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Supplementary information S1 (box): Scoring Metrics 
 
An appropriate metric is essential to score a challenge. Broadly speaking, there are two main 
challenge questions, classification (typically binary classification) and regression. 
 
Classification is the task of assigning elements of a dataset into two (binary) or more groups 
(e.g. patient into responder or nonresponder to a treatment). For the binary case, there are four 
possible outcomes that can be arranged in a 2x 2 matrix, the socalled contingency matrix: 
 

 Gold Standard Positive 
Set (P=TP+FN) 

Gold Standard Negative 
Set (N=FP+TN) 

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

 
Multiple metrics can be derived from a contingency table. Some of the most common are  

 
● True positive rate (TPR),  also known as sensitivity or recall: TPR = TP/ P  
● True negative rate (TNR) or  specificity: TNR = specificity = TN/N 

● False negative rate (FNR):  FNR = FN /P 

● False positive rate (FPR): FPR=FP/N  
● Precision  = TP/ (TP +FP ) 
● False discovery rate (FDR): FDR = FP /(TP + FP ) 

 
Generally there is  tradeoff between precision (being right in the calls made) and recall 
(identifying the calls that can be made) in a classification problem. Hence, these are sometimes 
combined in metrics that aim to balance them, such as the Fscore (the harmonic mean of 
precision and recall), and Mathew’s correlation coefficient.  
 
Often a classification algorithm can provide more or less calls with more or less confidence, and 
such a confidence is often asked in the context of the Challenges. By computing precision and 
recall for different levels of confidence, plotting them, and then joining those points, one can 
compute the PrecisionRecall (PR) curve. Similarly, by computing and  plotting TPR and FPR, 
one obtains the closely related ROC (Receiving Operating Characteristics) curve.  Both 
represent the capacity of a given algorithm for different levels of confidence, and are often 
summarized by computing the area under their curve (AUPR and AUROC, respectively). While 
both give very similar information (Davis and Goadrich 2006), AUPR is more accurate for cases 
where the number of positives and negatives is very unbalanced. 
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In a regression problem the task is to predict the numerical values for a number of variables 
(dependent variables), based on certain features (independent variables). A common metric is 
the rootmean squared error (RMSE) that averages the quadratic errors of the individual 
measurements. Another common metric to compare predicted vs. measured values is the 
Pearson correlation. 

 
There is a simple relationship between the RMSE and the Pearson correlation coefficient :ϱ  
 

MSE μ ) σ ) σ σ (1 )R 2 = ( pred − μexp
2 + ( pred − σexp

2 + 2 pred exp − ϱ  
 

 
where  and, ,  and are the standard deviations and  and the meansσpred σ exp μ pred μ   exp μ pred μ   exp  
in the predictions and experimental (gold standard) data, respectively. This relationship nicely 
shows that RMSE is aggregating the comparison of predictions and measurements in several 
facets simultaneously, namely the average ( ), the range ) and how they covary (p). Thisμ σ(  
may be undesirable if one of the terms dominates over the others, which makes it difficult to 
separate subtle performance differences between teams. Sometimes it is desirable to compare 
the order (rank) of the predictions and gold standard rather than the actual values, when the 
actual ordering is the important thing to predict (e.g. prioritize drugs from more to less 
efficacious as treatment(Costello et al. 2014)). The analogous metric to Pearson’s correlation 
considering ranks is Spearman’s rank correlation coefficient. Another useful rankbased metric 
is the Concordance Index.  
 
When the Gold Standard is noisy, the regression metrics should take into account the 
experimental variability, weighting the predictions so as to give more importance to data points 
whose ground truth we are more certain about. For example, the RMSE was divided by the 
experimental noise in some challenges(Prill et al. 2011; Hill et al. 2016), or the Concordance 
Index modified into the socalled probabilistic cindex(Costello et al. 2014).  
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Different metrics highlight different aspects of an algorithm performance. Therefore a thorough 
evaluation of the strengths and weaknesses of an algorithm requires looking at it under the light 
of different metrics. To cover the multiple aspects of prediction evaluation a combination of 
several scoring metrics is desired. In the end, a final score based on the  combination of 
different metrics can provide an integrated evaluation of the quality of the predictions.  

 
All these scoring metrics have then to be compared with a null model (for example random 
predictions), to assess the statistical significance of predictions. It is important to ensure that the 
final ranking in a Challenge is robust to subtle changes in the test set. This can be achieved by 
generating an ensemble of new submissions by bootstrapping the test set and assessing if the 
difference in ranking between teams (e.g., first and second, or second or third) is statistically 
significant. 

