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S1 Text. Model parameterisation to rust diseases 

This section details the parameterisation of the model to approximate biotrophic foliar fungal diseases 

as typified by rusts of wheat, caused by fungi of the genus Puccinia (without targeting any specific rust 

species). Cited references are listed in the main text. 

Pathogen aggressiveness components 

Duration of latent and sporulation periods. We found 36 estimates from 29 studies of different rust 

pathogens which included information on the duration of the latent period; similarly, there were 18 

estimates from 11 studies with data on the sporulation period. All of these estimates were derived 

from fully susceptible hosts grown in controlled conditions (S1 Table). Standardised conditions in 

growth chambers were preferred over field data to facilitate comparison between studies. When 

available, we selected estimates in which latent periods were measured as the time from inoculation 

until 50% of the total number of lesions began sporulating (the most robust measure of the latent 

period [75-77]), otherwise the time until appearance of the first sporulating lesion was used. A Gamma 

distribution was fit to the data using a maximum likelihood approach (S7 Figure). From this analysis, 

the parameters associated with latent and sporulation periods were estimated as: γmin=10; γvar=9; and 

Υmax=24; Υvar=105. 

Infection rate. In an experiment on the dispersal of wheat brown rust, the probability that a propagule 

deposited on a leaf triggers an infection was estimated to lie between 0 and 0.4, depending on the 

propensity of the leaf to be infected [78]. In the present study, given that the propensity of a leaf to 

be infected is explicitly modelled by a sigmoid contamination function, the maximal expected infection 

rate was set at emax=0.4. 

Sporulation rate. The real number of spores produced daily by a lesion and effectively dispersed to a 

leaf where they may trigger an infection, often summarised by ‘effective sporulation rate’ and denoted 

as rmax here, is extremely complicated to estimate. Nevertheless, we found one study [79] where a 

field experiment on the spread of P. striiformis enabled estimation of 𝑒𝑚𝑎𝑥 × 𝑟𝑚𝑎𝑥 at 5  

infections.day-1. This would suggest that rmax should be 12.5 spores.day-1. However, in our application 

case, this would represent an extremely aggressive pathogen. As an indication, the basic reproductive 

number for such a pathogen (i.e. the theoretical number of secondary infections from a single 

infectious host [80]) would be 𝑅0 𝑚𝑎𝑥 = 𝑒𝑚𝑎𝑥 × 𝛶𝑚𝑎𝑥 × 𝑟𝑚𝑎𝑥 = 120. Recently, the R0 of P. striiformis 

in large fields has been estimated to be of the order of 30 [81]. Thus, in order to simulate a reasonably 

aggressive pathogen, and since very few data were available to quantify rmax compared to other 

parameters, rmax has been adjusted to be 3.125 spores.day-1, thus R0 max = 30. 
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S1 Table. Available data on the duration of latent and sporulation periods for rust diseases caused 

by fungi of the genus Puccinia. In all these studies, both latent and sporulation periods were 

determined on fully susceptible hosts under controlled conditions. Different methods to estimate 

duration of the latent period were used by various authors: the time from inoculation until the 

appearance of the first sporulating lesion (red cells), or until 50% of the lesions began sporulating 

(green cells). When the method is unspecified, the background of the cell is left blank. 

Reference Organism Disease 
Latent period (days) Sporulation period (days) 

