Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/4/4/eaar2632/DC1

Supplementary Materials for

The delivery of water by impacts from planetary accretion to present

R. Terik Daly and Peter H. Schultz

Published 25 April 2018, *Sci. Adv.* **4**, eaar2632 (2018) DOI: 10.1126/sciadv.aar2632

This PDF file includes:

- Supplementary Text
- fig. S1. TG data for the target and projectile.
- fig. S2. XRD data for the target and projectile.
- fig. S3. XRD patterns for impact glasses and breccias.
- fig. S4. Comparison between observed and modeled XRD patterns.
- table S1. Summary of experiments.
- table S2. Composition of antigorite relics measured by EMP (wt %).
- table S3. Results of TGA analyses.
- table S4. Results of FULLPAT modeling.
- table S5. Summary of Beer-Lambert results.
- table S6. Compositions of projectile, target, and impact products.
- table S7. Projectile retention efficiencies.
- Reference (48)

Supplementary Text

Detailed description of alternative sources of water

In addition to the antigorite projectile, impact materials could incorporate water from the heattreated pumice target, from the residual atmospheric water vapor in the impact chamber, from a monolayer of water molecules adsorbed onto the pumice, or during the time that elapsed between the experiments and TG analyses.

Option 1: Target-derived water. As described in the Results section, the heat-treated pumice contained 0.13 wt.% OH + H_2O . To compensate for this water, 0.13 wt.% was subtracted from the weight loss of each sample prior to calculating water content. For example, if a sample lost 1% of its mass, only 0.87% was used in our calculations of the amount of water derived from the projectile.

Option 2: Atmospheric water vapor in the impact chamber. During these experiments the pressure in the impact chamber was between 5.0 and 6.3 x 10^{-4} atm. Impact products may have trapped some of the residual water vapor in the chamber. On the warmest day that the experiments were conducted, the average temperature was 21.7° C (71° F). The maximum relative humidity was 86%. The dew point was 12.8° C (55° F). The atmospheric pressure was 29.98 inches of Hg (data for 13 July 2016 at the Moffett Federal Airfield; accessed via *wunderground.com*). Hence, the absolute humidity was 16 g m⁻³. The impact chamber has a volume of about 59 m³. Prior to pumping, the air in the impact chamber would have contained 944 g of water vapor. Once the chamber was pumped down to 5 x 10^{-4} atm, however, the chamber only contained ~19 mg of water vapor, most of which would be adsorbed on the interior surfaces of the chamber. Furthermore, the impact products only interacted with a tiny volume (<1%) of the residual gas in the impact chamber. By comparison, the antigorite projectiles contained ~60 mg of OH. Thus, residual water vapor cannot significantly contribute to the water content of the breccias or glasses.

Option 3: Adsorbed monolayer of water. Another possibility is that a monolayer of adsorbed water coated pumice grains at the time of experiments. Such water might have been trapped along grain boundaries during shock lithification and contribute to the unusually high water contents of the breccias. However, simple calculations show that contribution is also negligible.

In order to calculate the amount of adsorbed water, the reactive surface area of the pumice must be known. Although the reactive surface area of the sieved airfall pumice has not been directly measured, it is likely similar to that of volcanic ash. Delmelle et al. (48) reported data for six samples of volcanic ash with particles <100 μ m. The pumice particles used in this study are <106 μ m. Hence, the measurements are relevant to the pumice particles used in the present study. The specific surface areas of the samples measured by Delmelle et al. (48) ranged from 1.1 to 2.1 m² g⁻¹. The density of surface OH groups on amorphous silica is 4.9 OH per square nanometer (21). Recovered breccias contain an average of 0.56 g of pumice. If the specific surface area of the pumice were 2.1 m² g⁻¹ and all reactive sites were hydroxylated, then the pumice in the breccias would contain ~5 x 10¹⁸ surface silanol groups. If every silanol were hydrogen bonded to a water molecule, then the total mass of water in the silanol and H₂O monolayer would be 0.3 mg, an amount equivalent to only ~0.05% of the mass of pumice in the breccias. If the specific surface area of the pumice were $1.1 \text{ m}^2 \text{ g}^{-1}$, then the total mass of adsorbed water would be ~0.2 mg (under the same assumptions), an amount equivalent to ~0.04% of the mass of pumice in the breccias. Given that breccias lost 2.0 to 2.7 wt.% during TGA, a pre-impact adsorbed monolayer on pumice particles is, at most, a very minor component of the water budget of breccias or glasses.

