
Lazar et al, Supplementary Information

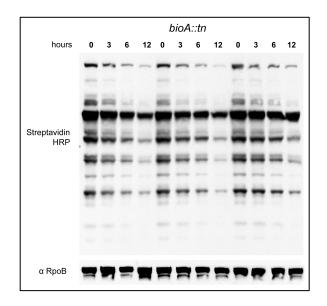

Figure S1: Sequence alignment of the *bioQ* frameshift made via CRISPR. (A) CRISPR-Cas9 was used to generate frameshift mutants in *bioQ pyc::tn*. Candidate *bioQ* sequences were sequenced and sequences were aligned to the native *bioQ* sequence (top). Identical nucleotides are shaded in gray, while nucleotides different from the reference sequence are not shaded. *bioQ* mutant #16 has a single nucleotide insertion of A at the DSB site (**B**) *pyc::tn bioQ* #16 restores *bioB* induction to *pyc::tn*. Error bars are standard deviation of three biological replicates.


Figure S2. Primary amino acid sequence alignment of pyruvate carboxylases Rv2967c (*M. tuberculosis*) and MSMEG_2412 and 6648 (*M. smegmatis*). Sequence alignment was performed using the Clustal Omega web form (McWilliam *et al.*, 2013, Sievers *et al.*, 2011). Domains were identified by homology to the *R. etli* pyruvate carboxylase (St Maurice *et al.*, 2007). The biotin carboxylase (BC) domain is highlighted with a red line above the primary sequence, carboxytransferase (CT) with a blue line, and the biotin-binding (BCCP) with a green line. Biotin carboxylase catalytic residues (red arrows) were identified via homology with the *E. coli* biotin carboxylase, (Janiyani *et al.*, 2001) carboxytransferase catalytic residues (blue arrows) were identified via homology with the *S. aureus* pyruvate carboxylase (Yu *et al.*, 2009), and the biotin attachment residue (green arrow) was identified via the CDD database (Marchler-Bauer *et al.*, 2017). Transposon insertion sites are noted with black arrows and annotated with the strain number.

Figure S3: Triplicate Western blot analysis of *bioA::tn* **for quantitation.** Western blot of total biotinylated protein in *bioA::tn* (MGM8009) during biotin deprivation for 0, 3, 6, and 12 hours. Biotinylated proteins were visualized using streptavidin-HRP with anti-RpoB as a loading control.

Figure S4: All metabolites identified from analysis of *pyc::tn.* We collected metabolites from three replicates of WT (MGM8007) and *pyc::tn* (MGM8008) after three hours of growth with or without biotin. Metabolite levels were normalized to total biomass measured in each replicate using a generalized linear regression model. All metabolites with identifiable signal in each replicate are summarized here. Higher abundance for a metabolite than expected by the model given the strain's biomass is indicated in red, and lower abundance in green.

Table S1: Oligonucleotides used in this study

Name	Sequence	Relevant Features
oNZL003	GCCTTCTTGACGAGTTCTTCTGAG	sequencing of transposon insertions (F direction)
oNZL004	CCGAGATAGGGTTGAGTGTTGTTC	sequencing of transposon insertions (R direction)
oCrBioQ-1F	CACCCTGGCATTTCGCCAACAAAC	crRNA deletion of <i>bioQ</i>
oCrBioQ-1R	AAACGTTTGTTGGCGAAATGCCAG	crRNA deletion of <i>bioQ</i>
oCrBioQ-2F	CACCGAGATCGTGGAGCAGC	crRNA deletion of <i>bioQ</i>
oCrBioQ-2R	AAACGCTGCTCCACGATCTCGGTG	crRNA deletion of <i>bioQ</i>
oBioF-F	CACCCGACATCGTGATGAC	primer for qPCR amplification of bioF (F direction)
oBioF-R	CGGTGTCGAAGATGAAC	primer for qPCR amplification of bioF (R direction)
oBioF-taq	CACGACGCTGTCGAAAGCACTG	taqMan probe for qPCR quantitation of bioF
oBioA-F	CTGGACACGGTGTTCTTC	primer for qPCR amplification of bioA (F direction)
oBioA-R	TCATCAACCGGTGCTTGG	primer for qPCR amplification of bioA (R direction)
oBioA-taq	TGGAGGTCGCGGTGAAGATG	taqMan probe for qPCR quantitation of bioA
oBioD-F	ACCGCATTGACCCTCGAAG	primer for qPCR amplification of bioD (F direction)
oBioD-R	ATCCAGTCTGCGTCAAAC	primer for qPCR amplification of bioD (R direction)
oBioD-taq	CGAACGCTTCGAGGCGTTGAG	taqMan probe for qPCR quantitation of bioD
oBioB-F	CATCATCAGCCTCAAGAC	primer for qPCR amplification of bioB (F direction)
oBioB-R	TTCGGTGGCACCGGTCTTTG	primer for qPCR amplification of bioB (R direction)
oBioB-taq	TGCCACTTCTGCTCGCAGT	taqMan probe for qPCR quantitation of bioB
oSigA-F	TGAGGTGACCGACGATCT	primer for qPCR amplification of sigA (F direction)
oSigA-R	GGCATCAGCTTCTTCTTCCT	primer for qPCR amplification of sigA (R direction)
oSigA-taq	AAGACACCGACCTGGAACTCG	taqMan probe for qPCR quantitation of sigA

