Supporting Information

Genome-wide mosaicism in divergence between zoonotic malaria parasite subpopulations with separate sympatric transmission cycles

Paul C. S. Divis^{1,2}, Craig W. Duffy², Khamisah A. Kadir¹, Balbir Singh¹, David J. Conway^{1,2}

¹ Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia,

² Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom.

Supporting Information for this paper consists of four figures (**Figures S1 – S4**) and four tables (**Tables S1 – S4**).

Fig. S1. SNP variation in whole genome sequences of *P. knowlesi* shows three major clusters by Principal Coordinate Analysis. The 21 new samples sequenced in this study are plotted with black dots (all are within Cluster 2) while previous genome sequences are indicated with grey dots.

Fig. S2. Genome-wide distribution of nucleotide diversity (π) of two *P. knowlesi* subpopulation clusters in Malaysian Borneo. (A) Cluster 1 subpopulation, and (B) Cluster 2 subpopulation. Diversity was calculated in non-overlapping 10-kb windows of all 14 chromosomes. Gap between chromosomal blocks represents subtelomeric regions and not included in analysis. The mean genome-wide π for Cluster 1 subpopulation (n = 41) is 5.78 x 10⁻³ and for Cluster 2 subpopulation (n = 34) is 3.43 x 10⁻³.

Fig. S3. Maximum Likelihood-based phylogeny inferred for mitochondrial genomes sequenced from 129 *P. knowlesi* isolates, including the samples sequenced in this study that are marked with underlined circles. Boostrap values on nodes are only shown where they are above 80% based on 1000 replicates. The scale horizontal bar indicates nucleotide substitutions per site.

Fig. S4. Maximum likelihood phylogeny inferred by analysis of 30.6 kb of apicoplast genomes from 65 *P. knowlesi* infections, including the samples sequenced in this study that are marked with arrows. All nodes had bootstrap values above 80% based on 1000 replicates, except for those marked with black dots. The scale horizontal bar indicates nucleotide substitutions per site.

	OC passed	% roads	% road pair	Average denth
Sample ID	QC-passed	% reaus	% read-pair	Average depth
	/1 212 770		84.26	1/6 6/
BTG020 BTG035	41,313,773 52,463,104	10.02	8 27	140.04
BTG033	<i>J</i> 2,403,104 <i>I</i> 5 761 870	79 59	70 55	13/ 72
BTG035	43,701,870	93.66	81 97	138.67
BTG042 BTG044	42,001,010 20 325 660	97.40	86.28	106 17
BTG044 BTG046	38 670 821	95.40	83.46	136 57
BTG040	22 277 652	05 26	82.07	112 71
BTG047	52,277,000	95.20	85.92 85.81	100.02
BTG049	22 510 780	97.49	80.75	115 50
DTG050	35,319,700	34.01	20.73	113.30
BIGUSS	35,283,028	34.90	30.03	43.21
BIGUSS	21,829,275	77.04		59.30
BIGU62	16,994,448	70.22	57.78	40.84
BIGU63	24,682,482	62.87	54.77	54.42
BIG100	27,267,930	67.12	58.67	69.15
BIG123	25,430,647	89.20	80.91	86.82
CDK088	66,751,502	60.00	53.24	138.42
CDK206	38,122,706	35.21	30.06	46.09
KT003	42,777,884	17.76	15.00	27.47
KT004	42,025,428	92.31	81.48	146.56
KT006	60,281,143	92.74	79.15	211.51
KT012	22,442,197	95.63	85.76	81.86
KT025	56,208,103	94.16	83.79	201.71
KT026	33,338,952	83.74	73.31	105.78
KT027	52,853,787	92.96	81.42	187.58
KT029	28,872,280	62.58	54.37	68.46
KT030	28,525,157	90.61	78.79	98.13
KT031	50,367,159	90.81	81.98	173.76
KT034	23,838,990	53.04	46.11	47.20
KT040	30,655,543	97.60	86.47	113.01
KT042	28,468,946	95.15	86.27	103.16
KT048	20,775,707	77.46	68.02	60.40
KT050	19,424,602	93.49	82.97	68.46
KT055	46,135,860	90.10	84.64	156.67
KT056	48,992,338	81.75	76.99	151.34
KT057	45,715,366	92.63	85.97	159.30
KT072	45,016,497	95.70	88.65	161.03
KT073	46,334.104	95.13	88.03	164.87
KT077	26,284.061	95.29	86.43	95.54
KT081	28.061.976	95.01	86.35	101.66
КТ092	26,779,552	96.35	87.61	98.40