    
A collection of all metrics used in the DREAM Challenges is available in the package 
DREAMTools.(Cokelaer et al. 2015) 
 
  

2 
 

 

References 

Cokelaer, Thomas, Mukesh Bansal, Christopher Bare, Erhan Bilal, Brian M. Bot, Elias Chaibub 
Neto, Federica Eduati, et al. 2015. “DREAMTools: A Python Package for Scoring 
Collaborative Challenges.” F1000Research 4 (October). 
http://f1000research.com/articles/41030/v1. 

Costello, James C., Laura M. Heiser, Elisabeth Georgii, Mehmet Gönen, Michael P. Menden, 
Nicholas J. Wang, Mukesh Bansal, et al. 2014. “A Community Effort to Assess and Improve 
Drug Sensitivity Prediction Algorithms.” Nature Biotechnology, June. Nature Publishing 
Group. 
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24880487&retmod
e=ref&cmd=prlinks. 

Davis, Jesse, and Mark Goadrich. 2006. “The Relationship Between PrecisionRecall and ROC 
Curves.” In Proceedings of the 23rd International Conference on Machine Learning, 
233–40. ICML ’06. New York, NY, USA: ACM. 

Hill, Steven M., Laura M. Heiser, Thomas Cokelaer, Michael Unger, Nicole K. Nesser, Daniel E. 
Carlin, Yang Zhang, et al. 2016. “Inferring Causal Molecular Networks: Empirical 
Assessment through a CommunityBased Effort.” Nature Methods, February. 
doi:10.1038/nmeth.3773. 

Prill, Robert J., Julio SaezRodriguez, Leonidas G. Alexopoulos, Peter K. Sorger, and Gustavo 
Stolovitzky. 2011. “Crowdsourcing Network Inference: The DREAM Predictive Signaling 
Network Challenge.” Science Signaling 4 (189). AAAS: mr7. 

 

 

 

 

 

3 
 

SUPPLEMENTARY INFORMATION

NATURE REVIEWS | GENETICS  www.nature.com/nrg

©
 
2016

 
Macmillan

 
Publishers

 
Limited.

 
All

 
rights

 
reserved.



In format provided by Saez-Rodriguez et al. (doi:10.1038/nrg.2016.69) 

 

 
Supplementary information S2 (table). Examples of collaborative competitions. A set of nineteen Challenges organized in the past six 
years (see also the additional case studies in the main text). This table is an expanded version of Table 1, in which additional information is 
provided, primarily regarding the solvability of the Challenges based on the data provided to participants and on scoring metrics used. 
Challenges are coloured according to the research area.  

 
Challenge name, 
Reference, 
Year of 
challenge, 
Participation 

Challenge question Gold standard and scoring  Solvability: does the 
underlying data 
provide information 
for successful 
predictions? 

Winning 
methodology or 
algorithm  
 
 

Scientific advance 
(What we learned 
scientifically or 
biologically) 

Legacy (e.g. databases, 
biomarkers in use, spin-out 
companies) 

Gene regulation and signalling network Challenges 
DREAM5 Gene 
regulatory network 
inference1 
(2010) 
 
29 teams 

Infer a transcription factor-
to-target gene regulatory 
network  

GS: RegulonDB for E. coli ; 
GeneNetWeaver known 
interactions for in silico; ChIP 
binding and evolutionary 
conservation for S. 
cerevisiae  
Scoring: area under the 
ROC and area under the  
PR curves 

Performance for the  
in silico and E. coli 
networks were high, but 
S. cerevisiae inferences 
were poor. A network 
was constructed using 
all the teams and 
experimental validation 
was used to verify 
overall precision of 
50%. 

The top method to 
predict E. coli 
interactions was 
based on a two-way 
ANOVA. The top 
method to predict  
in silico interactions 
used group lasso 
regression and 
bootstrapping.    

Network motifs were 
predicted differently 
based on the underlying 
model. The ‘wisdom of 
crowds’ model was the 
most robust across all 
individual models. 

Challenge Publication1. 
The GenePattern-DREAM server 
can be used to run individual 
methods and build an ensemble 
prediction 
(http://dream.broadinstitute.org/) 

DREAM TF–DNA 
Motif Recognition 
Challenge  
2(2010) 
 
14 teams 

Model the DNA binding 
sites of a transcription  
factor (TF) based on  
protein binding microarray 
(PBM) data. 

GS: The measured degree 
of binding of each of the TF 
in the test set in an 
independent PBM. Scoring: 
Correlation between 
predicted and measured 
signals, Precision/Recall 
analysis. 

Quality of the 
predictions was 
dependent on both the 
algorithm used and the 
specific TF.  In general, 
the best algorithms 
produced highly 
accurate predictions 
(AUROC > 0.95) 

The best method 
was based on a  
k-mer model. 
Several position-
weight-matrix 
(PWM)-based 
methods also 
performed well for 
most TFs. 
 

