

( ) ( )[ ]
( [ ]) ( [ ]) ( ([ ]))[ ]

C CC
t trans t deathC C C C

t hydr t gel d k

cell cell

d X d Xd X
d X d X k k G X

dt CV CV
       .            (36) 

Table S7. Summary of the kinetic terms in the evolution laws for each of the molecular variables 
in our model. 

 

The five contributions in the above equations for each variable can be found by multiplying the 
rate of the respective process by the net stoichiometric coefficient of the species in that process. 
Table S7 offers a schematic summary of the different terms for the seven molar concentration 
variables in our system. The different terms in Table S7 are defined by equations (12), (14), (21), 
(27), (28) and (33). The system is therefore fully described by the following eight evolution 
equations: 
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( ([ ]))C
d k

d C
k k G C

dt
                                                                                                                                      (37) 

0[ ] [ ][ ]
[ ]( [ ] [ ])

[ ]

M MM
M M Mcat

trapM
M

E k Sd S
k S G Z

dt K S
   


  

               ( [ ] [ ]) ( [ ] ([ ])([ ] [ ]))
1 1

cell cellS M S C M C M C
in out d k

cell cell

CV CV
k S k S k S k G S S

CV CV
    

 
                (38) 

10[ ] [ ][ ]
([ ] ([ ]))

[ ]

M MM
M Mcat

g gsM
M

E k Sd P
k P K G

dt K S
    


  

               ( [ ] ([ ])([ ] [ ]))
1

cell M C M C
d k

cell

CV
k P k G P P

CV
  


                                                                           (39) 

1[ ]
([ ] ([ ])) ( ([ ]))[ ]

1

M
cellM M C M

g gs d k

cell

CVd G
k P K G k k G G

dt CV
     


                                                   (40) 

[ ]
[ ]( [ ] [ ]) ( ([ ]))[ ]

1

M
cellM M M C M

trap d k

cell

CVd Z
k S G Z k k G Z

dt CV
    


                                                 (41) 

0[ ] [ ][ ]
[ ] [ ] [ ]

[ ]

C CC
S M S C Ccat
in out dC

M

E k Sd S
k S k S k S

dt K S
    


                                                                               (42) 

10[ ] [ ][ ]
([ ] ([ ])) [ ]

[ ]

C CC
C C Ccat

g gs dC
M

E k Sd P
k P K G k P

dt K S
     


                                                                    (43) 

1[ ]
([ ] ([ ])) [ ]

C
C C C

g gs d

d G
k P K G k G

dt
                                                                                                       (44) 

Gel release because of cell death. While most terms in Table 1 can be straightforwardly derived 
based on what we have said so far, we feel that some comments are due in regard to the death 
term for GM. Equation (40) is derived by assuming 

( ) 0M
t deathd G                                                                                                                                                       (45) 

Instead of ( )M G
t death deathd G v  , as it would be expected by simply looking at the general form 

of equation (35). The translation of (45) in physical terms is that when the cells die the amount of 
gel inside them does not add up to the pool of gel already present in the culture medium. The 
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reason of this choice is that the two types of gels have very different composition and structure 
and it would therefore not be a wise choice to simply assume that they can both be described as 
GM, even if they are both present in the medium. 

3.2.5.1 Fast trapping 

In section 3.2.2.3, we stated that in order for our modelling of the trapping mechanism to be 

effective, we need to let ktrap →∞. This means that the first term in (41) reaches its equilibrium 

value in a much faster time scale than the second term. As we hinted back in section 3.2.2.3, this 
implies that the value of [ZM] can be considered always in a quasi-steady state given by the 
solution of 

[ ]( [ ] [ ]) 0M M M
trapk S G Z   ,                                                                                                                            (46) 

Or in other words 

[ ] [ ]M MZ G .                                                                                                                                                       (47) 

It is important to notice that this condition makes sense only if [SM]   0, and it states that as 
long as we have S in the solution, we will form a gel with a constant composition in Z.  

