Cell Reports, Volume 23

Supplemental Information

Induction and Maintenance of CX3CR1-Intermediate

Peripheral Memory CD8⁺ T Cells by Persistent

Viruses and Vaccines

Claire Louse Gordon, Lian Ni Lee, Leo Swadling, Claire Hutchings, Madeleine Zinser, Andrew John Highton, Stefania Capone, Antonella Folgori, Eleanor Barnes, and Paul Klenerman

Figure S1: MCMV infection and Ad-lacZ immunization induces conventional and inflating CD8⁺ T cell memory responses, related to Figures 1 and 2

 $Cx3cr1^{+/gfp+}$ mice were infected intravenously (iv) with 10⁶ pfus MCMV or 2x10⁹ pfu Ad-lacZ and blood was serially sampled post-immunization (dpi). Conventional memory responses (black label) were assessed by M45 (MCMV)- and I8V(Ad-lacZ)- tetramer staining, and inflationary memory responses (pink label) were assessed M38(MCMV)- and D8V(Ad-lacZ)- tetramer staining (coloring is consistent for all Supplemental Figures). (A) Compiled results showing mean (±SD) tetramer frequency of M45- (open triangle, dotted line) and M38- (filled square, solid line)-tetramer⁺ CD8⁺ T cells (n=2-4). (B) Compiled results showing mean (±SD) I8V- (open triangle, dotted line) and D8V- (filled square, solid line) tetramer⁺ CD8⁺ T cells (n=3-19).

Figure S2

Figure S2: MCMV infection induces three distinct CD8⁺ T cell populations based on CX3CR1 expression in C57BL/6 and *Cx3cr1^{+/gfp+}* mice, related to Figure 1

Cx3cr1^{+/gfp+} and C57BL/6 (wild type; WT) mice were infected intravenously (iv) with 10⁶ pfu or 2000 pfu MCMV. Conventional memory and inflationary memory responses were assessed by M45- and M38-tetramer staining, respectively. (A) Composite FACS plots of CD8 and CX3CR1 staining of live lymphocytes in blood from C57BL/6 (left panel) or $Cx3cr1^{+/gfp+}$ (right panel) mice at 0 days post infection (dpi), 21dpi (C57BL/6) or 30 dpi (Cx3cr1+/gfp+) with 106 pfu MCMV. Mean percentages of CX3CR1 subsets (negative[neg]=red, intermediate[int]=blue, high[hi]=green) of live CD8⁺ T cells are indicated (C57BL/6 n=4 mice, $Cx3cr1^{+/gfp+}$ n=3 mice). (B) Composite FACS plots of M45- and M38-tetramer staining of live lymphocytes (left) and CX3CR1 subsets of tetramer-specific CD8⁺ T cells (right) in blood from C57BL/6 mice, 21 dpi with 106 pfu MCMV. Mean live tetramer+ CD8+ T cells and mean CX3CR1 subsets are indicated (n=4). (C) Compiled results comparing mean (±SD) of CX3CR1 subsets (neg=red, int=blue, hi=green) of M45- and M38-tetramer⁺ CD8⁺ T cells in blood from C57BL/6 (WT) or Cx3cr1^{+/gfp+} mice, 21 or 30 dpi with 10⁶ pfu MCMV, respectively (C57BL/6 n=4 mice, Cx3cr1^{+/gfp+} n=3 mice). (D) Individual CX3CR1 subset frequencies and means of M45- and M38-tetramer⁺ CD8⁺ T cells in blood from C57BL/6 (WT) mice 21 and 63 dpi (n=4 and n=5, respectively). (E-F) Expression of cell surface markers CD62L, CD27 and CD127 by CX3CR1 subsets in M45- and M38-tetramer⁺ CD8⁺ T cells in C57BL/6 mice 21 or 63 dpi with 10⁶ pfu MCMV. (E) Composite FACS plots of CD62L (left panel), CD27 (middle panel) and CD127 (right panel) expression in M45- and M38-tetramer⁺ CD8⁺ T cells at 21 dpi. Mean expression of indicated marker for each CX3CR1 subset is shown (n=4). (F) Shown are individual and mean CX3CR1 subset expression of CD62L (left panel) and CD27 (right panel) in M45- and M38-tetramer⁺ CD8⁺ T cells in blood from C57BL/6 (WT) mice 21 and 63 dpi (n=4/each and n=5/each, respectively).(G) CX3CR1 subset distribution of M38- and M45- tetramer+ cells was assessed in spleen (SPL), liver (LIV) and lung of C57BL/6 (WT) mice following infection with 106 pfu (solid symbols, 330dpi) or 50000 pfu (open symbols, 83dpi) of WT2639 MCMV (considered to be a full dose). (H) Frequency of co-expression of CD69 and CD103 in M45- and M38-tetramer⁺ CD8⁺ T cells in lung from C57BL/6 mice 83dpi (n=3). (I) Compiled results showing mean (±SD) CD62L expression by CX3CR1 subsets in M45- and M38-tetramer⁺ CD8⁺ T cells following infection with 2000 pfu MCMV (n=5-9). Significant differences were determined by 1-way ANOVA and corrected for multiple comparisons (Holm-Sidak). P=0.05 to 0.011 (*), p=0.01 to 0.001 (**) and p<0.001 (***). All FACS plots are composite plots generated by randomly selecting equal numbers of the cell population of interest from each subject.

