Supplementary information S1 (box): Scoring Metrics

An appropriate metric is essential to score a challenge. Broadly speaking, there are two main challenge questions, classification (typically binary classification) and regression.

Classification is the task of assigning elements of a dataset into two (binary) or more groups (e.g. patient into responder or non-responder to a treatment). For the binary case, there are four possible outcomes that can be arranged in a 2x 2 matrix, the so-called contingency matrix:

	Gold Standard Positive Set (P=TP+FN)	Gold Standard Negative Set (N=FP+TN)	
Predicted Positive	True Positive (TP)	False Positive (FP)	
Predicted Negative	False Negative (FN)	True Negative (TN)	

Multiple metrics can be derived from a contingency table. Some of the most common are

- True positive rate (TPR), also known as sensitivity or recall: TPR = TP/ P
- True negative rate (TNR) or specificity: TNR = specificity = TN/N
- False negative rate (FNR): FNR = FN /P
- False positive rate (FPR): FPR=FP/N
- Precision = TP/ (TP +FP)
- False discovery rate (FDR): FDR = FP /(TP + FP)

Generally there is trade-off between precision (being right in the calls made) and recall (identifying the calls that can be made) in a classification problem. Hence, these are sometimes combined in metrics that aim to balance them, such as the F-score (the harmonic mean of precision and recall), and Mathew's correlation coefficient.

Often a classification algorithm can provide more or less calls with more or less confidence, and such a confidence is often asked in the context of the Challenges. By computing precision and recall for different levels of confidence, plotting them, and then joining those points, one can compute the Precision-Recall (PR) curve. Similarly, by computing and plotting TPR and FPR, one obtains the closely related ROC (Receiving Operating Characteristics) curve. Both represent the capacity of a given algorithm for different levels of confidence, and are often summarized by computing the area under their curve (AUPR and AUROC, respectively). While both give very similar information (Davis and Goadrich 2006), AUPR is more accurate for cases where the number of positives and negatives is very unbalanced.

In a *regression problem* the task is to predict the numerical values for a number of variables (dependent variables), based on certain features (independent variables). A common metric is the root-mean squared error (RMSE) that averages the quadratic errors of the individual measurements. Another common metric to compare predicted vs. measured values is the Pearson correlation.

There is a simple relationship between the RMSE and the Pearson correlation coefficient ϱ :

$$RMSE^{2} = (\mu_{pred} - \mu_{exp})^{2} + (\sigma_{pred} - \sigma_{exp})^{2} + 2\sigma_{pred}\sigma_{exp}(1 - \varrho)$$

where σ_{pred} and, σ_{exp} , μ_{pred} and μ_{exp} are the standard deviations and μ_{pred} and μ_{exp} the means in the predictions and experimental (gold standard) data, respectively. This relationship nicely shows that RMSE is aggregating the comparison of predictions and measurements in several facets simultaneously, namely the average (μ), the range (σ) and how they covary (p). This may be undesirable if one of the terms dominates over the others, which makes it difficult to separate subtle performance differences between teams. Sometimes it is desirable to compare the order (rank) of the predictions and gold standard rather than the actual values, when the actual ordering is the important thing to predict (e.g. prioritize drugs from more to less efficacious as treatment(Costello et al. 2014)). The analogous metric to Pearson's correlation considering ranks is Spearman's rank correlation coefficient. Another useful rank-based metric is the Concordance Index.

When the Gold Standard is noisy, the regression metrics should take into account the experimental variability, weighting the predictions so as to give more importance to data points whose ground truth we are more certain about. For example, the RMSE was divided by the experimental noise in some challenges(Prill et al. 2011; Hill et al. 2016), or the Concordance Index modified into the so-called probabilistic c-index(Costello et al. 2014).

Different metrics highlight different aspects of an algorithm performance. Therefore a thorough evaluation of the strengths and weaknesses of an algorithm requires looking at it under the light of different metrics. To cover the multiple aspects of prediction evaluation a combination of several scoring metrics is desired. In the end, a final score based on the combination of different metrics can provide an integrated evaluation of the quality of the predictions.

All these scoring metrics have then to be compared with a null model (for example random predictions), to assess the statistical significance of predictions. It is important to ensure that the final ranking in a Challenge is robust to subtle changes in the test set. This can be achieved by generating an ensemble of new submissions by bootstrapping the test set and assessing if the difference in ranking between teams (e.g., first and second, or second or third) is statistically significant.