PWMs work well for most 
TFs. In vitro-based TF 
binding measurements 
can be used to effectively 
distinguish in vivo-bound 
sequences from random 
sequences. Most TFs 
recognize highly 
‘degenerate’ sequences. 

Challenge Publication2. Server to 
enable continuous benchmarking of 
methods 
(http://www.ebi.ac.uk/saezrodrigue
z-srv/d5c2/cgi-bin/TF_web.pl). All 
data are also available 
(http://cisbp.ccbr.utoronto.ca/)  
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DREAM Gene 
Expression 
Prediction 
Challenge3 
 
(2011) 
 
21 teams  

Predict the expression 
levels of genes 
downstream of ribosomal 
promoters based on the 
DNA sequence of the 
promoter 

GS: Fluorescence of GFP 
downstream of promoters.  
Scoring: RMSD and 
correlations between 
measured and predicted 
expression 

Correlations were 
above 0.8. Post-
challenge model 
considering prior 
knowledge (TF and 
RNA polymerase 
binding site information) 
fared better than 
original submissions. 

SVM with a previous 
search for the best 
adapted feature was 
complemented by a 
previous physical 
model of TF and 
RNA polymerase 
interaction with 
DNA. 

General models for 
promoter expression 
prediction did not fare 
well for predicting a 
specific family of 
promoters (ribosomal 
genes) 

Challenge Publication3. Data 
produced is available for 
benchmarking models in 
https://www.synapse.org/GeneExpr
essionChallenge  

DREAM Network 
Topology and 
Parameter 
Estimation 
Challenges4 
 
(2011-2012) 
 
31 teams (19 in 
2011, 12 in 2012) 

SubC1: Infer kinetic 
parameters in in silico  
gene regulatory networks.  
SubC2: Predict protein  
time courses under 
perturbed conditions.  
SubC3: Find missing 
network edges based on  
a limited set of data. 

SubC1: GS: Actual kinetic 
parameters from in silico 
model. Scoring: RMSD in 
log scale 
SubC2. GS: Simulated time 
courses. Scoring: 
Normalized RMSD between 
predicted and simulated 
protein values. 
SubC3: GS: known missing 
edges. Scoring. Number of 
edges and nodes correctly 
predicted. 

The solutions for 
parameter estimation 
and dynamic 
predictions were very 
good.  
The solutions for the 
network topology 
problem were not very 
good, probably due to 
the difficulty of the 
problem, rather than the 
lack of adequate data. 

Maximum likelihood 
fit of the model 
parameters given 
observed data 
obtained from  
in silico experiments 
and construction of 
a game tree of 
possible sequences 
of most informative 
data to use and 
experiments to 
perform.  

The main conclusion is 
that given a model, a 
low amount of well-
chosen data is enough 
to have a good estimate 
of parameters and 
dynamics of the GRN.  
The difficulty in solving 
the network topology 
problem confirms the 
essential problem of 
finding the correct GRN 
topology. 

Challenge Publication4 Networks 
and Data produced are available 
for benchmarking paramater 
estimation approaches in  
https://www.synapse.org/NetworkT
opologyChallenge 
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HPN-DREAM 
Breast Cancer 
Network Inference 
Challenge5  
 
(2013) 
 
178 final 
submissions 

SubC1: Infer signalling 
networks in breast cancer 
cell lines using protein 
time-course data obtained 
after intervention on 
specific proteins 
SubC2: Predict 
phosphoprotein time-
course data given a 
specific intervention. 
SubC3: Develop tools to 
visualize the Challenge 
data. 

SubC1. GS: Measured 
perturbed protein 
downstream of the 
intervention in the withheld 
data set. Scoring: AUROC 
of standardized data. 
SubC2. GS: Measured time 
course of the 
phosphorylation levels 
resulting from intervention. 
Scoring: RMSD between 
predicted and true time 
courses. 
SubC3. No GS. Scoring:  
All participants voted for 
their favourite visualization. 

SubC1: several teams 
attained statistically 
significant AUROC 
scores. Performance 
varied across cellular 
contexts. In some 
cases, only marginal 
improvements over 
prior information alone, 
while in others there 
was a clear gain in 
performance. 
SubC2: teams did not 
do well at predicting 
protein abundance time 
courses following 
specific protein 
inhibition.  
 
SubC3: Including a 
visualization 
subchallenge to a data 
challenge can motivate 
the development of 
better data 
representations. 

SubC1. Granger 
causality, extended to 
include future time 
points, combined with 
prior networks based 
on known biological 
pathways. Another  
top method 
(FunChisq) used a  
chi-squared test to 
examine functional 
dependencies among 
variables without  
using any prior 
information. 
SubC2. One top 
method used a 
regression model 
with truncated 
singular value 
decomposition.  
A second method 
used Generalized 
Linear Models 
informed by 
networks inferred  
in SubC1. 
SubC3: Biowheel 
visualization 
(dream8.dibsbiotech
.com). 