Alternatively, breccias might have trapped water desorbed from pumice particles during impact. Once released, this water vapor (derived from the target) might have be trapped in the breccias, analogous to the process proposed for water vapor derived from the projectile. The temperature required to remove an adsorbed monolayer of water is ~190°C for amorphous silica (21). The pumice exposed to these conditions is located beneath the point of impact and comes from a region roughly cylindrical in shape. The cylindrical region is about three projectile radii high (~9.5 mm) and three projectile radii in diameter. The density of the pumice is ~1.2 g cm⁻³. Therefore, this cylindrical region contains about 0.8 g of pumice. Using the same specific surface areas and assumptions as in the previous paragraph, an adsorbed monolayer could contribute between 0.2 and 0.5 mg of water. This amount is, at most, only 0.8% of the mass of water in the projectile. Hence, an adsorbed monolayer on pumice particles prior to impact cannot account for the high water contents of breccias and glasses.

Option 4: Post-impact addition of water. The fourth option is that breccias adsorbed water from their environment between the time of the experiments and the time of the TG analyses. Most adsorbed water should be removed by 100°C, yet the masses of the samples changed very little below 100°C: the breccias only lost 0.06 to 0.12 wt.% below 100°C (in contrast to the ~2 wt.% lost between 100 and 850°C). Furthermore, the antigorite equivalent calculations only considered mass losses between 190 and 850°C. Hence, post-impact adsorption or absorption cannot account for the high water contents of the breccias and glasses.

fig. S1. TG data for the target and projectile. Thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) profiles for (**A**) the heat-treated pumice target and (**B**) antigorite projectiles. The y-axis at left is for both TG and DSC profiles. For pumice, the DSC data have been divided by 10,000 and offset by +0.96 so they can plot on the same axis as the TG data. For antigorite, the DSC data have been divided by 300 and offset by +0.3 for the same reason. The y-axis at right is for the DTG data.

fig. S2. XRD data for the target and projectile. X-ray diffraction patterns for (**A**) the heattreated pumice target and (**B**) the antigorite projectile. The heat-treated pumice is predominately glass, with minor anorthite (An), tridymite (T), quartz (Q), muscovite (Ms), and hematite (H). The antigorite projectile is nearly pure antigorite (A) with only a minor amount of calcite (C).

fig. S3. XRD patterns for impact glasses and breccias. (**A**) and (**B**) show the patterns for impact glasses and breccias from experiment 160713, respectively. (**C**) and (**D**) show the patterns for impact glasses and breccias from experiment 160714, respectively. (**E**) and (**F**) show the patterns for impact glasses and breccias from experiment 160715, respectively. Peaks labeled "S" are due to the serpentine (antigorite) projectile, while peaks labeled "P" are from the pumice target. Forsterite (F) is a decomposition product of antigorite.

fig. S4. Comparison between observed and modeled XRD patterns. Each panel shows the observed pattern in blue and the model patterns produced by FULLPAT in red. Small gray graphs show the difference between the observed and modeled patterns. (**A**) and (**B**) show the patterns for glasses and breccias from experiment 160713, respectively. (**C**) and (**D**) show the patterns for glasses and breccias from experiment 160714, respectively. (**E**) and (**F**) show the patterns for glasses and breccias from experiment 160715, respectively.

table S1. Summary of experiments.