A collection of all metrics used in the DREAM Challenges is available in the package DREAMTools.(Cokelaer et al. 2015)

References

- Cokelaer, Thomas, Mukesh Bansal, Christopher Bare, Erhan Bilal, Brian M. Bot, Elias Chaibub Neto, Federica Eduati, et al. 2015. "DREAMTools: A Python Package for Scoring Collaborative Challenges." *F1000Research* 4 (October). http://f1000research.com/articles/4-1030/v1.
- Costello, James C., Laura M. Heiser, Elisabeth Georgii, Mehmet Gönen, Michael P. Menden, Nicholas J. Wang, Mukesh Bansal, et al. 2014. "A Community Effort to Assess and Improve Drug Sensitivity Prediction Algorithms." *Nature Biotechnology*, June. Nature Publishing Group.

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24880487&retmod e=ref&cmd=prlinks.

- Davis, Jesse, and Mark Goadrich. 2006. "The Relationship Between Precision-Recall and ROC Curves." In *Proceedings of the 23rd International Conference on Machine Learning*, 233–40. ICML '06. New York, NY, USA: ACM.
- Hill, Steven M., Laura M. Heiser, Thomas Cokelaer, Michael Unger, Nicole K. Nesser, Daniel E. Carlin, Yang Zhang, et al. 2016. "Inferring Causal Molecular Networks: Empirical Assessment through a Community-Based Effort." *Nature Methods*, February. doi:10.1038/nmeth.3773.
- Prill, Robert J., Julio Saez-Rodriguez, Leonidas G. Alexopoulos, Peter K. Sorger, and Gustavo Stolovitzky. 2011. "Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge." *Science Signaling* 4 (189). AAAS: mr7.

Supplementary information S2 (table). Examples of collaborative competitions. A set of nineteen Challenges organized in the past six years (see also the additional case studies in the main text). This table is an expanded version of Table 1, in which additional information is provided, primarily regarding the solvability of the Challenges based on the data provided to participants and on scoring metrics used. Challenges are coloured according to the research area.

Challenge name, Reference, Year of challenge, Participation	Challenge question	Gold standard and scoring	Solvability: does the underlying data provide information for successful predictions?	Winning methodology or algorithm	Scientific advance (What we learned scientifically or biologically)	Legacy (e.g. databases, biomarkers in use, spin-out companies)				
Gene regulation and signalling network Challenges										
DREAM5 Gene	Infer a transcription factor	or- GS: RegulonDB for <i>E. coli</i> ;	Performance for the	The top method to	Network motifs were	Challenge Publication ¹ .				
regulatory network	to-target gene regulatory	GeneNetWeaver known	in silico and E. coli	predict <i>E. coli</i>	predicted differently	The GenePattern-DREAM server				
inference ¹	network	interactions for in silico; Chl	networks were high, but	interactions was	based on the underlying	can be used to run individual				
(2010)		binding and evolutionary	S. cerevisiae inferences	based on a two-way	model. The 'wisdom of	methods and build an ensemble				
		conservation for S.	were poor. A network	ANOVA. The top	crowds' model was the	prediction				
29 teams		cerevisiae	was constructed using	method to predict	most robust across all	(http://dream.broadinstitute.org/)				
		Scoring: area under the	all the teams and	in silico interactions	individual models.					
		ROC and area under the	experimental validation	used group lasso						
		PR curves	was used to verify	regression and						
			overall precision of 50%.	bootstrapping.						
DREAM TF-DNA	Model the DNA binding	GS: The measured degree	Quality of the	The best method	PWMs work well for most	Challenge Publication ² . Server to				
Motif Recognition	sites of a transcription	of binding of each of the TF	predictions was	was based on a	TFs. In vitro-based TF	enable continuous benchmarking of				
Challenge	factor (TF) based on	in the test set in an	dependent on both the	k-mer model.	binding measurements	methods				
² (2010)	protein binding microarra	ay independent PBM. Scoring:	algorithm used and the	Several position-	can be used to effectively	(http://www.ebi.ac.uk/saezrodrigue				
	(PBM) data.	Correlation between	specific TF. In general,	weight-matrix	distinguish in vivo-bound	z-srv/d5c2/cgi-bin/TF_web.pl). All				
14 teams		predicted and measured	the best algorithms	(PWM)-based	sequences from random	data are also available				
		signals, Precision/Recall	produced highly	methods also	sequences. Most TFs	(http://cisbp.ccbr.utoronto.ca/)				
		analysis.	accurate predictions	performed well for	recognize highly					
			(AUROC > 0.95)	most TFs.	'degenerate' sequences.					