Results suggest that 
causal network inference 
is feasible in complex 
mammalian settings. 
Scoring by empirically 
assessing inferred causal 
networks using withheld 
interventional data can 
be applied in other 
settings. Incorporation of 
prior information was 
broadly beneficial. Data-
driven learning offered 
the most utility in those 
contexts where prior 
information alone 
performed less well. 
Submissions included 
novel approaches. 

Challenge Publication5. All 
challenge data, included open 
source code, participant prior 
networks and crowdsourced 
aggregate networks have been 
made available as a community 
resource 
(www.synapse.org/HPN_DREAM_
Network_Challenge). 
The best performing method is 
implemented in the Cytoscape tool 
Cyni. 
The visualization tool Biowheel is 
available at 
dream8.dibsbiotech.com 
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combining the 
expression of 
multiple genes using 
a mutual-
information-based 
iterative algorithm. 

Alzheimer's 
Disease Big Data 
DREAM Challenge 
10 (2014) 
 
520 registrants 
100 Unique Teams 
1,296 Total 
Submissions 

SubC1: Predict changes in 
cognitive scores 24 months 
after initial assessment 
based on genetic data. 
SubC2: Predict amyloid 
perturbation in a set of 
cognitively normal 
individuals based on 
genetic data 
SubC3: Classify individuals 
into diagnostic groups 
using magnetic resonance 
imaging 

SubC1: GS was the actual 
cognitive score for patients 
in the test set. Scoring: 
Correlation between 
predicted and the actual 
change in cognitive scores 
SubC2: GS was the actual 
status of amyloid 
perturbation. Scoring: 
AUROC and Balanced 
Accuracy.  
SubC3: GS: The actual 
diagnosis of the patients in 
the test set. Scoring: 
Correlation and Lin’s 
concordance correlation 
coefficient for agreement on 
a continuous measure 
between observed and 
predicted cognitive scores 

SubC1 and SubC2: 
modest performance 
suggest that algorithms 
were not able to 
leverage genetic signal 
to predict cognition 
changes, or that such 
information was not to 
be found in genetics 
data 
SubC3. Modest 
performance that 
validated an 
established relationship 
between structural 
imaging data and 
cognition, but 
performance was low 
for application in a 
clinical setting. 

SubC1: Six teams 
performed 
significantly better 
than the rest but 
were statistically 
indistinguishable 
from each other. 
SubC2. Participants 
were unable to 
develop algorithms 
with predictive 
performances 
significantly better 
than random 
SubC3. Three 
teams performed 
significantly better 
than the others but 
were 
indistinguishable 
from the each other. 

Predictions of cognitive 
decay from genetic or 
structural imaging data 
were modest across a 
diverse set of modelling 
methods. Future efforts 
will benefit from a focus 
on methods that work to 
incorporate greater 
phenotypic complexity 
across diverse data 
sources. 
Today's premier 
publicly available data 
repositories for 
Alzheimer’s disease 
have use restrictions 
that made it very 
difficult to collate and 
widely share the data 
for this Challenge. 

Challenge Publication10 The data 
used in the Challenge is available 
for download at  
https://www.synapse.org/AD_Chall
enge 
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Translational and clinical challenges 
FlowCap/ DREAM 
Molecular 
Classification of 
AML Challenge6 
 
(2011) 
 
39 teams 

Classify AML versus 
normal blood samples from 
flow cytometry data 

GS: Actual diagnosis of 
healthy versus AML in the 
test dataset of blood 
samples. 
Scoring: AUPR. 

Challenge was fairly 
easy and multiple 
participants got a 
perfect score. 

Not relevant in this 
context, as many 
algorithms got a 
perfect score. 
 

If the signal is clearly 
contained in the data, 
the choice of machine 
learning algorithms is 
inessential to identify 
correlates of clinical 
outcomes in flow 
cytometry data  

Challenge Publication6 Dataset is 
public at FlowRepository.org and 
has been used in multiple 
independent articles.  
 

DREAM-Phil 
Bowen ALS 
Prediction 
Prize4Life 
Challenge7 
(2012) 
 
>1000 registrants 
37 unique teams 
10 teams made 
final submissions.   

Predict the progression of 
patients with ALS from 
clinical trial data 

GS: Slope of change in  
ALS Functional Rating  
Scale (a measure of  
disease status) per unit  
time Scoring: RMSD and 
correlations between 
measured and predicted 
slopes. 
 

The relatively small size 
of the data set (while 
the biggest available at 
the time) probably took 
away from 
performance. The best 
performing team only 
improved beyond a 
baseline algorithm by a 
small but significant 
amount   
 

Two teams were 
identified as 
winners. One of 
them used a 
Bayesian Additive 
Random Trees, 
whereas the other 
used random forest. 
 