Exp. number	Impact angle	Target	Projectile	Projectile diameter	Weight (g)	Velocity (km s ⁻¹)	Impact glasses recovered (g)	Breccia pieces covered (g)	Antigorite relics recovered (g)	Total recovered mass (g)
160713	30°	Heat-treated pumice	Antigorite	6.35 mm	0.4894	5.00	0.4221	0.5686	0.0117	1.0023
160714	30°	Heat-treated pumice	Antigorite	6.35 mm	0.5152	5.12	0.5095	0.6501	0.0161	1.1758
160715	45°	Heat-treated pumice	Antigorite	6.35 mm	0.5090	5.12	0.4717	0.5754	0.0400	1.0870

table 52. Composition of antigorite refies measured by EAM (wt 70).											
Experiment ID	Spot	MgO	FeO_T	CaO	Al_2O_3	SiO_2	Total				
160713 (30°)	1	36.93	5.03	0.12	2.38	42.70	87.16				
	2	36.94	5.31	0.09	2.80	42.50	87.64				
	3	37.14	5.35	0.03	2.60	42.51	87.63				
	4	37.25	5.33	0.00	2.77	42.73	88.08				
	5	36.88	5.29	0.03	2.88	42.36	87.44				
	6	36.68	5.27	0.00	2.41	42.68	87.04				
	7	37.13	5.08	0.01	2.24	43.03	87.49				
160714 (30°)	1	37.63	5.04	0.00	1.86	43.60	88.13				
	2	37.25	5.04	0.00	2.15	43.16	87.60				
	3	36.95	4.90	0.00	2.04	43.30	87.20				
	4	36.85	5.21	0.00	2.36	42.99	87.41				
	5	37.10	5.06	0.00	2.27	43.35	87.77				
	6	36.85	5.14	0.01	2.32	42.84	87.16				
160715 (45°)	1	36.43	5.27	0.02	2.69	41.95	86.36				
	2	32.87	5.62	0.02	11.39	35.58	85.48				
	3	33.08	5.39	0.03	12.36	35.35	86.21				
	4	36.44	5.14	0.03	2.22	42.66	86.49				
	5	36.07	4.97	0.02	2.71	41.84	85.61				
	6	36.64	5.03	0.02	1.59	42.88	86.16				

table S2. Composition of antigorite relics measured by EMP (wt %).

table S3. Results of TGA analyses.

	In	npact Glass	es	Breccia Pieces			
	160713 (30°)	160714 (30°)	160715 (45°)	160713 (30°)	160714 (30°)	160715 (45°)	
Initial mass (mg)	14.8954	25.5023	14.0491	12.0232	11.2297	26.9499	
Mass at 190 °C (mg)	14.8358	25.4219	14.0001	11.9440	11.1499	26.7706	
Mass at 850 °C (mg)	14.7480	25.2949	13.9360	11.7660	10.9640	26.1830	
Mass Loss: Initial to 190 °C (wt.%)	0.40%	0.32%	0.35%	0.66%	0.71%	0.67%	
Mass Loss: 190 to 850 °C (wt.%)	0.59%	0.50%	0.46%	1.49%	1.67%	2.19%	
Start of major mass loss event (°C)	515	600	495	590	515	570	
End of major mass loss event (°C)	750	730	730	740	740	740	
Mass loss during event (wt.%)	0.18%	0.14%	0.17%	0.47%	0.74%	1.18%	
DSC minimum (°C)	178	145	194	149	147	140	
	146	145 660	154 700	155 350	150 340	153 475	
		690		430	410	640*	
Temperatures of other DTG peaks (°C)				645	550	695	
				695	645		
					690		

*Shoulder in DTG peak.

table S4. Results of FULLPAT modeling.

Using diffraction pattern from 5 to 70° 2θ :										
Material	Experiment	F _{serp} (wt.%)	$F_{targ}(wt.\%)$	$F_{glass}(wt.\%)$	Total (wt.%)	Σ Delta ^{1/2} *	R factor †			
Impact glasses	160713	0.3	85.3	7.1	92.7	248.2	0.026			
	160714	0.7	88.2	7.6	96.5	241.1	0.024			
	160715	2.7	100.0	0.0	102.7	274.4	0.035			
Breccia pieces	160713	2.4	92.8	2.5	97.7	248.6	0.022			
	160714	1.4	100.0	9.5	110.8	262.3	0.026			
	160715	7.9	89.0	0.4	97.3	251.4	0.022			

Using diffraction pattern from 12 to 12.4° 20:

Material	Experiment	F _{serp} (wt.%)	$F_{targ}(wt.\%)$	F _{glass} (wt.%)	Total (wt.%)	Σ Delta ^{1/2} *	R factor †
Impact glasses	160713	0.3	87.3	6.3	93.9	1.2	0.027
	160714	0.5	100.0	1.7	102.2	2.2	0.032
	160715	0.8	100.0	0.0	100.8	0.0	0.058
Breccia pieces	160713	1.5	100.0	3.9	105.4	2.8	0.072
	160714	3.5	100.0	14.9	118.4	2.9	0.109
	160715	5.2	100.0	15.1	120.3	4.3	0.232

*The values of Σ | Delta | ^{1/2} that remain after optimizing the fit between the summed library standards and the observed pattern. [†]R factors assess the quality of the model fit. R < 0.1 indicates a good analysis.

table S5. Summary of Beer-Lambert results.

			3550 cm ⁻¹			1630 cm ⁻¹			4500 cm ⁻¹	
Sample	Spot	Abs	Peak max (cm ⁻¹)	H ₂ O _{tot} (ppm)	Abs	Peak max (cm ⁻¹)	H ₂ O _m (ppm)	Abs	Peak max (cm ⁻¹)	OH (ppm)
160713 FTIR B*	10	0.044	3589	445	0.026	1627	361	-	-	-
160713 FTIR B	6	0.035	3589	355	0.028	1627	386	-	-	-
160713 FTIR B	3	0.019	3438	190	0.016	1621	215	-	-	-
160714 FTIR A^{\dagger}	1.0	0.135	3589	1486	0.059	1632	883	0.002	4518	951
160714 FTIR A	1.1	0.191	3589	2100	0.074	1634	1117	0.003	4501	1407
160714 FTIR A	1.2	0.116	3589	1273	0.060	1632	900	0.001	4462	635
160714 FTIR A	1.3	0.163	3589	1797	0.065	1632	978	0.002	4462	1165
160714 FTIR A	1.4	0.075	3589	828	0.037	1634	558	0.002	4462	836
160714 FTIR A	1.5	0.103	3589	1135	0.053	1632	797	0.002	4520	942
160714 FTIR A	3.3	0.238	3574	1763	0.073	1630	736	0.005	4440	1460
160714 FTIR A	3.5	0.285	3589	2112	0.106	1630	1076	0.004	4435	1314
160714 FTIR A	3.6	0.289	3589	2140	0.112	1632	1137	0.002	4462	551
160715 FTIR D [‡]	0	0.873	3622	9330	0.528	1632	7698	0.003	4520	1445
160715 FTIR D	29	0.794	3591	8491	0.420	1632	6117	0.004	4460	1682
160715 FTIR D	27	0.513	3591	5489	0.276	1632	4019	0.003	4442	1479
160715 FTIR D	28	0.468	3591	5006	0.230	1632	3354	0.003	4442	1420
160715 FTIR D	26	0.360	3589	3848	0.149	1630	2172	0.003	4460	1457
160715 FTIR D	25	0.847	3622	9053	0.477	1632	6955	0.004	4462	1775
160715 FTIR D	24	0.585	3591	6257	0.311	1630	4537	0.003	4520	1355
160715 FTIR D	23	0.503	3591	5372	0.251	1630	3665	0.004	4460	1647
160715 FTIR D	22	0.448	3591	4790	0.200	1632	2917	0.003	4442	1588
160715 FTIR D	21	0.231	3589	2473	0.098	1630	1425	0.002	4462	1112
160715 FTIR D	20	0.212	3587	2269	0.070	1630	1015	0.003	4440	1250
160715 FTIR D	18	0.351	3589	3750	0.121	1630	1765	0.003	4435	1609
160715 FTIR D	17	0.585	3591	6255	0.279	1632	4060	0.005	4442	2399
160715 FTIR D	16	0.683	3622	7300	0.404	1632	5885	0.003	4462	1520
160715 FTIR D	15	0.490	3591	5235	0.239	1632	3486	0.003	4460	1463
160715 FTIR D	14	0.458	3591	4898	0.215	1632	3132	0.005	4435	2179
160715 FTIR D	5	0.340	3589	3640	0.136	1630	1982	0.004	4460	1681
160715 FTIR D	13	0.286	3589	3062	0.122	1630	1772	0.002	4520	1118
160715 FTIR D	12	0.215	3589	2298	0.099	1627	1444	0.002	4460	897
160715 FTIR D	11	0.163	3589	1741	0.075	1627	1097	0.002	4520	913
160715 FTIR D	10	0.224	3589	2392	0.095	1630	1391	0.002	4520	916
160715 FTIR D	9	0.293	3591	3137	0.117	1630	1698	0.003	4442	1329
160715 FTIR D	8	0.265	3589	2832	0.108	1630	1568	0.003	4460	1226
160715 FTIR D	7	0.260	3593	2776	0.122	1630	1774	0.003	4462	1222
160715 FTIR D	6	0.188	3589	2009	0.065	1630	954	0.003	4435	1556
160715 FTIR D	1	0.147	3589	1568	0.062	1630	905	0.001	4520	690
160715 FTIR D	2	0.168	3587	1794	0.079	1630	1154	0.003	4462	1230
160715 FTIR D	4	0.141	3589	1511	0.066	1630	964	0.002	4462	947

