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Normal Human Chromosome 1 Carries Suppressor Activity for Various Phenotypes
of a Kirsten Murine Sarcoma Virus-transformed NIH/3T3 Cell Line
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In order to identify chromosomes that carry putative tumor-suppressor genes for the various
phenotypes of Kirsten sarcoma virus-transformed NIH/3T3 (DT) celis, we performed microcell-
mediated chromosome transfer into DT cells. We first isolated mouse A9 clones, containing a single
human chromosome 1, 11 or 12 tagged with pSV2-neo plasmid DNA, Then, chromosome 1, 11 or 12
was transferred from the A9 clones into DT cells by microcell fusion. The growth rate, colony-forming
ability in soft agar and tumorigenicity of the DT cells were controlled by chromosome 1, but not by
chromosome 11 or 12, indicating that normal human chromosome 1 carries a putative tumor-

suppressor gene(s) that affects various transformed phenotypes of DT cells,
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Microcell-mediated chromosome transfer has several
advantages as a first step in screening for the chromo-
somal localization and/or the function of putative
tumor-suppressor genes.'® All recipient cells into which
a normal chromosome tagged with a dominant selectable
gene has been introduced can be isolated by growth
under selective conditions for the dominant selectable
marker. Since human chromosomes have been suggested
to contain a tumor-suppressive function from studies
with cell-cell hybrids, restriction-fragment-length poly-
morphism analyses and chromosomal analyses in various
tumors,” ' microcell-mediated chromosome transfer to
specific tumor cells is a useful technique to confirm the
presence of a putative tumor-suppressor gene on the
candidate chromosomes.*™ Even when a candidate chro-
mosome is not known, this method can be used to search
for chromosomes that carry putative tumor-suppressor
genes by transfers of various chromosomes.” In this
study, we applied this method in an attempt to identify
the chromosome that carries suppressor activity for a
transformed subline of NIH/3T3 (the “DT” cell line)
containing Kirsten murine sarcoma virus, a transforming
virus carrying the v-Ki-ras gene.'®'”

The method for chromosome transfer via microcell
fusion has been described previously.'® ' Mouse A9 cells
containing a single copy of neo-tagged chromosome 1, 11
or 12 derived from normal human fibroblasts, termed
A9(neol), A9(neoll) or A9(neol2), respectively, were
used as chromosome donors. The purified microcells
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from these A9 cells were fused with recipient DT cells on
collagen-coated dishes. After incubation for 2-3 weeks
in selection medium containing 400 pg/ml G418, the
surviving DT-microcell hybrids were isclated, and ex-
panded in DMEM supplemented with 109 FCS and 800
pg/ml G418 on collagen-coated dishes.

Chromosome analysis with quinacrine plus Hoechst
33258 stains®” showed that the microcell hybrids con-
tained a single copy of intact, transferred human chro-
mosome 1, 11 or 12 in the majority of cells in early
passage (Fig. 1, Tables I and II). These clones (four
DT-#1 clones, four DT-#11 clones and five DT-f#12
clones) were used for further studies.

The morphology of microcell hybrids on collagen-
coated dishes did not differ remarkably from that of the
parental DT cells. Although DT-#1 showed a somewhat
flatter morphology compared with those of DT, DT-£11
and DT-#12 on non-collagen-coated dishes, the morphol-
ogy of these cells was quite different from that of NIH/
3T3 cells (Fig. 2). As shown in Table I, parental DT,
DT-#11 and DT-#12 cells proliferated with similar popu-
lation doubling times (11-13 h) on collagen-coated plas-
tic dishes containing 10% FCS, whereas the doubling
time for DT-#1 cells was 21-28.1 h, which was similar to
that of NIH/3TF3 cells (20.6 h). The index of serum-
dependent growth indicated that DT-#1 cells as well as
NIH/3T3 cells did not grow well under low-serum condi-
tions, compared with DT, DT-#11 and DT-#12 cells. A
decrease in the ability to grow in soft agar was observed
in DT-#1, but not in DT-#11 or DT-#12. To examine
the presence of introduced chromosomes in soft-agar-
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positive clones, chromosome analysis was performed
(Table I1). The majority of cells still contained the
intact, introduced human chromosome in the #11 and
#12 soft-agar clones (average 84-939% of cells), whereas
only a small population of the cells from #1 sofi-agar
clone contained intact human chromosome 1 (average 2-
13% of cells). Thus, cells losing this chromosome may
have a selective advantage for growth in soft agar, sug-
gesting that this chromosome carries a specific cellular
gene(s) that suppresses the ability to grow in soft agar.