Best performers 
predicted ALS 
progression better than 
a group of consulted 
physicians. An analysis 
of most informative 
features identified 
potential novel 
biomarkers such as 
creatinine and creatine 
kinase 

Challenge publication7. Origent 
Data Sciences, 
(http://www.origent.com) was 
spanned out from Sentrana to 
predict disease behaviour of 
individual patients. This Challenge 
was the basis of the subsequent 
DREAM Challenge on ALS.  

Sage Bionetworks-
DREAM Breast 
Cancer Prognosis 
Challenge8 
 
(2012) 
 
354 registrants 
 

Predict the survival of 
patients with breast cancer 
on the basis of gene 
expression data, genomic 
copy number data, and 
clinical covariates. 
 

GS was the actual survival 
of patients in the test set. 
Scoring: Concordance  
index (CI) between the 
predicted risk score and 
overall survival.  
 
 
 

Models that used 
clinical covariates alone 
achieved a CI of ~0.70. 
The addition of genomic 
features provided an 
incremental 
improvement in CI of up 
to 0.76  
The best performing 
model beat the first 
generation 70-gene risk 
predictor MammaPrint. 

The winning 
algorithm topped the 
leaderboards 
throughout the 
different phases of 
the Challenge. The 
main idea that 
differentiated it from 
other methods was 
the use of ‘Attractor 
Metagene’9 features. 
Briefly, these are 
features built by 

Copy number and gene 
expression data provided 
only an incremental 
performance 
improvement over clinical 
covariates alone, 
especially for aggressive 
high-grade tumours. This 
suggests that additional 
genomics data may be 
necessary to capture 
tumour progression. 

Challenge Publication8 The winning 
method Attractor Metagenes is 
now part of the standard 
bioinformatic toolboxes in R and 
Matlab. 
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combining the 
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iterative algorithm. 
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validated an 
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imaging data and 
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than the rest but 
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indistinguishable 
from each other. 
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significantly better 
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SubC3. Three 
teams performed 
significantly better 
than the others but 
were 
indistinguishable 
from the each other. 
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decay from genetic or 
structural imaging data 
were modest across a 
diverse set of modelling 
methods. Future efforts 
will benefit from a focus 
on methods that work to 
incorporate greater 
phenotypic complexity 
across diverse data 
sources. 
Today's premier 
publicly available data 
repositories for 
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have use restrictions 
that made it very 
difficult to collate and 
widely share the data 
for this Challenge. 
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used in the Challenge is available 
for download at  
https://www.synapse.org/AD_Chall
enge 
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Rheumatoid 
Arthritis Responder 
DREAM Challenge 
 
(2014) 
 
373 registrants;  
73 teams 
contributed final 
submissions 

Predict the response to 
anti-TNF therapy in 
patients with rheumatoid 
arthritis based on genotype 
information. 

GS. Known response of 
patients in the test set. 
Scoring: Correlation, AUPR 
and AUROC. 

Best correlation: 0.39; 
Best AUPR: 0.51 (null 
expectation 0.36); best 
AUROC: 0.62. Although 
the best performing 
teams had better than 
random predictions, 
they were not of 
sufficient quality for 
clinical utility. Signals 
resulted mostly from 
clinical covariates. 

Gaussian Process 
Regression 

Community phase 
showed that genetic 
predictors did not 
significantly contribute 
to anti-TNF response 
prediction. 

Methods and outcomes are 
archived through Challenge 
website 
(https://www.synapse.org/RA_Chal
lenge).  All data are available for 
secondary use through Synapse 
(https://www.synapse.org/RAchalle
ngedata)  

Genotype-to-phenotype prediction Challenges 
NCI-DREAM Drug 
Sensitivity 
Prediction 
Challenge11 (2012) 
 
40 teams 
submitted results 
127 individuals  

Rank a panel of breast 
cancer cell lines from the 
most sensitive to the most 
resistant to a set of drugs, 
based on gene expression, 
mutation, copy number, 
DNA methylation, and 
protein quantification of  
the untreated cell lines. 

GS: Concentration of drug 
that inhibits the growth to 
50% of the maximum  
(GI50), measured over 28 
drugs and 18 breast cancer 
cell lines. Scoring: 
Probabilistic CI (PCI), a 
weighted version of the 
concordance index that 
takes into account the  
noisy nature of the GS.  

Many teams performed 
significantly better than 
random, suggesting 
that there is signal in 
the basal omics 
datasets to predict drug 
sensitivity, although 
there was much room 
for improvement. Some 
drugs and drug classes 
were more easily 
predicted than others.  