Table S1. Summary of remapping 59 previously generated short read sequences of *P. knowlesi*isolates against the version 2.0 reference genome.

SKS05840,794,75697.63SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	87.74 152.4 81.60 34.48	10
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	±0
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	ŧΟ
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	ŧΟ
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	+O
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	+O
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	ŧO
SKS0736,378,06097.36SKS29951,056,84797.64Pk_Hackeri20,636,60196.47	81.60 34.48	+O
SKS0750,570,00057.30SKS29951,056,84797.64Pk_Hackeri20,636,60196.47		8
SKS299 51,056,847 97.64 Pk_Hackeri 20,636,601 96.47	07.24 402.4	8
SKS299 51,056,847 97.64 Pk_Hackeri 20,636,601 96.47	07 04 400 4	0
Pk_Hackeri 20,636,601 96.47	X/24 190.4	18
Pk_Hackeri 20,636,601 96.47	87.24 190.4	+0
_	90.28 74.96	6
		~
Pk_Malayan 16,464,035 87.42	86.12 55.99	9
	72.00 50.00	
Pk_MR4H 20,571,229 77.39	72.99 59.00	
		0
PK_INUTI 23,348,408 97.30		0
Pk Philippines 32,660,672 97,40	91.52 90.08	0 8
Pk Philippines 32 660 672 97 40	91.02 90.08	0 8

Chromosome	Left subtelomeric region End position (GeneID*)	Right subtelomeric region
1 PKNH_01_v2	31756 (PKNH_0100600)	851582 (PKNH_0118200)
2 PKNH_02_v2	39903 (PKNH_0200500)	717562 (PKNH_0216200)
3 PKNH_03_v2	40085 (PKNH_0300900)	984128 (PKNH_0321700)
4 PKNH_04_v2	45677 (PKNH_0400700)	1111994 (PKNH_0424800)
5 PKNH_05_v2	40025 (PKNH_0500100)	735661 (PKNH_0516400)
6 PKNH_06_v2	19789 (PKNH_0600400)	1045508 (PKNH_0623600)
7 PKNH_07_v2	9141 (PKNH_0700200)	1485805 (PKNH_0734800)
8 PKNH_08_v2	17009 (PKNH_0800400)	1874898 (PKNH_0841200)
9 PKNH_09_v2	56545 (PKNH_0900600)	2085215 (PKNH_0945900)
10 PKNH_10_v2	69857 (PKNH_1001300)	1439673 (PKNH_1032500)
11 PKNH_11_v2	29067 (PKNH_1100500)	2317969 (PKNH_1149400)
12 PKNH_12_v2	38750 (PKNH_1200400)	3129934 (PKNH_1272100)
13 PKNH_13_v2	24663 (PKNH_1300400)	2519037 (PKNH_1356400)
14 PKNH_14_v2	46265 (PKNH_1401100)	3204808 (PKNH_1472800)

Table S2. Definition of the P. knowlesi subtelomeric regions excluded from analysis

*GeneIDs refer to the first and the last conserved protein-coding genes at each chromosome subtelomere boundary. These and the coordinates refer to version 2.0 of the *P. knowlesi* H strain genome sequence.

Table S3. Summary of mapping the short read sequences of 21 new isolates against the *P. knowlesi* version 2.0 reference genome.