DREAM Gene	Predict the expression	GS: Fluorescence of GFP	Correlations were	SVM with a previous	General models for	Challenge Publication ³ . Data
Expression	levels of genes	downstream of promoters.	above 0.8. Post-	search for the best	promoter expression	produced is available for
Prediction	downstream of ribosomal	Scoring: RMSD and	challenge model	adapted feature was	prediction did not fare	benchmarking models in
Challenge ³	promoters based on the	correlations between	considering prior	complemented by a	well for predicting a	https://www.synapse.org/GeneExpr
	DNA sequence of the	measured and predicted	knowledge (TF and	previous physical	specific family of	essionChallenge
(2011)	promoter	expression	RNA polymerase	model of TF and	promoters (ribosomal	
			binding site information)	RNA polymerase	genes)	
21 teams			fared better than	interaction with		
			original submissions.	DNA.		
DREAM Network	SubC1: Infer kinetic	SubC1: GS: Actual kinetic	The solutions for	Maximum likelihood	The main conclusion is	Challenge Publication ⁴ Networks
Topology and	parameters in <i>in silico</i>	parameters from in silico	parameter estimation	fit of the model	that given a model, a	and Data produced are available
Parameter	gene regulatory networks.	model. Scoring: RMSD in	and dynamic	parameters given	low amount of well-	for benchmarking paramater
Estimation	SubC2: Predict protein	log scale	predictions were very	observed data	chosen data is enough	estimation approaches in
Challenges ⁴	time courses under	SubC2. GS: Simulated time	good.	obtained from	to have a good estimate	https://www.synapse.org/NetworkT
	perturbed conditions.	courses. Scoring:	The solutions for the	in silico experiments	of parameters and	opologyChallenge
(2011-2012)	SubC3: Find missing	Normalized RMSD between	network topology	and construction of	dynamics of the GRN.	
	network edges based on	predicted and simulated	problem were not very	a game tree of	The difficulty in solving	
31 teams (19 in	a limited set of data.	protein values.	good, probably due to	possible sequences	the network topology	
2011, 12 in 2012)		SubC3: GS: known missing	the difficulty of the	of most informative	problem confirms the	
		edges. Scoring. Number of	problem, rather than the	data to use and	essential problem of	
		edges and nodes correctly	lack of adequate data.	experiments to	finding the correct GRN	
		predicted.		perform.	topology.	

HPN-DREAM	SubC1: Infer signalling	SubC1. GS: Measured	SubC1: several teams	SubC1. Granger	Results suggest that	Challenge Publication⁵. All
Breast Cancer	networks in breast cancer	perturbed protein	attained statistically	causality, extended to	causal network inference	challenge data, included open
Network Inference	cell lines using protein	downstream of the	significant AUROC	include future time	is feasible in complex	source code, participant prior
Challenge ⁵	time-course data obtained	intervention in the withheld	scores. Performance	points, combined with	mammalian settings.	networks and crowdsourced
	after intervention on	data set. Scoring: AUROC	varied across cellular	prior networks based	Scoring by empirically	aggregate networks have been
(2013)	specific proteins	of standardized data.	contexts. In some	on known biological	assessing inferred causal	made available as a community
	SubC2: Predict	SubC2. GS: Measured time	cases, only marginal	pathways. Another	networks using withheld	resource
178 final	phosphoprotein time-	course of the	improvements over	top method	interventional data can	(www.synapse.org/HPN_DREAM_
submissions	course data given a	phosphorylation levels	prior information alone,	(FunChisq) used a	be applied in other	Network_Challenge).
	specific intervention.	resulting from intervention.	while in others there	chi-squared test to	settings. Incorporation of	The best performing method is
	SubC3: Develop tools to	Scoring: RMSD between	was a clear gain in	examine functional	prior information was	implemented in the Cytoscape tool
	visualize the Challenge	predicted and true time	performance.	dependencies among	broadly beneficial. Data-	Cyni.
	data.	courses.	SubC2: teams did not	variables without	driven learning offered	The visualization tool Biowheel is
		SubC3. No GS. Scoring:	do well at predicting	using any prior	the most utility in those	available at
		All participants voted for	protein abundance time	information.	contexts where prior	dream8.dibsbiotech.com
		their favourite visualization.	courses following	SubC2. One top	information alone	
			specific protein	method used a	performed less well.	
			inhibition.	regression model	Submissions included	
				with truncated	novel approaches.	
			SubC3: Including a	singular value		
			visualization	decomposition.		
			subchallenge to a data	A second method		
			challenge can motivate	used Generalized		
			the development of	Linear Models		
			better data	informed by		
			representations.	networks inferred		
				in SubC1.		
				SubC3: Biowheel		
				visualization		
				(dream8.dibsbiotech		
				<u>.com</u>).		