The top performer, 
which significantly 
outperformed the 
next best team, 
developed a novel 
method that 
leveraged a range of 
machine learning 
approaches 
including Bayesian 
inference, multitask 
learning, multiview 
learning and 
kernelized 
regression.  This 
nonlinear, 
probabilistic model 
aims to learn and 
predict drug 
sensitivities 
simultaneously from 
all drugs. 

Integrative approaches 
to leverage all the 
available omics data 
pay off. Microarray data 
were the most 
informative individual 
dataset.  Drug classes 
showed variation in 
predictability. 
Crowdsourcing 
promotes innovation, as 
the top performing 
method was a novel 
one.   

Challenge Publication11.  
The NCI awarded contracts to the 
two best performing teams to 
strengthen the models and create 
a resource that can be used for the 
purpose of estimating drug 
sensitivities given multiple omics 
data sets. 
Challenge data available in  
http://www.synapse.org/NCI_DRE
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Rheumatoid 
Arthritis Responder 
DREAM Challenge 
 
(2014) 
 
373 registrants;  
73 teams 
contributed final 
submissions 

Predict the response to 
anti-TNF therapy in 
patients with rheumatoid 
arthritis based on genotype 
information. 

GS. Known response of 
patients in the test set. 
Scoring: Correlation, AUPR 
and AUROC. 

Best correlation: 0.39; 
Best AUPR: 0.51 (null 
expectation 0.36); best 
AUROC: 0.62. Although 
the best performing 
teams had better than 
random predictions, 
they were not of 
sufficient quality for 
clinical utility. Signals 
resulted mostly from 
clinical covariates. 

Gaussian Process 
Regression 

Community phase 
showed that genetic 
predictors did not 
significantly contribute 
to anti-TNF response 
prediction. 

Methods and outcomes are 
archived through Challenge 
website 
(https://www.synapse.org/RA_Chal
lenge).  All data are available for 
secondary use through Synapse 
(https://www.synapse.org/RAchalle
ngedata)  

Genotype-to-phenotype prediction Challenges 
NCI-DREAM Drug 
Sensitivity 
Prediction 
Challenge11 (2012) 
 
40 teams 
submitted results 
127 individuals  

Rank a panel of breast 
cancer cell lines from the 
most sensitive to the most 
resistant to a set of drugs, 
based on gene expression, 
mutation, copy number, 
DNA methylation, and 
protein quantification of  
the untreated cell lines. 

GS: Concentration of drug 
that inhibits the growth to 
50% of the maximum  
(GI50), measured over 28 
drugs and 18 breast cancer 
cell lines. Scoring: 
Probabilistic CI (PCI), a 
weighted version of the 
concordance index that 
takes into account the  
noisy nature of the GS.  

Many teams performed 
significantly better than 
random, suggesting 
that there is signal in 
the basal omics 
datasets to predict drug 
sensitivity, although 
there was much room 
for improvement. Some 
drugs and drug classes 
were more easily 
predicted than others.  

The top performer, 
which significantly 
outperformed the 
next best team, 
developed a novel 
method that 
leveraged a range of 
machine learning 
approaches 
including Bayesian 
inference, multitask 
learning, multiview 
learning and 
kernelized 
regression.  This 
nonlinear, 
probabilistic model 
aims to learn and 
predict drug 
sensitivities 
simultaneously from 
all drugs. 

Integrative approaches 
to leverage all the 
available omics data 
pay off. Microarray data 
were the most 
informative individual 
dataset.  Drug classes 
showed variation in 
predictability. 
Crowdsourcing 
promotes innovation, as 
the top performing 
method was a novel 
one.   

Challenge Publication11.  
The NCI awarded contracts to the 
two best performing teams to 
strengthen the models and create 
a resource that can be used for the 
purpose of estimating drug 
sensitivities given multiple omics 
data sets. 
Challenge data available in  
http://www.synapse.org/NCI_DRE
AM 
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NCI-DREAM Drug 
Synergy Prediction 
Challenge12 
 
(2012) 
 
31 teams 

Rank 91 compound  
pairs (all pairs of 14 
compounds) from the  
most synergistic to the 
most antagonistic in a 
human lymphoma cell line, 
using gene expression 
profiles of cells perturbed 
with the individual 
compounds. 
 

GS. Excess over Bliss 
(EoB), a measure of the 
deviation from additivity for 
all compound pairs. Scoring: 
A weighted version of the 
concordance index, that 
takes into account the noisy 
nature of the GS.  

Three teams performed 
better than chance (PCI 
~0.61;maximum 
possible score: 0.9), 
indicating that there 
was signal in the data. 
Top methods provide 
substantial potential 
reductions of the search 
space for synergistic 
drug pairs.  

The best performing 
method 
hypothesized that 
when cells are 
sequentially treated 
with two 
compounds, the 
transcriptional 
changes induced by 
the first contribute to 
the effect of the 
second. A 
synergistic score 
was calculated by 
averaging two 
possible sequential 
orders of treatment 
between pairs of 
compounds. 
 