min max mean min max mean 

[82] P. coronata Oat crown rust 6.00 10.00 8.00     

[83] P. coronata Oat crown rust 6.00 10.00 8.00 11.0 16.0 13.5 

[83] P. graminis Oat stem rust 6.00 10.00 8.00 17.0 24.0 20.5 

[84] P. graminis Wheat stem rust 12.25 7.25 9.75     

[85] P. graminis Wheat stem rust 8.00 14.00 11.00     

[83] P. graminis Wheat stem rust 6.00 10.00 8.00 17.0 24.0 20.5 

[86] P. hordei Barley leaf rust   5.00     

[83] P. hordei Barley leaf rust 6.00 10.00 8.00 17.0 24.0 20.5 

[87] P. hordei Barley leaf rust 5.30 13.50 9.40 14.1 29.5 21.8 

[83] P. recondita Triticale brown rust 6.00 10.00 8.00 11.0 16.0 13.5 

[88] P. recondita Wheat brown rust 6.00 10.00 8.00 52.0 64.0 58.0 

[89] P. recondita Wheat brown rust   8.00   21.0 

[83] P. recondita Wheat brown rust 6.00 10.00 8.00 17.0 24.0 20.5 

[90] P. recondita Wheat brown rust   8.00 20.0 27.0 23.5 

[91] P. recondita Wheat brown rust 8.30 10.10 9.20 17.8 33.9 25.9 

[92] P. striiformis Barley stripe rust 12.00 14.00 13.00     

[93] P. striiformis Barley stripe rust 9.00 15.70 12.35     

[94] P. striiformis Wheat stripe rust 12.20 13.95 13.08     

[95] P. striiformis Wheat stripe rust 12.60 13.10 12.85     

[96] P. striiformis Wheat stripe rust 12.03 14.27 13.15     

[97] P. striiformis Wheat stripe rust 13.00 15.10 14.05     

[98] P. striiformis Wheat stripe rust 10.00 24.00 17.00 9.0 13.0 11.0 

[99] P. striiformis Wheat stripe rust 6.10 13.00 9.55     

[100] P. striiformis Wheat stripe rust 11.40 15.10 13.25     

[101] P. striiformis Wheat stripe rust   11.20     

[102] P. striiformis Wheat stripe rust 12.40 19.20 15.80     

[89] P. striiformis Wheat stripe rust   10.00  >29 29.0 

[83] P. striiformis Wheat stripe rust 6.00 10.00 8.00 17.0 24.0 20.5 

[79] P. striiformis Wheat stripe rust   17.00   14.0 

[103] P. striiformis Wheat stripe rust 14.80 19.20 17.00     

[104] P. triticina Wheat leaf rust 8.20 9.30 8.75     

[105] P. triticina Wheat leaf rust 7.00 10.00 8.50     

[106] P. triticina Wheat leaf rust   7.75     

[107] P. triticina Wheat leaf rust 6.00 8.00 7.00 20.0 30.0 25.0 

[108] P. triticina Wheat leaf rust   9.00   30.0 
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S7 Figure. Distribution of the latent period duration (A) and length of the sporulation period (B) of 

rust diseases caused by fungi of the genus Puccinia. Raw data were obtained from studies estimating 

these parameters on fully susceptible cereal cultivars (see S1 Table). Red and blue curves are Gamma 

distributions estimated from the data through maximum of likelihood (function fitdistr of the R 

package MASS, v7.3-47); dots indicate the mean latent period (red, 10.41 days) and sporulation period 

(blue, 24.37 days). The variance is 8.80 days for the latent period and 105.12 days for the sporulation 

period. 
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Pathogen dispersal 

Based on the results of previous studies designed to estimate the dispersal kernels of P. lagenophorae 

[109] and P. striiformis [81, 110], the power-law function has a good ability to predict the dispersal of 

rust spores, assuming it is isotropic (i.e. uniform in all directions). We consequently use this function 

in our model:  

 𝑔(‖𝑧′ − 𝑧‖) =
(𝑏−2)(𝑏−1)

2.𝜋.𝑎2 . (1 +
‖𝑧′−𝑧‖

𝑎
)

−𝑏

 (23) 

where a > 0 is a scale parameter and b > 2 determines the weight of the dispersal tail. The expected 

dispersal distance is given by: 𝜇𝑒𝑥𝑝 =
2𝑎

(𝑏−3)
.  

However, the estimation of parameters a and b is not straightforward. Indeed, many studies dealing 

with the dispersal of rust spores did not use a power-law function [78, 111], or they did but used a 

unidimensional or modified power-law functions [81, 109, 110, 112, 113], which makes calibration of 

our own function difficult. We therefore focused on the results obtained in four studies [78, 109, 110, 

113] which used exponential functions as dispersal kernels. In spite of a lower goodness of fit of the 

exponential function to model spore dispersal [81, 110, 113], estimation of a mean dispersal distance 

from this function is easier and enables direct comparison between studies. The overall mean 

dispersal distance in these four studies is 19.46 m (S2 Table), thus we calibrated a and b of our power-

law function in such a way that μexp=20 m, which represents 1% of landscape length. Among the 

possible solutions we arbitrarily chose a=40 and b=7 (S8 Figure). 