Translational and	clinical challenges					
FlowCap/ DREAM	Classify AML versus	GS: Actual diagnosis of	Challenge was fairly	Not relevant in this	If the signal is clearly	Challenge Publication ⁶ Dataset is
Molecular	normal blood samples from	healthy versus AML in the	easy and multiple	context, as many	contained in the data,	public at <u>FlowRepository.org</u> and
Classification of	flow cytometry data	test dataset of blood	participants got a	algorithms got a	the choice of machine	has been used in multiple
AML Challenge ⁶		samples.	perfect score.	perfect score.	learning algorithms is	independent articles.
		Scoring: AUPR.			inessential to identify	
(2011)					correlates of clinical	
					outcomes in flow	
39 teams					cytometry data	
DREAM-Phil	Predict the progression of	GS: Slope of change in	The relatively small size	Two teams were	Best performers	Challenge publication ⁷ . Origent
Bowen ALS	patients with ALS from	ALS Functional Rating	of the data set (while	identified as	predicted ALS	Data Sciences,
Prediction	clinical trial data	Scale (a measure of	the biggest available at	winners. One of	progression better than	(<u>http://www.origent.com</u>) was
Prize4Life		disease status) per unit	the time) probably took	them used a	a group of consulted	spanned out from Sentrana to
Challenge'		time Scoring: RMSD and	away from	Bayesian Additive	physicians. An analysis	predict disease behaviour of
(2012)		correlations between	performance. The best	Random Trees,	of most informative	individual patients. This Challenge
		measured and predicted	performing team only	whereas the other	teatures identified	was the basis of the subsequent
>1000 registrants		siopes.	improved beyond a	used random forest.	potential novel	DREAM Challenge on ALS.
37 unique teams			baseline algorithm by a		biomarkers such as	
To teams made			small but significant		creatinine and creatine	
inal submissions.			amount		kinase	
Sage Bionetworks-	Predict the survival of	GS was the actual survival	Models that used	The winning	Copy number and gene	Challenge Publication ⁸ The winning
DREAM Breast	patients with breast cancer	of patients in the test set.	clinical covariates alone	algorithm topped the	expression data provided	method Attractor Metagenes is
Cancer Prognosis	on the basis of gene	Scoring: Concordance	achieved a CI of ~0.70.	leaderboards	only an incremental	now part of the standard
Challenge ⁸	expression data, genomic	index (CI) between the	The addition of genomic	throughout the	performance	bioinformatic toolboxes in R and
· ·	copy number data, and	predicted risk score and	features provided an	different phases of	improvement over clinical	Matlab.
(2012)	clinical covariates.	overall survival.	incremental	the Challenge. The	covariates alone,	
			improvement in CI of up	main idea that	especially for aggressive	
354 registrants			to 0.76	differentiated it from	high-grade tumours. This	
			The best performing	other methods was	suggests that additional	
			model beat the first	the use of 'Attractor	genomics data may be	
			generation 70-gene risk	Metagene ^{,9} features.	necessary to capture	
			predictor MammaPrint.	Briefly, these are	tumour progression.	
				features built by		
				combining the		
				expression of		
				multiple genes using		
				a mutual-		
				information-based		
				iterative algorithm.		