Compounds exhibiting 
polypharmacology are 
more often synergistic. 
Compounds with 
targeted mechanisms are 
more likely antagonistic. 
Hypotheses used to 
predict synergy may not 
necessarily apply to 
predicting antagonism, 
and vice-versa. 
Synergy and 
antagonism are highly 
cell-context specific. 

Challenge Publication12. 
The NCI awarded contracts to the 
two best performers to strengthen 
the models and create a resource 
that can be used for the purpose of 
estimating drug synergy given 
gene expression data from the 
monotherapies. 
Challenge data available in  
http://www.synapse.org/NCI_DRE
AM 

CAMDA Ideation 
Challenge: dataset 
from the Japanese 
Toxicogenomics 
Project (TGP)13 
 
(2013) 
 
~20 teams 

Question 1: Can we 
replace the animal study 
with in vitro assays?  
 
Question 2: Can we  
predict the liver injury in 
humans using 
toxicogenomics data from 
animals? 

GS. Example data was 
provided. Scoring: 4-fold 
cross-validation and 
Matthew's correlation 
coefficient. 

The conclusion was 
that the problem of 
predicting response 
with the set of 
compounds used was 
very difficult. The 
inclusion of non-toxic 
drugs in the provided 
dataset would have 
probably helped in 
improving results. 

First recursive feature 
elimination (RFE) 
followed by 
classification with 
artificial neural 
network consisting of 
50 input units, 10 
hidden units and 1 
output unit with 
sigmoid activation. 

The prediction of liver 
injury in humans using 
toxicogenomic data from 
animals is possible, but 
more data, especially 
non-toxic drugs, would 
be necessary to obtain 
better predictions 

Challenge Publication13 
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NIEHS-NCATS-
UNC DREAM 
Toxicogenetics 
challenge14 
 
(2013)  
 
213 registrants 
57 teams (34 
teams in SubC1 
and 23 teams in 
SubC2)  

SubC1. Predict cytotoxicity 
of individual cell lines to a 
given set of compounds 
based on genotype 
information and RNA-seq 
data for a subset of cells. 
 
SubC2. Predict population-
level cytotoxicity for 
different compounds  
based on chemical 
attributes. 

SubC1. GS. Measured 
cytotoxicity data for cell  
lines in the test set in 
response to chemical 
compounds. Scoring: 
Correlation and  
probabilistic CI. 
 
SubC2.  Average and 
standard deviation in the 
population for the 
compounds in the test set. 
Scoring: Correlation 
between measurements  
and predictions.  
 

SubC1: predictions 
were overall poor even 
if robustly significant for 
best performing teams. 
Availability of RNA seq 
data for some of the cell 
lines (instead of only 
genotype data) showed 
improved 
performances. 
SubC2. Good 
performances of top 
teams; Correlation= 
0.65 and 0.37 for 
prediction of median 
toxicity and interquartile 
distance across the 
population.  

SubC1: Random 
forest algorithm was 
used to build a 
model for each 
compound using as 
variables genetic 
SNPs, sex, 
population and 
experimental batch. 
SubC2: Random 
forest models were 
built separately for 
each group of 
compounds using as 
features a selection 
of chemical 
attributes. 
Predictions for new 
compounds were 
based on similarity 
to the compounds 
clusters. 

Genotype data are not 
sufficient to have 
meaningful predictions of 
cytotoxicity in individual 
cells. Transcriptional  
data are more 
informative. Increased 
sample size would 
probably improve 
predictions. Chemical 
attributes are good 
predictors of mean 
cytotoxicity in the 
population and of the 
variability in the 
response. 

Challenge Publication14 All data 
and methods used to solve the 
challenge (code and wiki with 
approach descriptions) are 
available in Synapse at  
(https://www.synapse.org/Toxicoge
neticsChallenge). 

CAGI PGP, predict 
individuals 
phenotype  
From their 
personal 
genomes15 (2013) 
 
16 teams. 

 From 291 subjects, 77 
genomes matched a 
phenotype from a list of 
243 phenotypic profiles, 
214 were “decoys”.  
Participants had to match 
each genome to a 
phenotype. 

 For each subject, the 243 
pheno- typic profiles were 
ranked from most probable 
to least probable. Evaluate 
based on correct top- 
ranked profiles and mean 
rank of the correct profiles 
for all participants 
Phenotypes were based on 
surveys. 

Models were assessed 
by their ability to 
correctly rank 
individuals in the PGP 
cohort. AUC values had 
a p-value <10-4  
 
 
 

Bayesian 
probabilistic model 
predicting risk of a 
dichotomous 
phenotype using 
population-level 
prevalence as a 
prior, integrating the 
contribution of rare 
and common variant 
genotypes in an 
individual. 

