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Supplementary Figure S1. ROS production and progression of F. oxysporum in the 

roots of JG-62 and WR-315 plants. F. oxysporum-infected roots of JG-62 and WR-315 

stained with DAB. 

C 6 12 24 48 

Time (hpi) 

120 

JG-62 

WR-315 



Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Cell cycle control and cell division Cell rescue and defense Cell wall metabolism Cellular communication 

Chromatin modifiers Cytoskeleton Hormone responsive Hypothetical protein Ionic homeostasis 

Metabolism Miscellaneous No significant homology Nucleic acid metabolism Cellular reprogramming 

Photosynthesis Secondary metabolism Transcription Unknown function 

Supplementary Figure S2. Clusterogram of DEGs. DEGs were grouped into 10 clusters based on 

their expression pattern. The SOTA cluster tree is shown at the top, and the expression pattern in 

clusters are shown below. High (or low) abundance ranges from pale to saturated red (or green). 



qRT-PCR Microarray 

Supplementary Figure S3. Co-relation of gene expression levels by qRT-PCR 

and microarray experiments. (A) JG-62 and (B) WR-315. Log2 qRT-PCR 

expression were compared with the differential expression from Log2 

microarray data.  
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Supplementary Figure S4. Function and coexpression analysis. BLAST2GO results 

were merged through BINGO plugin of Cytoscape. The complex network of 389 EST's 

was subjected to BINGO along with BLAST2GO mapping data in form of a BINGO 

annotation file. These groups were divided into four major categories each including a sub 

category best suiting its parent. 



 

Supplementary Table S1. Sequence of oligonucleotide primers used for quantitative 

real time PCR. 

 

Name of primer Sequence of primer 

PR10 - F 5’-TCCTTCACCATCCAGCATACC-3’ 

PR10 - R 5’-TGACGGGCTCGAGAAAATACA-3’ 

ERF - F 5’-GGGCAGGTGTCGACTCTCAT-3’ 

ERF - R 5’-CGAGTCATGGTTGTTGATGGA-3’ 

Aquaporin - F 5’-TCATCGGCAGTGTTGGAGACT-3’ 

Aquaporin - R 5’-AACAGCGCTTTAAATCAGGAGAA-3’ 

PR5 - F 5’-CCGTGTTAGGAGCGGGATTT-3’ 

PR5 - R 5’-CATCCCCGCAGTTTTGTGT-3’ 

DnaJ - F 5’-GCTTCCAGTTTACTGTCACACATCTT-3’ 

DnaJ - R 5’-TTCCCCAGGGTTTGATTTGA-3’ 

Cys - F 5’-CTTGGTGGAGTTCGCGATGT-3’ 

Cys - R 5’-TAGCGGGCGAGACTATCGAT-3’ 

Uncharaterized- F 5’-CGGATGCATTTGAGAAAAACC-3’ 

Uncharaterized - R 5’-GGAAGAGCCTTATCCAGTGAAATC-3’ 

PE - F 5’-GCAGATTGCTCATCCCACAA-3’ 

PE - R 5’-TGTCTAGCATGATGGAGCAGTTTT-3’ 

FoGPD*_F 5’-AAGGGTGCTTCTTACGACCA-3’ 

FoGPD*_R 5’-ATCGGAGGAGACAACATCGT-3’ 

Ca18s_F# 5’-CTCGGCCCAACTCCGGTTCG-3’ 

Ca18s_R# 5’-CGCACGAAAACCGTCTCCGGT-3’ 

* FoGPD represents Fusarium oxysporum glyceraldehyde3-phosphate dehydrogenase.   

# 18S was used as an endogenous control. 
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