	Alzheimer's	SubC1: Predict changes in	SubC1: GS was the actual	SubC1 and SubC2:	SubC1: Six teams	Predictions of cognitive	Challenge Publication ¹⁰ The data
	Disease Big Data	cognitive scores 24 months	cognitive score for patients	modest performance	performed	decay from genetic or	used in the Challenge is available
	DREAM Challenge	after initial assessment	in the test set. Scoring:	suggest that algorithms	significantly better	structural imaging data	for download at
	¹⁰ (2014)	based on genetic data.	Correlation between	were not able to	than the rest but	were modest across a	https://www.synapse.org/AD_Chall
		SubC2: Predict amyloid	predicted and the actual	leverage genetic signal	were statistically	diverse set of modelling	enge
	520 registrants	perturbation in a set of	change in cognitive scores	to predict cognition	indistinguishable	methods. Future efforts	
	100 Unique Teams	cognitively normal	SubC2: GS was the actual	changes, or that such	from each other.	will benefit from a focus	
	1,296 Total	individuals based on	status of amyloid	information was not to	SubC2. Participants	on methods that work to	
	Submissions	genetic data	perturbation. Scoring:	be found in genetics	were unable to	incorporate greater	
		SubC3: Classify individuals	AUROC and Balanced	data	develop algorithms	phenotypic complexity	
		into diagnostic groups	Accuracy.	SubC3. Modest	with predictive	across diverse data	
		using magnetic resonance	SubC3: GS: The actual	performance that	performances	sources.	
		imaging	diagnosis of the patients in	validated an	significantly better	Today's premier	
			the test set. Scoring:	established relationship	than random	publicly available data	
			Correlation and Lin's	between structural	SubC3. Three	repositories for	
			concordance correlation	imaging data and	teams performed	Alzheimer's disease	
			coefficient for agreement or	cognition, but	significantly better	have use restrictions	
			a continuous measure	performance was low	than the others but	that made it very	
			between observed and	for application in a	were	difficult to collate and	
			predicted cognitive scores	clinical setting.	indistinguishable	widely share the data	
					from the each other.	for this Challenge.	
ſ	Rheumatoid	Predict the response to	GS. Known response of	Best correlation: 0.39;	Gaussian Process	Community phase	Methods and outcomes are
	Arthritis Responder	anti-TNF therapy in	patients in the test set.	Best AUPR: 0.51 (null	Regression	showed that genetic	archived through Challenge
	DREAM Challenge	patients with rheumatoid	Scoring: Correlation, AUPR	expectation 0.36); best		predictors did not	website
		arthritis based on genotype	and AUROC.	AUROC: 0.62. Although		significantly contribute	(https://www.synapse.org/RA_Chal
	(2014)	information.		the best performing		to anti-TNF response	lenge). All data are available for
				teams had better than		prediction.	secondary use through Synapse
	373 registrants;			random predictions,			(https://www.synapse.org/RAchalle
	73 teams			they were not of			ngedata)
	contributed final			sufficient quality for			
	submissions			clinical utility. Signals			
				resulted mostly from			
1				clinical covariates.			

Genotype-to-phenotype predic	ction Challenges	ction Challen				
NCI-DREAM Drug Rank a pane	el of breast GS: Concentration of drug	el of breast	Many teams performed	The top performer,	Integrative approaches	Challenge Publication ¹¹ .
Sensitivity cancer cell li	lines from the that inhibits the growth to	nes from the	significantly better than	which significantly	to leverage all the	The NCI awarded contracts to the
Prediction most sensitiv	ive to the most 50% of the maximum	ve to the most	random, suggesting	outperformed the	available omics data	two best performing teams to
Challenge ¹¹ (2012) resistant to a	a set of drugs, (GI50), measured over 28	a set of drugs,	that there is signal in	next best team,	pay off. Microarray data	strengthen the models and create
based on ge	ene expression, drugs and 18 breast canc	ne expressior	the basal omics	developed a novel	were the most	a resource that can be used for the
40 teams mutation, co	opy number, cell lines. Scoring:	py number,	datasets to predict drug	method that	informative individual	purpose of estimating drug
submitted results DNA methyla	lation, and Probabilistic CI (PCI), a	ation, and	sensitivity, although	leveraged a range of	dataset. Drug classes	sensitivities given multiple omics
127 individuals protein quan	ntification of weighted version of the	tification of	there was much room	machine learning	showed variation in	data sets.
the untreated	ed cell lines. concordance index that	d cell lines.	for improvement. Some	approaches	predictability.	Challenge data available in
	takes into account the		drugs and drug classes	including Bayesian	Crowdsourcing	http://www.synapse.org/NCI_DRE
	noisy nature of the GS.		were more easily	inference, multitask	promotes innovation, as	AM
			predicted than others.	learning, multiview	the top performing	
				learning and	method was a novel	
				kernelized	one.	
				regression. This		
				nonlinear,		
				probabilistic model		
				aims to learn and		
				predict drug		
				sensitivities		
				simultaneously from		
				all drugs.		