Thanks to the above condition, we can rearrange equation (41) as 

[ ]
[ ]( [ ] [ ]) ( ([ ]))[ ]

1

M
cellM M M C M

trap d k

cell

CVd Z
k S G Z k k G Z

dt CV
    


 

                                                
[ ]

( ( ([ ]))[ ])
1

M
cell C M

d k

cell

CVd G
k k G G

dt CV
  


 

                                                
1([ ] ([ ]))M M

g gsk P K G     ,                                                                              (48) 

Which allows to re-write the balance equation (54) for S as 

10[ ] [ ][ ]
([ ] ([ ])) ( [ ] [ ])

[ ] 1

M MM
cellM M S M S Ccat

g gs in outM
M cell

CVE k Sd S
k P K G k S k S

dt K S CV
       

 
 

                   ( [ ] ([ ])([ ] [ ]))
1

cell M C M C
d k

cell

CV
k S k G S S

CV
  


 .                                                                         (49) 

Equation (49) together with equations (37), (39), (40), (42), (43) and (44) form now a system of 
seven closed equation in seven variables which can be numerically integrated to fit the 
experimental data. 
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3.2.5.2 Nondimensionalization 

In order to facilitate the fittings and have a better comparison between the different datasets, it is 
convenient to partially nondimensionalize the evolution laws by properly scaling some of the 
variables and parameters. 

Since all the experiments start with an initial number 
0

C  of cells per total volume, an initial 

concentration [SM]0 of SM and zero concentrations of all the other species (except the enzyme), it 
is reasonable to scale all the molecular concentrations (except the enzyme's one) by [SM]0 and 

C  by 
0

C : 

0 0 0 0

[ ] [ ] [ ] [ ]
, , ,

[ ] [ ] [ ] [ ]

M M M M
M M M M

M M M M

S P G Z
s p g z

S S S S
                                                                 (50) 

0 0 0 0

[ ] [ ] [ ]
, , ,

[ ] [ ] [ ]

C C C
C C C

M M M

CS P G
s p g c

S S S C
    .                                                                       (51) 

As for the enzyme, since we adopt a Michaelis-Menten kinetics we are only interested in its 
analytical concentration [E]0. This value is different inside and outside the cells, therefore we 
need to somehow keep track of both [EM]0 and [EC]0. The situation is complicated by the fact that 
the enzyme concentration [Eh]0 relative to the dataset used to fit the kinetic constants of the 
hydrolysis/gelation/trapping reactions - see section 3.2 - is different from both [EM]0 and [EC]0. 
Instead of trying to fit the actual values of [Eh]0, [EM]0 and [EC]0 we prefer to define a scaled 
version of kcat by [Eh]0 and use the ratio between the different enzyme concentrations as fitting 
parameters: 

0 0
0

0 0

[ ] [ ]
[ ] , ,

[ ] [ ]

M C
h M C

cat cat h h

E E
k E k

E E
   % .                                                                                        (52) 

For the sake of a simpler notation we also set 

0 0 0, [ ] , ,M S S
cell in in out outC CV S S k k k k    .                                                                               (53) 

Thanks to these definitions we can re-write the governing equations of our system as 

0( ( ))C
d k

dc
k k S g c

dt
                                                                                                                                           (54)

1 0

0 0

( ( )) ( )
1

M MM
M M M Ccat

g gs in outM
M

k s C cds
k p K g k s k s

dt K S s C c

        
 

%
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           0
0

0

( ( )( ))
1

M C M C
d k

C c
k s k S g s s

C c
  


                                                                                                (55)  

1 0
0

0 0

( ( )) ( ( )( ))
1

M MM
M M M C M Ccat

g gs d kM
M

k s C cdp
k p K g k p k S g p p

dt K S s C c

        
 

%
                        (56)

1 0
0

0

( ( )) ( ( ))
1

M
M M C M

g gs d k

C cdg
k p K g k k S g g

dt C c
     


                                                                      (57)

0

C CC
M C Ccat

in out dC
M

k sds
k s k s k s

dt K S s


    



%
                                                                                                    (58)

1

0

( ( ))
C CC

C C Ccat
g gs dC

M

k sdp
k p K g k p

dt K S s

      


%
                                                                                        (59)

1( ( ))
C

C C C
g gs d

dg
k p K g k g

dt
                                                                                                                      (60) 

The above set of ODEs - or suitable subsets of it - can be numerically integrated with initial 
conditions 

(0) (0) 1 (0) (0) (0) (0) (0) 0M M M C C Cc s and p g s p g                                                 (61) 

To fit the values of the control parameters on the experimental data. 