Figure S3: Ad-lacZ immunization induces three distinct CD8⁺ T cell populations based on CX3CR1 expression in C57BL/6 mice, related to Figure 2

C57BL/6 (wild type; WT) mice were infected intravenously (iv) with $2x10^9$ pfu of a recombinant replication-deficient HuAd5 vector expressing lacZ (Ad-lacZ). Conventional memory and inflationary memory responses were assessed by I8V- and D8V-tetramer staining, respectively. (A) Composite FACS plots of I8V- and D8V-tetramer staining of live lymphocytes (left) and CX3CR1 subsets of tetramer-specific CD8⁺ T cells (right) in blood from C57BL/6 (WT) mice at 33 days post immunization (dpi) with 2x10⁹ pfu Ad-lacZ. Mean CX3CR1 subsets (negative[neg]=red, intermediate[int]=blue, high[hi]=green) of live CD8⁺ T cells are indicated (n=4 mice). (B) Shown are individual and mean CX3CR1 subset frequency of I8V- and D8Vtetramer⁺ CD8⁺ T cells in blood from C57BL/6 (WT) mice 33 and 119+ dpi (n=5 and n=6, respectively). (C-D) Expression of cell surface markers CD62L and CD27 by CX3CR1 subsets in I8V- and D8V-tetramer⁺ CD8⁺ T cells in C57BL/6 mice 33 or 119⁺ dpi with 2x10⁹ pfu Ad-lacZ. (C) Shown is representative flow cytometry plots of CD62L (left panel) and CD27 (middle panel) expression in I8V- and D8V-tetramer⁺ CD8⁺ T cells at 33 dpi. Mean expression of indicated marker for each CX3CR1 subset is shown (n=5). (D) Individual and mean CX3CR1 subset expression of CD62L (left panel) and CD27 (right panel) in I8V- and D8V-tetramer⁺ CD8⁺ T cells in blood from C57BL/6 (WT) mice 33 and 119+ dpi (n=5 and n=6, respectively). (E) Individual and mean CX3CR1 subset frequencies of I8V- and D8V- tetramer+ cells in spleen (SPL), liver (LIV) and lung 39-198dpi (n=6-13). (F) Expression of LFA-1 in I8V- and D8V-tetramer⁺ CD8⁺ T cells in liver from C57BL/6 mice 198dpi (n=3). Significant differences were determined by oneway ANOVA and corrected for multiple comparisons (Holm-Sidak). P=0.05 to 0.011 (*), p=0.01 to 0. 001 (**) and p<0.001 (***). All FACS plots are composite plots generated by randomly selecting equal numbers of the cell population of interest from each subject.