*Sample thickness: 0.0102 cm; density: 2,346 g L^{-1} *Sample thickness: 0.0093 cm; density: 2,348 g L^{-1} *Sample thickness: 0.0096 cm; density: 2,341 g L^{-1}

		Al ₂ O ₃ (wt.%)	CaO (wt.%)	FeO _T (wt.%)	K ₂ O (wt.%)	MgO (wt.%)	MnO (wt.%)	Na ₂ O (wt.%)	SiO ₂ (wt.%)	Total (wt.%)
Antigorite	Replicate 1	2.99	2.78	8.30	0.00	34.16	0.12	0.01	38.68	87.05
projectile	Replicate 2	2.99	2.70	8.17	0.03	33.91	0.12	0.02	39.31	87.25
	Replicate 1	12.89	0.74	1.14	4.50	0.06	0.05	3.96	78.16	101.5
Heat-treated	Replicate 2	12.88	0.64	1.15	4.45	0.06	0.05	4.05	77.34	100.6
pumice target	Replicate 3	12.74	0.53	1.16	4.83	0.06	0.05	3.97	77.22	100.6
	Replicate 4	12.63	0.51	1.11	4.79	0.06	0.05	4.09	78.23	101.5
				Expe	riments					
160713 (30°)	Glasses	11.87	0.76	1.42	4.06	1.50	0.05	3.80	71.22	94.67
	Breccias	11.84	0.78	1.59	4.09	2.85	0.05	3.59	72.85	97.65
160714 (30°)	Glasses	12.43	0.70	1.40	4.36	2.01	0.05	3.87	76.26	101.1
	Breccias	11.96	0.67	1.54	4.15	3.17	0.05	3.71	74.68	99.92
160715 (45°)	Glasses	12.14	0.72	1.29	4.34	1.16	0.05	3.68	73.55	96.92
	Breccias	11.46	0.72	1.87	3.97	4.26	0.05	3.50	76.80	102.6

table S6. Compositions of projectile, target, and impact products.

table S7. Projectile retention efficiencies.	

	Experiment number	Angle (°)	Impact product	X_{Serp}	\mathbb{R}^2	Fraction of projectile retained in material	2σ
-	160713	30	Impact glasses	0.071	0.993	6.2%	0.6%
			Breccias	0.063	0.992	7.3%	0.6%
			Serpentine fragments	1	N/A	2.4%	-
			Total retention			<u>16%</u>	1.1%
	160714	30	Impact glasses	0.041	0.995	4.0%	0.4%
			Breccias	0.052	0.977	6.5%	0.9%
			Serpentine fragments	1	N/A	3.1%	-
			Total retention			<u>14%</u>	1.1%
	160715	45	Impact glasses	0.034	0.975	3.2%	0.6%
			Breccias	0.067	0.978	7.5%	1.1%
			Serpentine fragments	1	N/A	7.9%	-
			Total retention			<u>19%</u>	1.2%