 

 

S8 Figure. Two-dimensional representation of the power-law dispersal kernel used in this study 

(μexp=20 m; a=40; b=7.). The top panel indicates the logarithm of the probability to disperse from 

the origin to any point of the landscape, and the bottom panel indicates the cumulative probability to 

disperse over a given distance. 
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S2 Table. Mean dispersal distance of rust spores computed from available results obtained in studies 

which used exponential functions. Let the dispersal function be written as 𝑓(𝑥) = 𝑏. 𝑒−
𝑥

𝑎 with x the 

distance of dispersal. Then the mean dispersal distance is simply 𝜇0 = 2. 𝑎. 

Reference Pathogen Mean dispersal distance (m) 

[113] 

P. graminis 36.50 

P. graminis 8.51 

P. graminis 94.76 

P. polysora 18.18 

P. polysora 11.11 

P. sorghi 2.22 

[109] P. lagenophorae 0.40 

[110] 

P. striiformis 18.87 

P. striiformis 1.99 

P. striiformis 13.42 

P. striiformis 8.16 

P. striiformis 3.04 

P. striiformis 1.91 

P. striiformis 1.98 

P. striiformis 0.66 

[78] 

P. recondita 38.60 

P. recondita 34.00 

P. recondita 27.80 

P. recondita 38.00 

P. recondita 29.00 

 Overall mean 19.46 m 

The parameters of the sigmoid curve for contamination of hosts by propagules (κ=5.33, σ=3) have 

been parameterised as in previous works [40, 42, 55], such as π(0)=0, π(1)=1, and the inflexion point 

is located at 𝑥0 = ((𝜎 − 1) 𝜅𝜎⁄ )
1

𝜎⁄ ≈ 0.5. Thus, the contamination of a healthy host is easier when 

the proportion of healthy hosts is higher than 50%, and harder otherwise (S9 Figure). 

Initial conditions and seasonality 

The host dynamics (host growth, δv = 0.1 day-1; plantation density, 𝐶𝑣
0 = 0.1 m-2; maximal density, 𝐶𝑣

𝑚𝑎𝑥 

= 2 m-2) was parameterised as in previous works [45], in order to obtain reasonable host dynamics in 

the absence of disease (GLATOT=1.48 day-1.m-2, noting that host dynamics is deterministic, S10 Figure).  

The probability of infection at the beginning of the simulation (ϕ=5.10-4) and the off-season survival 

probability (λ=10-4) have been set such that epidemics in a fully susceptible landscape are regular 

(average of 10 simulations: GLATOT=0.48 day-1.m-2 [standard deviation: 0.005], AUDPCTOT=0.38 

[0.001], see the output of one simulation in S11 Figure).  
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S9 Figure. Sigmoid contamination function. Probability for a healthy host to be contaminated 

following propagule arrival. The equation is 𝜋(𝑥) =
1−𝑒−𝜅.𝑥𝜎

1−𝑒−𝜅  with κ=5.33 and σ=3. 

 

S10 Figure. Deterministic dynamics of healthy hosts in the absence of disease. 

GLATOT=1.48 day-1.m-2. 
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S11 Figure. Dynamics of healthy (A, GLATOT=0.49 day-1.m-2) and diseased (B, 

AUDPCTOT=0.38) hosts in a fully susceptible landscape in a simulated example. 
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Evolutionary parameters 

Very few empirical data are available from rust pathogens to help parameterise the model with 

respect to mutation probabilities, cost of infectivity, cost of aggressiveness and number of mutations 

required to completely erode a trait for quantitative resistance. It is important to remember that the 

mutation probability in the model refers to the probability that a spore has a different phenotype from 

its parental lesion. For instance, τ1 gives the probability for a spore to have an infective phenotype on 

a resistant cultivar carrying major gene 1, given that this spore was produced by a lesion triggered by 

a non-infective pathogen. This probability depends on the number of mutations per generation per 

base pair (i.e. the classic ‘genetic mutation rate’ of empirical studies), the number and nature of the 

specific genetic mutations required to overcome major gene 1, and the potential dependency 

between these mutations. In addition to the lack of empirical data, all these parameters are likely to 

vary depending on the pathosystem as well as the resistance sources.  