3.3 Data fitting 

In this section, we use the general model (54)-(60) to estimate the values of the control 
parameters from experimental data. Our aim is to compare the values for the DL-1-SO3, LD-1-
SO3, and DD-1-SO3 stereoisomers, and to understand the reason behind their different 
cytotoxicity. The model contains 15 parameters which we conveniently divide into 4 groups: 

 Group 0: S0, C0, kd, kg, Kgs. Parameters that we can directly measure or estimate from the 
literature. 

 Group 1: catk% , KM, ζ. Parameters related to the chemical reactions occurring within each 

compartment. 

 Group 2: δM, δC, kin, kout. Parameters related to the transport between M and C and to the 
different enzymatic concentrations in the two compartments. 

 Group 3: 0
kk , σ, [GC]tr. Parameters characterizing the cytotoxicity of the intracellular gels. 

While the parameters in Group 0 do not require to be fitted, we use a numerical fitting procedure 
to obtain the values of the other parameters. Our approach is to fit Group 1, Group 2 and Group 3 
in this order, on datasets coming from ad-hoc experiments. 
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All the fittings are performed by using the FindFit function of Mathematica, with the NMinimize 
method option, starting from default initial conditions and with no constraints on the parameters 
range. The ODE solver used in the fitting algorithm is the ParametricNDSolveValue function of 
Mathematica with default options. In order to facilitate the fittings, we introduce each parameter 
Θ as a power of 10, so that we effectively fit log10 Θ. 

3.3.1 Known parameters (Group 0) 

Initial concentrations of precursor. We perform experiments with different initial concentrations 
S0 of precursor, ranging from 20 to 500 µM. The exact values of S0 will be given for each dataset. 

Number of cells, cell volume and volume of culture medium. We can calculate the value of the 

parameter 0
cell cell

M cell cell

N V
C

V N V



 starting from the known values of the number of cells Ncell, the 

cell volume Vcell and the volume of culture medium VM. The volume of aqueous precursor 
solution used in all experiments is VM = 10 mL. The number of cells used in the experiments 
relative to groups 2 and 3 is Ncell = 2×106. The average cell volume for the types of tumor cells 
we use is Vcell = 5000 µm3. As a result we can estimate C0 = 10−3. 

Cell doubling rate constant. The reported doubling time for the type of cells we use is td = 1 day. 

We can estimate the doubling rate constant as 
ln 2

d
d

k
t

  = 4.81×10−4 min−1. 

Gelation rate constant. One of our assumptions is that the gelation of P into G is a very fast 
process. One way to use this assumption could be to derive a quasi-steady state approximation 
for P or a pre-equilibrium approximation for the gelation process itself. However, given the 
discontinuous nature of the gelation kinetic law, such approaches would either not give a 
satisfactory representation of the early stages of the kinetics, or produce a much more 
complicated set of evolution laws. For this reason, we prefer to keep the expression of the 
gelation kinetics as it is and implement its fast time scale in a purely numerical way, by assigning 
a wisely chosen arbitrary large value to kg. A value of 105 min−1 ensures that the time scale of the 
gelation process (when it occurs) is much faster than any other time scale in the model. Larger 
values of kg do not appreciably change the final global dynamics, while making the fitting code 
computationally more demanding. Hence we set kg = 105 min−1. 

Gelation equilibrium constant. The equilibrium constant Kgs for the gelation process of each of 
the stereoisomers can be directly calculated from the values of CMC0 measured in the 
experiments plotted in Figure 2, by using equation (17). The values of CMC0 and Kgs for the 
three stereoisomers are: 

2 1
0 76.1 , 1.31 10DL DL

gsCMC M K M      ,                                                                                          (62) 
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2 1
0 45.7 , 2.19 10LD LD

gsCMC M K M     ,                                                                                          (63) 

2 1
0 22.1 , 4.52 10DD DD

gsCMC M K M     .                                                                                         (64) 

3.3.2 Chemical reactions (Group 1) 

In order to fit the parameters of group 1, we isolated the kinetics of hydrolysis and gel formation 
by performing experiments in absence of cells. For each stereoisomer, we measured the variation 
of the concentration of precursor in time starting from three initial precursor concentrations: 100, 
200, and 500 µM. The analytical concentration of enzyme is the same for all the experiments. 