When NIH/3T3, DT and microcell-hybrids (DT-#1,
#11 and #12) were inoculated at 5 X 10° cells per site into
nude mice, all cells except for NIH/3T3 formed tumors

aphs of cells on non-collagen-coated dishes (200 X magnificati

Fig. 1. Quinacrine plus Hoechst 33258 stained metaphase
plates of DT cells (a)} and their microcell hybrids with the
transfer of chromosome 1 (b), chromosome 11 (c¢) or chromo-
some 12 (d). Arrows indicate a normal human chromosome 1,
11 or 12.

on). (a) NIH/3T3 cells;

(b) DT cells; (¢) microcell hybrid with an introduced chromosome 11 (#11-1); (d) microcell hybrid with an introduced

chromosome 1 (#1-1).
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within 10 day after inoculation. In all cases, the tumors
grew progressively until the animals were killed. How-
ever, DT, DT-#11 and DT-#12 cells exhibited tumor
formation within 7 days, whereas DT-1 cells showed a
latent period of 7-10 days (Table I). Chromosome anal-
ysis of tumor cells revealed that 56-76% of tumor cells
contained the intact, introduced human chromosome 11
or 12. In contrast, only 0-39% of tumor cells contained
the intact human chromosome 1 (Table II). When 5%
10° cells were inoculated into nude mice, the average
latent periods were 7.6 days in DT cells, 7 days in
DT-#11 and DT-#12 cells, and 8.8-14 days in DT-#1

Table L
Following Transfer of Normal Human Chromosomes

Tumor Suppression by Chromosome 1

cells (Table I). Representative tumor-growth curves of
microcell hybrids are shown in Fig. 3.

The present study has shown that the introduction of a
single human chromosome 1 derived from normal human
fibroblasts into Kirsten murine sarcoma virus-trans-
formed NIH/3T3 (DT) cells controlled ir vitro transfor-
mation properties. The introduction of human chrome-
some 11 or 12 into the DT cells did not affect the in vitro
properties of the cells. The loss of an intact neo-tagged
human chromosome 1 in tumor cells formed from DT-
#1 cells strongly suggests that this normal chromosome
1 suppresses the tumorigenicity of the DT cells. Further

Tumorigenicity in Nude Mice and in vitro Properties of Parental DT Cells and Microcell Hybrids

Colony-forming

Doubling Index of serum- bility i Tumorigenicity?
Cells time dependent growth so?t ;;grzl%]) (latent period: days)
2 B
) (1%FCS/107%FCS) (SAE/PE)? 5% 10° cells 5 10° cells
NIH3T3 20.6 0.020 <0.01 nt? 0/3 (>30)
DT 11.9 0.26 86.3 5/5 (7.6) B8/8 (<7)
#12 microcell hybrids
12-1 (92)” 12.8 nt 94.0 nt 6/6 (<7)
12-2 (100} 12.2 0.39 94.3 5/5 (7) 4/4 (<T)
12-3 (98} 11.8 0.27 83.6 nt 6/6 (<7)
12-4 (92} 11.0 0.22 712 5/5 (D) 6/6 (<7)
12-5 (94) nt nt 81.2 nt 6/6 (<7)
#11 microcell hybrids
11-1  (99) 11.9 nt 32.4 nt 6/6 (<7)
11-2 (54) 11.0 0.16 82.9 5/5 (D) 6/6 (<T)
11-3 (98} 13.0 nt 92.8 nt 6/6 (<7)
11-4 (100} 12.6 nt 80.4 nt - 5/5 (<7
#1 microcell hybrids
-1 (75) 28.1 0.020 38 6/6 (14) 77 (1)
12 (96) 21.3 nt 8.1 5/6 (5.6} 8/8 (10)
1.3 (92) 25.1 0.004 9.9 5/6 (8.8) 7/7 (N
1-4  (88) 21.0 0.025 9.3 5/6 (14) 6/6 @)

a} Cells were plated on 35 mm collagen-coated dishes at a density of 1< 1¢° with DMEM containing 10% FCS.
The ceils from three dishes were counted daily from the following day to the 5th day. Medium exchanges of all

dishes were done daily.

b) Index of serum-dependent growth was determined from the number of cells in media with 1% serum/
number of cells in media with 10% serum {1%FCS/109%FCS). Cells were plated on 35 mm collagen-coated
dishes at a density of 1% 10* with DMEM centaining 1% and 109% FCS. Medium exchanges of all dishes were
done daily. The cells of three dishes were counted after 7 days.

¢} To determine colony-forming efficiency on plastic dishes (PE), 2 X 107 cells were plated on three 60 mm
collagen-coated dishes with DMEM containing 10% FCS and colonies were counted 8 days later. To determine
colony-forming efficiency in soft agar (SAE), cells were plated into 3 dishes with 0.33% soft agar at a density
of 2 10? cells per dish and macroscopic colonies were counted 2 weeks later. .

d} Cells (5% 10°% or 5 10° cells per site) were subcutaneously inoculated into 4- to 6-week-old athymic ICR
nude mice. No. of tumors formed/No. of injected sites is shown.

e} Not tested.