NCI-DREAM Drug	Rank 91 compound	GS. Excess over Bliss	Three teams performed	The best performing	Compounds exhibiting	Challenge Publication ¹² .
Synergy Prediction	pairs (all pairs of 14	(EoB), a measure of the	better than chance (PCI	method	polypharmacology are	The NCI awarded contracts to the
Challenge ¹²	compounds) from the	deviation from additivity for	~0.61;maximum	hypothesized that	more often synergistic.	two best performers to strengthen
	most synergistic to the	all compound pairs. Scoring	possible score: 0.9),	when cells are	Compounds with	the models and create a resource
(2012)	most antagonistic in a	A weighted version of the	indicating that there	sequentially treated	targeted mechanisms are	that can be used for the purpose of
	human lymphoma cell line,	concordance index, that	was signal in the data.	with two	more likely antagonistic.	estimating drug synergy given
31 teams	using gene expression	takes into account the noisy	Top methods provide	compounds, the	Hypotheses used to	gene expression data from the
	profiles of cells perturbed	nature of the GS.	substantial potential	transcriptional	predict synergy may not	monotherapies.
	with the individual		reductions of the search	changes induced by	necessarily apply to	Challenge data available in
	compounds.		space for synergistic	the first contribute to	predicting antagonism,	http://www.synapse.org/NCI_DRE
			drug pairs.	the effect of the	and vice-versa.	AM
				second. A	Synergy and	
				synergistic score	antagonism are highly	
				was calculated by	cell-context specific.	
				averaging two		
				possible sequential		
				orders of treatment		
				between pairs of		
				compounds.		
CAMDA Ideation	Question 1: Can we	GS. Example data was	The conclusion was	First recursive feature	The prediction of liver	Challenge Publication ¹³
Challenge: dataset	replace the animal study	provided. Scoring: 4-fold	that the problem of	elimination (RFE)	injury in humans using	
from the Japanese	with in vitro assays?	cross-validation and	predicting response	followed by	toxicogenomic data from	
Toxicogenomics		Matthew's correlation	with the set of	classification with	animals is possible, but	
Project (TGP) ¹³	Question 2: Can we	coefficient.	compounds used was	artificial neural	more data, especially	
	predict the liver injury in		very difficult. The	network consisting of	non-toxic drugs, would	
(2013)	humans using		inclusion of non-toxic	50 input units, 10	be necessary to obtain	
	toxicogenomics data from		drugs in the provided	hidden units and 1	better predictions	
~20 teams	animals?		dataset would have	output unit with		
			probably helped in	sigmoid activation.		
			improving results.			

NIEHS-NCATS-	SubC1. Predict cytotoxicity	SubC1. GS. Measured	SubC1: predictions	SubC1: Random	Genotype data are not	Challenge Publication ¹⁴ All data
UNC DREAM	of individual cell lines to a	cytotoxicity data for cell	were overall poor even	forest algorithm was	sufficient to have	and methods used to solve the
Toxicogenetics	given set of compounds	lines in the test set in	if robustly significant for	used to build a	meaningful predictions of	challenge (code and wiki with
challenge ¹⁴	based on genotype	response to chemical	best performing teams.	model for each	cytotoxicity in individual	approach descriptions) are
	information and RNA-seq	compounds. Scoring:	Availability of RNA seq	compound using as	cells. Transcriptional	available in Synapse at
(2013)	data for a subset of cells.	Correlation and	data for some of the cell	variables genetic	data are more	(https://www.synapse.org/Toxicoge
		probabilistic CI.	lines (instead of only	SNPs, sex,	informative. Increased	neticsChallenge).
213 registrants	SubC2. Predict population-		genotype data) showed	population and	sample size would	
57 teams (34	level cytotoxicity for	SubC2. Average and	improved	experimental batch.	probably improve	
teams in SubC1	different compounds	standard deviation in the	performances.	SubC2: Random	predictions. Chemical	
and 23 teams in	based on chemical	population for the	SubC2. Good	forest models were	attributes are good	
SubC2)	attributes.	compounds in the test set.	performances of top	built separately for	predictors of mean	
		Scoring: Correlation	teams; Correlation=	each group of	cytotoxicity in the	
		between measurements	0.65 and 0.37 for	compounds using as	population and of the	
		and predictions.	prediction of median	features a selection	variability in the	
			toxicity and interquartile	of chemical	response.	
			distance across the	attributes.		
			population.	Predictions for new		
				compounds were		
				based on similarity		
				to the compounds		
				clusters.		
CAGI PGP, predict	From 291 subjects, 77	For each subject, the 243	Models were assessed	Bayesian	Model using the	Challenge publication by best
individuals	genomes matched a	pheno- typic profiles were	by their ability to	probabilistic model	combination of GWAS	performer ¹⁵
phenotype	phenotype from a list of	ranked from most probable	correctly rank	predicting risk of a	hits, Low penetrance	
From their	243 phenotypic profiles,	to least probable. Evaluate	individuals in the PGP	dichotomous	genes, High penetrance	
personal	214 were "decoys".	based on correct top-	cohort. AUC values had	phenotype using	genes and High	
genomes ¹⁵ (2013)	Participants had to match	ranked profiles and mean	a p-value <10-4	population-level	penetrance variants	
	each genome to a	rank of the correct profiles		prevalence as a	yields the best	
16 teams.	phenotype.	for all participants		prior, integrating the	performance.	
		Phenotypes were based on		contribution of rare		
		surveys.		and common variant		
				genotypes in an		
				individual.		