Since the physically measurable quantities are the total concentrations of precursor and 
hydrogelator - regardless if in solution or in the gel form - we define the two additional variables 

w s z and y p g                                                                                                                               (65) 

And derive suitable evolution laws for them. The experiments are then fully described by the 
following subset of our model: 

%

0

cat

M

dw k s

dt K S s
 


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In order to find the value of catk% , KM and ζ we numerically integrate equations (66)-(70) and fit 

the simulated time series of w - i.e. the total concentration of precursor - on the experimentally 
measured values after 1, 2, 4, 6, 8, 12, 24 and 36 hours. 

The fittings have been performed in a multivariate fashion and by considering the three 

stereoisomers separately: for each stereoisomer we fitted the values of catk% , KM and ζ on the three 

time series relative to different S0 at the same time (effectively considering S0 as an additional 
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independent variable just like the time). The outcome of the fitting is shown in Figure S12. The 
fitted values of the parameters are reported in the summary Table 1. 

One thing to notice in Figure S12 is that, although our model qualitatively reproduces the trend 
of all the three stereoisomers, the quantitative agreement is better for DD-1-SO3 than for LD-1-
SO3 than for DL-1-SO3. This echoes the trend observed in Figure S9 for the discrepancies 
between the values of CMC calculated with equation (16) and the experimentally measured 
values. Remember that equation (16) is a direct consequence of our assumption that the gelation 
of the hydrogelator can be considered independent of the concentration of precursor and the 
gelation of precursor can be neglected. It is reasonable to think when this approximation 
represents less accurately the gelation mechanism, we would obtain less accurate fittings of the 
hydrolysis/gelation process Since however our scope here is to use relatively simple arguments 
to understand the source of the different cytotoxicities of the three different stereoisomers, the 
level of accuracy of the fittings in Figure S12 is entirely within our desired tolerance. 
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Figure S12. Measured (dots) and fitted (lines) time series for the hydrolysis experiments in the 
absence of tumor cells, for three different values of S0: 100 µM (blue), 200 µM (red) and 500 
µM (green). The top plot refers to the DL-1-SO3 stereoisomer, the center one to the LD-1-SO3 
and the bottom one to the DD-1-SO3. 

3.3.3 Transmembrane transport (Group 2) 

The group 2 parameters are associated with the transport of precursor across the cell membrane 
and with the overall velocity of reaction within each compartment (controlled by the 
concentration of enzyme). In order to obtain experimental time series that are representative of 
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these processes alone, we performed experiments in conditions under which the population of 
cells can reasonably be considered as a constant. To reduce population changes due to cell 
doubling we limited our measures to shorter times (1, 2, 4, 8 and 12 hours) than the doubling 
time (1 day). In order to limit the amount of cell death due to the action of the drug, we used a 
moderate initial concentration of precursor (100 µM). Under these conditions we can assume c = 
c(0) = 1 and neglect the terms in the model associated to cell doubling or death, so that the 
equations describing this system are: 

0

0 0

( )
1

M MM
M Ccat

in outM
M

k s Cdw
k s k s

dt K S s C


   

 

%
                                                                                               (71) 

0

M MM
cat

M
M

k sdy

dt K S s


 



%
                                                                                                                                             (72) 

0

C CC
cat

C
M

k sdy

dt K S s


 



%
                                                                                                                                              (73) 

1 0

0 0

( ( )) ( )
1

M MM
M M M Ccat

g gs in outM
M

k s Cds
k p K g k s k s

dt K S s C

        
 

%
                                                  (74) 

1

0

( ( ))
M MM

M Mcat
g gsM

M

k sdp
k p K g

dt K S s

     


%
                                                                                                  (75) 

1( ( ))
M

M M
g gs

dg
k p K g

dt
                                                                                                                                (76) 

0

C CC
M Ccat

in outC
M

k sds
k s k s

dt K S s


   



%
                                                                                                                  (77) 

1

0

( ( ))
C CC

C Ccat
g gsC

M

k sdp
k p K g

dt K S s

     


%
                                                                                                     (78) 

1( ( ))
C

C C
g gs

dg
k p K g

dt
                                                                                                                                   (79) 