Figure S4: CX3CR1 is not required for optimal inflating responses following MCMV infection, related to Figure 4

Cx3cr1^{gfp+/gfp+} and *Cx3cr1^{+/gfp}* mice were infected intravenously (iv) with 10⁶ pfu or 2000 pfu MCMV and blood was serially sampled up to 70 days post-infection (dpi). Memory responses were assessed by M45 and M38 tetramer staining. (A) Compiled results showing mean (±SD) CX3CR1 subsets (neg=red circle, int=blue square, hi=green triangle) of M45- and M38-tetramer⁺ CD8⁺ T cells in *Cx3cr1^{gfp+/gfp+}* mice following infection with 10⁶ pfu MCMV (n=2-4 mice/each). (B) Individual tetramer frequencies of M45- and M38-tetramer⁺ CD8⁺ T cells in spleen (SPL), liver (LIV) and lung from *Cx3cr1^{+/gfp+}* (orange half filled square, n=2-3 mice/each) and *Cx3cr1^{gfp+/gfp+}* (purple filled square, n=3-4 mice/each) mice 47-90 dpi infection with 10⁶ pfu (top panel) or 2000 pfu (bottom panel) MCMV. (C) Shown are individual CX3CR1 subset frequencies for M45- and M38-tetramer⁺ CD8⁺ T cells in spleen (SPL), and more than the symbol) or 2000 pfu (open symbol) MCMV. Significant were determined by one-way ANOVA and corrected for multiple comparisons (Holm-Sidak). P=0.05 to 0.011 (*), p=0.01 to 0.001 (**) and p<0.001 (***).

Figure S5: Phenotype of CX3CR1 subsets on polyclonal and adenoviral vaccine-derived CD8⁺ T cells, related to Figures 5-6

(A) Expression of cell surface markers (CD27 and CD127) and transcription factors (T-bet, Eomes) by CX3CR1 subset was assessed in A2-NS3 pentamer-negative CD8+ T cells in blood taken from 5 volunteers. Shown are composite FACS plots (n=5) of CX3CR1 expression and indicated marker, gated on live CD8+ T cells with CX3CR1 subset highlighted (neg=red, int=blue, hi=green). (B) Schematic of vaccination protocol. All volunteers received a priming regimen of a replicative defective simian adenoviral vector (ChAd3, 5x108 - 2.5x1010 viral particles) encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b (ChAd3-NSmut) (Swadling et al., 2014). A subset of 5 volunteers also received a boost with a modified vaccinia Ankara (MVA, $2x10^7 - 2x10^8$ pfu) vector encoding the same HCV genotype 1b proteins (MVA-NSmut) 8 weeks (W) later (Table S2). (C) Blood samples were taken at end of study (TW16-32, "EOS") from all volunteers. Vaccine-derived CD8+ T cells were assessed by staining with HLA-A2 pentamers containing an NS3 epitope (A2-NS3 pentamer; see Table S3 for pentamer details). Shown is composite FACS plots of A2-NS3 pentamer staining (left) of live CD3+ lymphocytes, and CX3CR1 subsets of A2-NS3 pentamer⁺ CD8⁺ T cells at EOS in volunteers who did not receive the MVA boost (left, n=4) and those who did (right, n=5). Mean A2-NS3 pentamer⁺ CD8⁺ T cell frequency and mean CX3CR1 subset frequency is indicated. (D) Individual CX3CR1 subset frequency of A2-NS3 pentamer⁺ CD8⁺ T cells at EOS in volunteers who did not receive the MVA boost (left, n=4) and those who did (right, n=5).

Table S1: Number of CD8⁺ T cells isolated from tissues of $Cx3cr1^{+/gfp+and} Cx3cr1^{gfp+/gfp+}$ mice, related to Figure 4

	Mean number (no. o		
Tissue	$Cx3cr1^{+/gfp+}$	Cx3cr1 ^{gfp+/gfp+}	P value
MCMV			
Spleen	$2.7 \times 10^8 (3)$	$3.3 \times 10^8 (4)$	0.59
Liver	$2.6 \times 10^{7} (3)$	$7.6 \times 10^{6} (4)$	0.06
Lung	$1.7 \times 10^7 (3)$	$2.9 \times 10^7 (4)$	0.33
Ad-lacZ			
Spleen	$2.3 \times 10^7 (3)$	$8.9 \times 10^{6} (5)$	0.13
Liver	$1.6 \times 10^6 (4)$	$9.9x10^{5}(5)$	0.12
Lung	$1.4x10^{6}(4)$	$9.1 \times 10^5 (5)$	0.36