Next-generation s	equencing data analysis					
Assemblathon 1: A	Assemble <i>de novo</i> a	GS: Simulated data.	The solutions were	Several best-	The best sequence	Challenge publication ¹⁶
competitive	simulated diploid genome	Scoring: contig accuracy,	qualitatively quite good.	performing	assemblers could	Lessons from Assemblathon 1
assessment of de	from short-read sequences	scaffold accuracy,	In part this was due to	methodologies were	reconstruct at high	were used to create the
novo short-read		reconstruction of genes	the fact that the	identified. Many of	coverage and with good	Assemblathon 2 ¹⁷ and the
assembly		and functional features,	simulated genome was	the methods used	accuracy large	Alignathon ¹⁸ . The Assemblathon 1
methods ¹⁶		phasing of separate	only 112 Mb (~4% the	variants of de Bruijn	sequences of a de novo	data and code are published online
		haplotypes. No attempt was	size of the human	graphs. What	genome.	and free to use in
(2010)		made to aggregate the	genome).	distinguished the best		www.assemblathon.org/assemblat
		metrics.		methods were the		hon1
17 teams.				heuristics used for		
				error correction,		
				bubble removal,		
				contig resolution,		
				scaffolding, etc.		40
RGASP, RNA-seq	Align RNA-seq reads to	GS: RNA-seq from	High degree of	GSNAP, GSTRUCT,	Benefits of two-pass read	Challenge Publication ¹⁹
Read Mapping ¹⁹	reference genomes,	simulated transcriptome	solvability. Different top	MapSplice and	mapping were revealed.	Metrics for evaluating RNA-seq
	identifying loci of origin	data. Scoring: Several	methods had different	STAR compared	Remaining challenges for	aligners. Open-source codebase,
(2011)	and reporting alignments	metrics specific to short-	strengths and	favourably to other	RNA-seq alignment were	test data and program output
	with correctly placed	read alignment problem:	weaknesses.	methods tested.	identified: reduce false	available in the public domain at
11 computational	introns, mismatches, and	alignment yield, basewise	MapSplice was		intron discovery rate,	http://www.gencodegenes.org/rgas
methods	small insertions and	accuracy, mismatch and	conservative in		benefits of unbiased use	p_archive.html
26 protocol	deletions (indels).	gap placement, exon	mismatch frequency,		of gene annotation,	
variants		junction discovery and	indel and exon junction		accurate placement of	
		suitability of alignments for	calls. GSNAP,		mismatches and indels.	
		transcript reconstruction.	GSTRUCT and STAR			
			had many false exon			
			junctions.			

RGASP, RNA-seq	Identification and	GS: RNA-seq and	Results were modest.	AUGUSTUS,	Transcript assembly	Challenge Publication ²⁰ Metrics for
transcript	quantification of transcript	NanoString data.	Short-read sequencing	GSTRUCT and	remains an outstanding	evaluating transcript reconstruction
assembly ²⁰	isoforms based on RNA-	Scoring: Several metrics	limitations resulted in	Transomics	challenge for whole-	methods. Open-source codebase,
(2011)	seq data, assessed	rather specific to transcript	serious computational	demonstrated high	transcriptome shotgun	test data and program output
	against well-curated	assembly problem. Exon	challenges in transcript	precision. mGene	sequencing. The study	available in the public domain at
14 computational	reference genome	level: Precision and recall.	reconstruction and	exhibited diminished	revealed that accuracy	http://www.gencodegenes.org/rgasp
methods	annotation	Transcript level:	quantification. For most	performance on	can be substantially	_archive.html
25 protocol		percentage of reported	transcripts, many of the	human RNA-seq	improved by combining	
variants		splice transcripts. Gene	constituent exons were	data, suggesting	RNA-seq data with	
		level: Matching of at least	not detected. No single	that method	analysis of the genome	
		one correct isoform in the	protocol had a	performance can	sequence.	
		given locus	satisfactory	depend on the		
			performance at all	organism under		
			metrics.	study.		
ICGC-TCGA	Identify cancer-associated	Simulated Leaderboard	The leaderboard played	Consensus model	This challenge was	Challenge Publication ²¹ 10 Patient-
DREAM Somatic	somatic mutations (single	Rounds: GS: in silico	a critical role. Teams	from the first three	useful to compare and	derived tumour-normal paired
Mutation Calling	nucleotide variants (SNVs)	genomes. Scoring:	were able to rapidly	simulated data	promote innovation in	genomes from prostate and
(SMC) Challenge ²¹	and structural variants)	sensitivity, specificity and	improve, particularly in	rounds resulted in a	methods for cancer	pancreatic cancers.
	from whole-genome next-	balanced accuracy.	precision, once they had	'meta' algorithm that	somatic mutation	Living benchmarks leaderboards
(2012)	generation sequencing		an initial performance	is far superior to any	calling. The new tool	open indefinitely to allow rapid
	data. Simulated data and	Real Tumour Final Round:	estimate. This suggests	single algorithm	'Bam Surgeon' used in	comparison of methods.
400 registrants	patient data were provided	.predictions were based on	that real-time feedback	used in genomic	this Challenge to	Simulator of a tumour genome, Bam
40 teams		validation experiments	can yield improved	data analysis to	simulate tumour	Surgeon, is open source.
		based on the submitted	methods with low risk of	date, highlighting	genomes was tested	
		predictions.	overfitting.	the importance of	and improved with input	
				considering a	from participants.	
				considering a wisdom of crowds	from participants.	