Sample ID	QC-passed reads	% reads mapped	% read-pair mapped	Mean depth coverage (X)	Sequence Accession
KT133	8,162,583	97.83	79.73	68.43	ERSXXXXXX
KT143	5,856,181	92.50	76.18	46.80	ERSXXXXXX
KT147	4,169,555	80.77	66.14	28.66	ERSXXXXXX
KT151	10,010,749	80.95	65.17	68.03	ERSXXXXXX
KT161	10,544,255	65.18	53.45	56.19	ERSXXXXXX
KT165	8,134,708	95.69	78.58	67.36	ERSXXXXXX
KT172	7,953,445	64.71	52.08	42.17	ERSXXXXXX
KT176	5,854,135	98.42	81.19	50.11	ERSXXXXXX
KT186	9,092,261	95.21	78.00	74.47	ERSXXXXXX
KT198	7,072,188	98.30	82.09	50.96	ERSXXXXXX
KT217	8,827,711	85.51	69.74	64.04	ERSXXXXXX
KT221	6,138,392	97.72	80.20	51.73	ERSXXXXXX
KT223	7,584,970	97.07	79.87	63.69	ERSXXXXXX
KT224	10,403,400	90.68	74.10	80.27	ERSXXXXXX
KT226	7,057,397	94.60	77.89	50.92	ERSXXXXXX
KT231	3,468,323	97.98	80.38	28.99	ERSXXXXXX
KT233	5,224,563	97.59	79.88	44.10	ERSXXXXXX
KT243	9,500,408	98.33	81.53	71.51	ERSXXXXXX
KT263	4,012,790	96.38	79.36	33.64	ERSXXXXXX
KT266	6,897,861	98.00	81.77	47.88	ERSXXXXXX
KT305	3,628,341	96.37	78.70	30.26	ERSXXXXXX

All sequence accession numbers will be made publicly available upon acceptance of the article.

	High-dive	erged region	ns (HDRs)		Low-dive	rged region	s (LDRs)	
Chr	HDR window	Start position	End position	Length (bp)	LDR window	Start position	End position	Length (bp)
1	HDR01	749494	837835	88342	LDR01	96319	679406	583088
2	HDR02	40006	180420	140415	LDR02 LDR03	186366 425017	364472 648577	178107 238648
3					LDR04	252738	460344 937541	207607
					LDINUS	540558	537541	390344
4	HDR03	625263	919357	294095	LDR06	234546	421831	187286
5					LDR07	40804	733264	692461
6	HDR04 HDR05	21165 921498	112965 1024278	91801 102781	LDR08	318443	864442	546000
7	HDR06 HDR07 HDR08	23701 397684 860949	222469 853275 1452166	198769 455592 591218				
8	HDR09 HDR10	26256 260538	190875 533984	164620 273447	LDR09	534591	1827275	1292685
9	HDR11	1316694	1754323	437630	LDR10	765850	945549	179700
10					LDR11 LDR12 LDR13	70745 481963 1067530	338054 1003531 1385663	267310 521569 318134
11	HDR12	1570780	1676811	106032	LDR14 LDR15 LDR16	30861 1326585 1681406	1117021 1507915 2194542	1086161 181331 513137
12	HDR13 HDR14 HDR15	1165069 1951856 2590082	1935432 2524953 2849921	770364 573098 259840	LDR17	39358	729445	690088
13	HDR16 HDR17	24680 1053698	146791 2514922	122112 1461225	LDR18 LDR19	147119 515520	324956 1017446	177838 501927
14	HDR18 HDR19	46282 743011	200282 915540	154001 172530	LDR20 LDR21	207562 1036448	441315 1221194	233754 266306

Table S4. Locations and lengths of high divergence regions (HDRs) and low divergence regions (LDRs) in 14 chromosomes of *P. knowlesi*

HDR20	3103808	3186756	82949	LDR22	1363873	1539047	175175
				LDR23	2280342	2888810	608469

HDRs are regions with contiguously high F_{ST} indices between Cluster 1 and Cluster 2 (Z scores of multiple windows containing 500 adjacent SNPs all above 0.5); LDRs are regions with contiguously low F_{ST} indices (Z scores of multiple windows all below -0.5).