Volunteer#	Age	Sex	CMV	ChAd3	MVA	HCV	CMV tetramer ^a
			IgG	prime	boost	pentamer ^a	
006	29	М	-	+	-	A2-NS3	NA
038	25	F	+	+	-	A2-NS3	NA
060	24	F	-	+	-	A2-NS3	NA
068	27	F	-	+	-	A2-NS3	NA
332	21	М	-	+	+	A2-NS3	NA
339	37	F	+	+	+	A2-NS3	A2-pp65
343	31	М	-	+	+	A2-NS3	NA
345	21	F	+	+	+	A2-NS3	A2-pp65
347	26	М	+	+	+	A2-NS3	NA
039	44	М	+	NA	NA	NA	A2-pp65
400	28	М	+	NA	NA	NA	B7-pp65
401	30	F	+	NA	NA	NA	A2-pp65, A1-pp50
403	54	М	+	NA	NA	NA	A2-pp65

Table S2: Characteristics of 13 volunteers used for this study, related to Figures 5-7 and FigureS5

^aSee Table S3 for tetramer and pentamer details

Abbreviations: Male (M), female (F), not applicable (NA), positive (+), negative (-), hepatitis C virus (HCV),

Table S3: List of vaccine pentamers and CMV tetramers used for studies antigen-specific CD8⁺ T cells, related to Experimental Procedures

HLA type	Target-epitope	Amino acid sequence	Abbreviation	Source
Human				
A*0101	CMV-pp50 245-253	VTEHDTLLY	A1-pp65	NIH Tetramer Facility ^a
A*0201	CMV-pp65 495-503	NLVPMVATV	A2-pp65	NIH Tetramer Facility ^a , Proimmune
B*0702	CMV-pp65 417-426	TPRVTGGGAM	B7-pp65	NIH Tetramer Facility ^a
A*0201	HCV-NS3 ₁₄₀₆₋₁₄₁₅	KLSGLGINAV	A2-NS3	Proimmune
Mouse				
H-2Db	MCMV-M45 ₉₈₅₋ 993	HGIRNASFI	M45	NIH Tetramer Facility ^a
H-2Kb	MCMV-M38 ₃₁₆₋ 324	SSPPMFRV	M38	NIH Tetramer Facility ^a
H-2Kb	bgal ₄₉₇₋₅₀₄	ICPMYARV	I8V	NIH Tetramer Facility
H-2Kb	bgal ₉₆₋₁₀₃	DAPIYTNV	D8V	NIH Tetramer Facility ^a

^aPeptide for monomer construction was obtained from Proimmune.

Antibody	Fluorochrome	Clone	Manufacturer ^a
Human			
CD3	РО	UCHT1	Life Technologies
CD8	AF700	SK1	BioLegend
CCR7	PerCp-Cy5.5	G04H37	BioLegend
CD45RA	FITC	HI100	Beckton Dickinson
CX3CR1	BV421	2A9-1	BioLegend
CD27	PE-Cy7	LG.3A10	BioLegend
CD127	PE/Dazzle594	A019D5	BioLegend
T-bet	BV605	4B10	BioLegend
Eomes	eF660	WD1928	eBioscience
Viability	LIVE/DEAD near IR	NA	Life Technologies
Mouse			
CD8	eF450	53-6.7	eBioscience
CX3CR1	BV421	SA011F11	BioLegend
CD62L	AF700	MEL-14	BioLegend
CD27	FITC	LG.7F9	eBioscience
CD27	PerCp-Cy5.5	LG3A.10	BioLegend
CD127	PE-Cy7	A7R34	eBioscience
Thy1.2	AF700	53-2.1	Biolegend
Viability	LIVE/DEAD near IR	NA	Life Technologies

Table S4: Fluorochrome-conjugated antibodies used in flow cytometry, related toExperimental Procedures

^a Antibodies were obtained from BD Biosciences (Oxford, UK), eBioscience (Loughborough, UK), BioLegend (London, UK) and Life Technologies (Loughborough, UK.

Abbreviations: Pacific orange (PO), alexa Fluor (AF), allophycocyanin (APC), brilliant violet (BV), eFluor (eF), infrared (IR), peridinin-chlorophyll-protein (PerCP), phychoerythrin (PE) and fluorescein isothiocyanate (FITC).

Italics denote the species specificity of the antibody