Consequently, this work focuses on a simple theoretical case, where evolutionary parameters have 

been arbitrarily fixed. Since one of the objectives of this application case is to identify promising 

combinations of qualitative and quantitative resistance, and based on preliminary simulations, the 

mutation probabilities were set at τg=τw=10-4 in such way that a cultivar carrying a single major gene 

would be overcome in less than one year. Using these values, pathogen evolution is quick enough to 

potentially adapt to the resistance genes, but slow enough to allow comparison of the effectiveness 

of different resistance combinations with regard to controlling disease. The resistance efficiency is set 

at ρg=1 for qualitative resistance (i.e. a major resistance gene confers complete immunity against non-

adapted pathogens), and ρw=0.5 for quantitative resistance traits (i.e. infection rate, sporulation rate, 

duration of the sporulation period, or number of epidemic cycles in a cropping season of a non-

adapted pathogen on resistant hosts is reduced by 50%). The cost of infectivity and the cost of 

aggressiveness were set at θg=θw=0.5, the trade-off strength at βw=1 (linear trade-off), and the 

number of pathotypes with regard to the aggressiveness components at Qw=6 (i.e. every mutation 

step improves or degrades an aggressiveness component by 20%). This last value is a compromise 

between the high number of steps required to simulate a gradual pathogen evolution, and having a 

smaller number of different pathotypes to limit the computational time required to perform the 

simulations.  
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This parameterisation gives the following infectivity and aggressiveness matrices: 

Infectivity matrix for 
major gene g 

INFg 

Host genotype v 

Susceptible 
(SC) 

mgg(v)=0 

Resistant 
(RC) 

mgg(v)=1 

P
at
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n

 

ge
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e

 p
 

Non-infective 
igg(p)=0 

1 0 

Infective 
igg(p)=1 

0.5 1 

 

Aggressiveness matrix 
for component w 

AGGw 

Host genotype v 

Susceptible 
(SC) 

qrw(v)=0 

Resistant 
(RC) 

qrw(v)=1 

P
at

h
o

ge
n

 g
e

n
o

ty
p

e
 p

 

Non-aggressive 
agw(p)=1 

1 0.5 

agw(p)=2 0.9 0.6 

agw(p)=3 0.8 0.7 

agw(p)=4 0.7 0.8 

agw(p)=5 0.6 0.9 

Fully aggressive 
agw(p)=6 

0.5 1 

Grey lines indicate pathogen population at the beginning of the simulations. 

The parameterisation of the mutation probabilities (τg=10-4 and τw=10-4) and the number of steps to 

completely erode a quantitative resistance (given by Qw) give the following mutation matrix for 

infectivity gene g: 

 igg(p)=0 igg(p)=1 
igg(p)=0 0.9999 10-4 
igg(p)=1 10-4 0.9999 

and the following mutation matrix for aggressiveness component w: 

 agw(p)=1 agw(p)=2 agw(p)=3 agw(p)=4 agw(p)=5 agw(p)=6 
agw(p)=1 0.9999 10-4 0 0 0 0 
agw(p)=2 5.10-5 0.9999 5.10-5 0 0 0 
agw(p)=3 0 5.10-5 0.9999 5.10-5 0 0 
agw(p)=4 0 0 5.10-5 0.9999 5.10-5 0 
agw(p)=5 0 0 0 5.10-5 0.9999 5.10-5 
agw(p)=6 0 0 0 0 10-4 0.9999 
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Discussion of model parameterisation and assumptions 

Parameterisation to rust pathogens.  