Table S2:	Plasmids	used	in this	study	

Name	Relevant Features
pMSG419	TET-ON dependent expression vector with a polylinker for N-terminal HA fusions hygR oriM oriE
pNZL035	pMSG419 / MSMEG_2412
pNZL036	pMSG419 / MSMEG_2413
pNZL037	pMSG419 / MSMEG_2414
pNZL106	TET-ON dependent expression vector with a polylinker for N-terminal HA fusions strepR oriM oriE
pNZL035.strep	pNZL106 / MSMEG_2412 (pyruvate carboxylase)
pNZL065	pNZL106 / MSMEG_6648 (other annotated <i>M. smegmatis</i> pyruvate carboxylase)
pNZL070	pNZL106 / Rv2967c (<i>M. tuberculosis pyc</i>)
pNZL107	pNZL106 / MSMEG_2412 biotin carboxylase (BC) domain (2412 residues 1-441)
pNZL108	pNZL106 / MSMEG_2412 carboxytransferase (CT) domain (2412 residues 498- 965)
pNZL109	pNZL106 / MSMEG_2412 CT + biotin binding (BCCP) domain (2412 residues 498- 1128)
pNZL154	pNZL106 / MSMEG_2412 E288K biotin carboxylase catalytic site mutant
pNZL163	pNZL106 / MSMEG_2412 K1093L biotin attachment site mutant
pNZL164	pNZL106 / MSMEG_2412 K1093R biotin attachment site mutant
pNZL156	pNZL106 / MSMEG_3188 (BioA)
pNZL159	pNZL106 / MSMEG_3194 (BioB)
pAJF658	TET-ON dependent expression vector with a DAS tag for Dual Control / hCas9 hygR oriE int attP
pAJF619	tracrRNA parent plasmid strepR oriE oriM
pBioQ-1	pAJF619 fused to oCrBioQ-1F/R via oligonucleotide ligation
pBioQ-2	pAJF619 fused to oCrBioQ-2F/R via oligonucleotide ligation

Strain number	number Description Genotype/Relevant Features		Reference	
			Laboratory	
MGM8000	WT	Wild Type <i>M. smegmatis</i> mc2155	collection	
MGM8001	m10	Mc2155 MSMEG_2412::tn	this work	
MGM8002	m35	Mc2155 bioB::tn	this work	
MGM8003	m43	Mc2155 bioF::tn	this work	
MGM8004	m86	Mc2155 bioA::tn	this work	
MGM8005	m119	Mc2155 MSMEG_2412::tn	this work	
MGM8006	m134	Mc2155 MSMEG_2412::tn	this work	
MGM8007	WT + EV	Mc2155 / pMSG419	this work	
MGM8008	pyc::tn + EV	MGM8006 / pMSG419	this work	
MGM8009	bioA::tn + EV	MGM8004 / pMSG419	this work	
MGM8010	bioB::tn + EV	MGM8002 / pMSG419	this work	
MGM8011	<i>pyc::tn</i> + pPyc	MGM8006 / pNZL035	this work	
MGM8012	<i>pyc::tn</i> + p2413	MGM8006 / pNZL036	this work	
MGM8013	<i>pyc::tn</i> + p2414	MGM8006 / pNZL037	this work	
MGM8019	WT + EV	Mc2155 / pNZL106	this work	
MGM8020	pyc::tn + EV	MGM8006 / pNZL106	this work	
MGM8021	bioA::tn + EV	MGM8004 /pNZL106	this work	
MGM8023	<i>pyc::tn</i> + pPyc	MGM8006 / pNZL035.strep	this work	
MGM8024	<i>pyc::tn</i> + p6648	MGM8006/ pNZL065	this work	
MGM8025	<i>pyc::tn</i> + pRv2967c	MGM8006/ pNZL070	this work	
MGM8026	<i>pyc::tn</i> + pPyc (BC domain)	MGM8006 / pNZL107	this work	
MGM8027	<i>pyc::tn</i> + pPyc (CT domain)	MGM8006 / pNZL108	this work	
	pyc::tn + pPyc (CT + BCCP	· · · · ·		
MGM8028	domains)	MGM8006 / pNZL109	this work	
MGM8029	pyc::tn + pPyc-E288K	MGM8006 / pNZL154	this work	
MGM8030	<i>pyc::tn</i> + pPyc-K1093L	MGM8006 / pNZL163	this work	
MGM8031	<i>pyc::tn</i> + pPyc-K1093R	MGM8006 / pNZL164	this work	
MGM8034	pyc::tn + pBioA	MGM8006 / pNZL156	this work	
MGM8035	pyc::tn + pBioB	MGM8006 / pNZL159	this work	
MGM8036	<i>bioA::tn</i> + pBioA	MGM8004 / pNZL156	this work	
MGM8037	bioA::tn + pBioB	MGM8004 / pNZL159	this work	
MGM8041	bioQ mutant #16	MGM8006 bioQ frameshift 138-139 A	this work	
MGM6514	Δργς	Mc2155 ∆MSMEG_2412 (1-3384)	this work	
MGM6516	ΔbioQ	Mc2155 ∆ <i>bio</i> Q (12-609)	this work	
MGM6520	pyc::tn / ΔbioQ	MGM8006 bioQ::hyg	this work	
MGM6521	$\Delta pyc + EV$	MGM6514 / pNZL106	this work	
MGM6522	$\Delta pyc + pNZL107$	MGM6514 / pNZL107	this work	
MGM6523	$\Delta pyc + pNZL108$	MGM6514 / pNZL108	this work	
MGM6524	$\Delta pyc + pNZL109$	MGM6514 / pNZL109	this work	
MGM6525	$\Delta pyc + pNZL154$	MGM6514 / pNZL154	this work	
MGM6526	$\Delta pyc + pNZL163$	MGM6514 / pNZL163	this work	
MGM6527	$\Delta pyc + pNZL164$	MGM6514 / pNZL164	this work	
MGM6518	pyc::tn + B. subtilis Pyc	MGM8005/pAJF841	this work	

Table S3: Strains used in this study