Abbreviations:AML, acute myeloid leukaemia; ALS, amyotrophic lateral sclerosis; AUPR, Area Under the Precision-Recall curve; AUROC, Area Under the Receiving Operating Characteristics curve; AMDA, Critical Assessment of Massive Data Analysis; CI, Concordance Index; DREAM, Dialogue for Reverse Engineering Assessment and Methods; FlowCAP, Flow Cytometry Critical Assessment of Population Identification Methods; GRN, gene regulatory network; GS, Gold Standard; GSNAP, Genomic Short-read Nucleotide Alignment Program; HPN, Heritage Provider Network; ICGC, International Cancer Genome Consortium; NCI, US National Cancer Institute; RGASP, RNA-seq Genome Annotation Assessment Project; RMSD, Root Mean Square Deviation; STAR, Spliced Transcripts Alignment to a Reference; SubC, SubChallenges; SVM, support vector machine; TCGA, The Cancer Genome Atlas; TF, transcription factor; TNF, tumour necrosis factor.

References for supplementary information S2 (table)

- 1. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012).
- 2. Weirauch, M. T. et al. Evaluation of methods for modeling transcription factor sequence specificity. Nat. Biotechnol. 31, 126–134 (2013).
- 3. Meyer, P. *et al.* Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach. *Genome Res.* **23**, 1928–1937 (2013).
- 4. Meyer, P. *et al.* Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. *BMC Syst. Biol.* **8**, 13 (2014).
- 5. Hill, S. M. *et al.* Inferring causal molecular networks: empirical assessment through a community-based effort. *Nat. Methods* (2016). doi:10.1038/nmeth.3773
- 6. Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 228–238 (2013).
- 7. Küffner, R. *et al.* Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. *Nat. Biotechnol.* 33, 51–57 (2015).
- 8. Margolin, A. A. *et al.* Systematic Analysis of Challenge-Driven Improvements in Molecular Prognostic Models for Breast Cancer. *Sci. Transl. Med.* **5**, 181re1–181re1 (2013).
- 9. Cheng, W.-Y., Ou Yang, T.-H. & Anastassiou, D. Development of a prognostic model for breast cancer survival in an open challenge environment. *Sci. Transl. Med.* **5**, 181ra50 (2013).
- 10. Allen, G. I. *et al.* Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease. *Alzheimers. Dement.* (2016). doi:10.1016/j.jalz.2016.02.006
- 11. Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. (2014).
- 12. Bansal, M. *et al.* A community computational challenge to predict the activity of pairs of compounds. *Nat. Biotechnol.* **32**, 1213–1222 (2014).
- 13. Uehara, T. et al. The Japanese toxicogenomics project: application of toxicogenomics. Mol. Nutr. Food Res. 54, 218–227 (2010).
- 14. Eduati, F. *et al.* Prediction of human population responses to toxic compounds by a collaborative competition. *Nat. Biotechnol.* **33**, 933–940 (2015).
- 15. Chen, Y.-C. *et al.* A probabilistic model to predict clinical phenotypic traits from genome sequencing. *PLoS Comput. Biol.* **10**, e1003825 (2014).
- 16. Earl, D. *et al.* Assemblathon 1: a competitive assessment of de novo short read assembly methods. *Genome Res.* **21**, 2224–2241 (2011).
- 17. Bradnam, K. R. *et al.* Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. *Gigascience* **2**, 10 (2013).
- 18. Earl, D. et al. Alignathon: a competitive assessment of whole-genome alignment methods. Genome Res. 24, 2077–2089 (2014).
- 19. Engström, P. G. et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10, 1185–1191 (2013).
- 20. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10, 1177–1184 (2013).
- 21. Ewing, A. D. *et al.* Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. *Nat. Methods* **12**, 623–630 (2015).