) Percentages of metaphases with the introduced, intact chromosome in passage 3 or 4 are shown in

parentheses. These data are also shown in Table II.
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Table II.  Chromosome Analyses of Microcell Hybrids, Soft-agar Clones and Tumor Cells?
Percentage of metaphases Percentage of metaphases
Cells chridn?::gme with the introduced intact with the introduced intact :ifet];:ig:tg de;Zp;i:ii
chromosome in passage chromosome in soft-agar R B
number 3 or 4 clone (average) chromosome in tumors
#12 microcell hybrids
12-1 63 92 nt? nt
12-2 63 100 nt nt
12-3 64 98 80, 82, 96, 160, 100, 100 (93) nt
12-4 62 92 nt 70
12-5 64 94 nt 56, 75
#11 microcell hybrids
11-1 62 99 77, 85, 90 (84) nt
11-2 60 94 83, 83, 95 (87) nt
11-3 61 98 75, 90, 91, 95, 96, 100 (91) 76
11-4 62 100 nt nt
#1 microcell hybrids
1-1 61 73 nt 0
1-2 60 96 0, 14, 20 (11} 3
1-3 58 92 0,0,0,04,5 8(2) 0
1-4 57 88 0, 0, 40 (13) 3

@) At least 20 metaphases were analyzed.

b) Tumors formed by injection of 5 10° cells were examined.

¢} Not tested.
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Fig. 3. Tumor-growth curves of parental DT cells and repre-

sentative microcell hybrids. Each curve shows average tumor
weights from 5 or 6 sites where 5 X 10° cells were inoculated.
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studies are necessary to ascertain whether other chromo-
somes are also capable of suppressing the transformed
phenotype of this cell line,

In these suppressed & 1-microcell hybrids, as well as in
#11- and #12-microcell hybrids, RNA complementary to
the v-Ki-ras oncogene was expressed at a high level,
comparable to that observed in parental DT cells (Fig.
4). Thus, the putative suppressor gene(s) on normal
human chromosome 1 does not appear to interfere with
transcription of the ras oncogene. This is consistent with
the results from hybrids between normal Syrian hamster
embryo (SHE) celis and v-ras plus v-myc-transformed
SHE cells,'” hybrids between EJ bladder carcinoma cells
and normal human fibroblasts?” and hybrids between flat
revertants of Kirsten murine sarcoma virus-transformed
cells and other mouse cell lines transformed by ras
oncogene.!”

Several lines of evidence support the existence of a
putative suppressor gene(s)} on human chromosome 1.
Deletions of chromosome 1 in human endocrine neo-
plasia,”” neuroblastoma’ and ductal carcinoma of the
breast™ have been frequently observed. In interspecies
hybrids between chemically transformed hamster cells
and normal human fibroblasts, chromosome 1 was also
suggested to carry a suppressor function for anchorage-
independent growth.”® Microcell-mediated transfer of a
normal human chromosome [ into a human endometrial
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Fig. 4. Northern blot analysis of v-Ki-ras mRNA from parental cells and
microcell hybrids. Lane 1, NIH/3T3 cells; lane 2, DT cells; lanes 3, 4, #1-
microcell hybrid; lane 5, 1 1-microcell hybrid; lane 6, #12-microcell hybrid.
a-Tubulin was used as the control. Total RNA was prepared from sub-
confluent cells using the guanidium-hot phenol method.™ The RNA (20 ug
per lane) was separated by electrophoresis through a 1.2% agarose gel
containing 2.2 M formaldehyde, transferred to a nylon membrane (Hybond
N, Amersham) and hybridized with *P-labeled v-Ki-ras insert from clone
Kis™ in 50% formamide, 5+ SSPE (1<SSPE is 0.18 M NaCl, 10 mM
sodium phosphate, ] mM EDTA, pH 7.7), 1 < Denhardt's solution, 200 ug/
ml sonicated and denatured salmon testis DNA, and 0.1% sodium dodecyl
sulfate (SDS) at 42°C for 24 h. Filters were subsequently washed twice in
2 < SSC (1 <88C is 0.15 M NaCl, 15 mM sodium citrate) containing 0.1%
SDS for 5 min at room temperature, and three times in 0.2 < SSC containing
0.1% SDS for 1 h at 45°C, and then exposed to an X-ray film at — 80°C for
12 h with an intensifying screen. After removal of the v-Ki-ras probe, the
filters were rehybridized with mouse a-tubulin ¢cDNA probe, Ma1*? to

cancer cell line and a human fibrosarcoma cell line also
resulted in suppression of tumorigenicity and in vitro
transformation properties.”** Cloning and mapping of
the tumor-suppressor genes on chromosome 1 are neces-
sary Lo clarify the question of whether the same gene(s)
is responsible for the suppression of tumorigenicity of
these cells.

Recently, Noda et al isolated a 1.8 kb cDNA,
designated Krev-1, from a human fibroblast cDNA ex-
pression library and found that it suppressed transformed
phenotypes of the DT cells.””*¥ By chromosomal in situ
hybridization, the RAP1A gene, whose predicted amino
acid sequence is identical to that of Krev-1 protein, has
been assigned to chromosome bands 1p12-p13.*” A high
level of mRNA expression, irrespective of copy number
of the Krev-1 plasmid, was required for the remarkable
suppression of transformed phenotypes of DT cells, t.e.,
reversion of morphology, reduction of growth rate and
suppression of colony-forming ability in soft agar. In the
present study, the introduction of a single copy of normal
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