The values of δM and δC only depend on the intracellular and extracellular concentrations of 
enzyme and are therefore the same for all the three datasets relative to the three stereoisomers. 
As for the transport rate constant kin and kout, since we didn't assume any active transport by the 
cell membrane we have no valid reason to think that they should be different for the three 
different stereoisomers: in the absence of some sort of active chemical recognition by the 
membrane, the three stereoisomers have the same physical properties with regard to the transport 
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process (same mass, same average velocity, same volume, etc) because they are essentially the 
very same molecules but whose groups are oriented in different directions. We therefore assume 
that the values of all the parameters at group 2 are the common to the three stereoisomers. As a 
consequence, we fit them on all the datasets relative to the different stereoisomers at the same 
time. What we can measure experimentally are the total concentrations of precursor and 
hydrogelator inside and outside the cells at different times. We therefore performed the fitting by 
numerically integrating the system of equations (71)-(79) and then fit the values of wM, yM, sC 
and yC at the same time. In other words, the fitting have been performed in a multivariate fashion 
considering the time, the chemical species and the stereoisomer type as independent variables. 
Figure S13 shows the outcome of the fitting, while the values of δM, δC, kin, and kout are reported 
in Table 1. As it can be seen from picture S13, the fitted curves are in good quantitative 
agreement with the experimental points.  
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Figure S13. Measured (dots) and fitted (lines) time series for the short-times transport 
experiments starting with an initial concentration of 100 µM. The different colors refer to 
different variables: wM (blue), yM (red), sC (green) and yC (purple). The top plot refers to the DL-
1-SO3 stereoisomer, the center one to the LD-1-SO3 and the bottom one to the DD-1-SO3. 
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3.3.4 Cytotoxicity (Group 3) 

 Finally the only parameters left to fit are those relative to the cytotoxicity of the three gels, or in 

other words the three quantities 0
kk , σ and [GC]tr characterizing the killing rate constant 

functional (34). In order to fit these quantities we place the tumor cells in solutions at different 
initial concentrations of precursor – 20, 50, 100, 200 and 500 µM - and we measure the cell 
viability after 12, 24, 48 and 72 hours of incubation. The cell viability ρ is calculated as the ratio 
between the number of live tumor cells in the test solution at a certain time divided by the 
number of cells in a fresh culture medium (control group) at the same time. The fresh culture 
medium in control group has the same volume and the same initial number of cells as the test 
solution, but it contains no precursor. If we call cctrl the adimensional concentration of cells in the 
control system, we can define the cell viability as 

ctrl

c

c
                                                                                                                                                                      (80) 

Given that the dynamics of control system is fully described by the evolution equation 
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While the evolution equation for the cells in the test system reads - see equation (57) - 
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We can derive an explicit differential equation for the time evolution of ρ: 
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Equation (83) together with equations (54)-(60) and (34) - which for convenience reasons we re-
write hereafter - fully describe the dynamics of our system: 
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In order to fit the values of 0
kk , σ, and [GC]tr we numerically integrate the systems of equations 

(84)-(92) and fit the value of ρ on the experimentally measured viability data at different times. 
Since the gel structure and interaction with the cell is different for each stereoisomer, we perform 
three separate fittings for the three stereoisomers. For each stereoisomer, we fit the time series of 
ρ for the different S0 values at the same time, so that again we have an effectively multivariate 
fitting where t and S0 play the role of independent variables. Figures S14 and 7 show the 

outcome of the fittings, while the values of 0
kk , σ, and [GC]tr are reported in Table 1. By looking 

at the top row of plots in Figure S14, we can see that the model is quite successful in reproducing 
the trend of the experimental data. 



S40 
 

 

Figure S14 cell viability fittings for the DL-1-SO3 (left column), LD-1-SO3 (center column) and 
DD-1-SO3 (right column). The top row shows the experimentally measured values of the cell 
viability (points) and the fitted values of ρ calculated with model (100)-(108) (lines) for different 
values of S0: 20 µM (blue), 50 µM (green), 100 µM (orange), 200 µM (red) and 500 µM (purple). 
The center row shows the intracellular gel concentration as a function of time predicted by the 
model for the different values of S0 (color coding is the same as top row). The bottom row shows 
the values of the killing rate constants of the three stereoisomers DL-1-SO3 (dark blue), LD-1-
SO3 (dark red) and DD-1-SO3 (dark green) as a function of the intracellular gel concentration 
[GC]. 

 