Pathogen aggressiveness. This model has been calibrated for rust-like pathogens using available 

knowledge of the epidemiology of fungi in the genus Puccinia. In particular, we found many data 

related to pathogen aggressiveness and dispersal. This allows the reliable estimates of parameters 

emax, γmin, γvar, Υmax and Υvar. However, as noted above, the calculation of the effective number of 

spores produced daily by a lesion and effectively dispersed to a leaf where they may trigger an 

infection (rmax in our model) is extremely challenging. Acquisition of data to inform this parameter is 

crucial, since this parameter has a strong influence on epidemic spread and pathogen evolution [45]. 

In this study, rmax directly affects pathogen population size, which influences both the number of new 

infected hosts from a single infectious source, and the probability that some of these new infections 

are triggered by mutant spores. For example, smaller values should lead to higher times to appearance 

of mutants (durability measure (d1)) than what we observed in our simulations (see white bars in Fig 

5A). 

Pathogen dispersal. The dispersal of fungal spores has been extensively studied, and we now have 

considerable evidence to support the use of a power-law kernel to simulate spore dispersal [81, 109, 

110]. Available data indicate that the mean dispersal distance is of the order of 20 m (see S2 Table). 

However, sensitivity analyses of models simulating plant epidemics show that both the mean dispersal 

distance [40, 114] and the width of the tail of the dispersal kernel [42, 79] have a great impact on 

pathogen spread. In the present work, the calibration of parameters a and b gives an appropriate 

mean dispersal distance, but is probably less accurate with respect to simulation of long-distance 

dispersal events (determined by the width of the tail of the dispersal kernel). In the future, we need 

studies built with exactly the same equations, to better compare and calibrate parameter values of 

dispersal kernels. This will be particularly important in future modelling studies aiming to explore the 

effect of landscape composition (e.g. proportion and spatial aggregation of a resistant cultivar) on 

pathogen spread and evolution (see ‘Future research directions’ in the discussion section). 

All healthy sites of a plant do not have the same propensity to be infected [78]. This is at least partly 

due to plant architecture, which makes healthy sites not equally accessible to spores following 

dispersal. Thus, once the most accessible sites are infected, the remaining healthy sites may be harder 

to reach and infect. Our contamination function (see S9 Figure) accounts for this process. The high 

flexibility of this function makes it relevant for a wide range of pathogens, including rusts. However, 

we did not have any experimental data to parameterise it for cereal crops. Therefore, we used the 

same arbitrary values (κ, σ) as in previous works [40, 55] in order to facilitate comparisons between 

studies. Nevertheless, since this function only mitigates the overall infection rate (emax), it is likely that 

epidemic spread depends more on the value of the latter than on the parameters or shape of this 

sigmoid function. A sensitivity analysis of a similar simulation model showed that use of a linear 

contamination function, rather than a sigmoid function [41] has little effect on the level of pathogen 

adaptation to quantitative resistance. 

Seasonality and initial conditions. Parameters related to host growth (δv), host density (𝐶𝑣
𝑚𝑎𝑥), initial 

conditions (𝐶𝑣
0 and ϕ), and seasonality (λ) are specific to the agricultural (e.g. choice of cultivars, 

planting density) and epidemiological (e.g. initial level of contamination, presence of a wild reservoir 

or volunteer host plants for the pathogen) contexts. In our application case, these parameters have 
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been parameterised so as to simulate regular host dynamic and epidemics. This helps compare 

different resistance deployment strategies in standardised conditions, and attribute variation in model 

outputs to the deployment strategies rather than to the initial conditions or the epidemiological 

context. On the other hand, it could be interesting to vary the growth rate of resistant cultivars (or 

their contribution to yield) to study the impact of cost of resistance on the performance of different 

deployment strategies. One could also vary the off-season survival probability of infectious hosts (λ) 

to investigate the potential of strategies based on green bridge suppression (e.g. fungicide treatments 

in the end of the cropping season; removal of potential volunteer plants during the off-season). 

Pathogen evolution. As discussed previously, parameterisation of evolutionary processes in the model 

from empirical data is extremely difficult. In addition to the scarcity of studies designed to estimate 

such parameters for rusts, these parameters may not correspond with the definition of the 

parameters in our model (e.g. our ‘mutation probability’ is different from the classic ‘mutation rate’; 

see above). Consequently, we chose to investigate combinations of qualitative and quantitative 

resistances in a simple context, using the same mutation probabilities (τg and τw), costs of infectivity 

(θg) and aggressiveness (θw), trade-off strengths (βw), and numbers of steps to completely erode a 

quantitative resistant trait (Qw) for every major resistance gene g and trait of quantitative resistance 

w. 

In this model, the mutation probability gives the probability of appearance of mutants. Therefore it 

has a great effect on the time to appearance of such mutants [30, 39] or the speed of erosion of 

quantitative resistance [56]. However, provided that mutation probabilities are the same for all 

infectivity genes and aggressiveness components (i.e. 𝜏𝑔 = 𝜏𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, ∀𝑔, ∀𝑤), the specific 

value of these mutation probabilities should similarly affect all scenarios of our numerical 

experimental design. In other words, they should not change the relative durability and 

epidemiological efficiency of these simulated scenarios, and consequently the ranking of the tested 

resistance combinations. To test this hypothesis, we replicated the simulations with smaller mutation 

probabilities: τg= τw={10-5; 10-6; 10-7}. The results of these new simulations show that the durability of 

the major gene increases with decreasing mutation probabilities (S5ACE Figure), but the tested 

resistance combinations keep the same ranking. Similarly, the combinations of qualitative and 

quantitative resistances result in better epidemiological outcomes when the mutation probabilities 

decrease (S5BDF Figure). Nevertheless, regardless the mutation probabilities, the most promising 

combination is still the pyramid of two major resistance genes, followed by a major gene combined 

with a quantitative resistance trait against the latent period, next with a quantitative resistance trait 

against the infection rate and the sporulation rate, and finally with a quantitative resistance trait 

against the sporulation duration. 

In contrast, the fitness costs associated with pathogen adaptation may differentially affect the 

simulated scenarios. Several studies have demonstrated that higher infectivity costs increase 

resistance durability [29, 30] and epidemiological efficiency [33]. In our results, the durability of the 

pyramid of two major genes is likely due to the cost of infectivity (θg) endured by mutant pathogens 

(see main text and Fig 5A). However, smaller values would result in a reduced performance of this 

strategy in comparison to other resistance combinations. This may also be true for comparisons of 

pyramiding with other spatio-temporal deployment strategies such as mosaics [50]. Similarly, the time 

to establishment of mutant pathogens in a host population carrying quantitative resistance has been 

shown to increase with higher costs of aggressiveness [37] or stronger trade-off relationships [41, 45, 
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55]. Thus, the associated parameters (θw and βw), as well as the number of steps to erode a 

quantitative resistant trait (Qw) should considerably impact model outputs like final level and speed 

of erosion of quantitative resistance.  

To conclude, the impact of all these evolutionary parameters, related to the choice of the resistance 

source, on the evolutionary and epidemiological outcomes of the simulated deployment strategies 

need to be explicitly evaluated within a dedicated numerical experimental design. This is the objective 

of future studies (see section ‘Future research directions’ in main text). Furthermore, given the 

variability in fitness costs and trade-off relationships associated with the evolution of pathogens, 

including rust fungi [65], a careful assessment of these parameters is required before the deployment 

of genetic resistance in the field, in order to get reliable predictions of their durability and efficiency.  

Parameterisation to necrotrophic fungal pathogens.  

Parameterisation of our model is flexible enough to encompass a wide range of pathogens. As an 

example, although our application case focused on biotrophic fungi, necrotrophic pathogens could 

be simulated, by allowing transmission from stubble after crop harvest instead of from living tissue 

during the cropping season. To this end, the latent period could be increased to cover the whole 

cropping season, and the off-season survival probability could be adjusted in such a way that the 

total pool of produced spores is available for the following cropping season (after which the pool of 

spores would no longer be available). This scenario would at least partially represent major features 

of interactions such as that between canola and blackleg (Leptosphaeria maculans) [115]. 