Model using the 
combination of GWAS 
hits, Low penetrance 
genes, High penetrance 
genes and High 
penetrance variants 
yields the best 
performance. 

Challenge publication by best 
performer15 
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Next-generation sequencing data analysis  
Assemblathon 1: A 
competitive 
assessment of de 
novo short-read 
assembly 
methods16 
 
(2010) 
 
17 teams. 

Assemble de novo a 
simulated diploid genome 
from short-read sequences. 

GS: Simulated data. 
Scoring: contig accuracy, 
scaffold accuracy, 
reconstruction of genes  
and functional features, 
phasing of separate 
haplotypes. No attempt was 
made to aggregate the 
metrics. 

The solutions were 
qualitatively quite good. 
In part this was due to 
the fact that the 
simulated genome was 
only 112 Mb (~4% the 
size of the human 
genome). 
 

Several best-
performing 
methodologies were 
identified. Many of  
the methods used 
variants of de Bruijn 
graphs. What 
distinguished the best 
methods were the 
heuristics used for 
error correction, 
bubble removal,  
contig resolution, 
scaffolding, etc. 

The best sequence 
assemblers could 
reconstruct at high 
coverage and with good 
accuracy large 
sequences of a de novo 
genome. 
 

Challenge publication16 
Lessons from Assemblathon 1 
were used to create the 
Assemblathon 217 and the 
Alignathon18.  The Assemblathon 1 
data and code are published online 
and free to use in 
www.assemblathon.org/assemblat
hon1  

RGASP, RNA-seq 
Read Mapping19 

 
(2011) 
 
11 computational 
methods 
26 protocol 
variants 

Align RNA-seq reads to 
reference genomes, 
identifying loci of origin 
and reporting alignments 
with correctly placed 
introns, mismatches, and 
small insertions and 
deletions (indels). 
 

GS: RNA-seq from 
simulated transcriptome 
data. Scoring: Several 
metrics specific to short- 
read alignment problem: 
alignment yield, basewise 
accuracy, mismatch and  
gap placement, exon 
junction discovery and 
suitability of alignments for 
transcript reconstruction. 

High degree of 
solvability. Different top 
methods had different 
strengths and 
weaknesses. 
MapSplice was 
conservative in 
mismatch frequency, 
indel and exon junction 
calls. GSNAP, 
GSTRUCT and STAR 
had many false exon 
junctions. 

GSNAP, GSTRUCT, 
MapSplice and 
STAR compared 
favourably to other 
methods tested. 
 

Benefits of two-pass read 
mapping were revealed. 
Remaining challenges for 
RNA-seq alignment were 
identified: reduce false 
intron discovery rate, 
benefits of unbiased use 
of gene annotation, 
accurate placement of 
mismatches and indels. 

Challenge Publication19 
 Metrics for evaluating RNA-seq 
aligners. Open-source codebase, 
test data and program output 
available in the public domain at 
http://www.gencodegenes.org/rgas
p_archive.html  
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Abbreviations:AML, acute myeloid leukaemia; ALS, amyotrophic lateral sclerosis; AUPR, Area Under the Precision-Recall curve; AUROC, 
Area Under the Receiving Operating Characteristics curve; AMDA, Critical Assessment of Massive Data Analysis; CI, Concordance Index; 
DREAM, Dialogue for Reverse Engineering Assessment and Methods; FlowCAP, Flow Cytometry Critical Assessment of Population 
Identification Methods; GRN, gene regulatory network; GS, Gold Standard; GSNAP, Genomic Short-read Nucleotide Alignment Program; 
HPN, Heritage Provider Network; ICGC, International Cancer Genome Consortium; NCI, US National Cancer Institute; RGASP, RNA-seq 
Genome Annotation Assessment Project; RMSD, Root Mean Square Deviation; STAR, Spliced Transcripts Alignment to a Reference; SubC, 
SubChallenges; SVM, support vector machine; TCGA, The Cancer Genome Atlas; TF, transcription factor; TNF, tumour necrosis factor.  

RGASP, RNA-seq 
transcript 
assembly20 
(2011) 
 
14 computational 
methods 
25 protocol 
variants  
 

Identification and 
quantification of transcript 
isoforms based on RNA-
seq data, assessed  
against well-curated 
reference genome 
annotation 
 

GS: RNA-seq and 
NanoString data. 
Scoring: Several metrics 
rather specific to transcript 
assembly problem. Exon 
level: Precision and recall. 
Transcript level:  
percentage of reported 
splice transcripts. Gene 
level: Matching of at least 
one correct isoform in the 
given locus 

Results were modest. 
Short-read sequencing 
limitations resulted in 
serious computational 
challenges in transcript 
reconstruction and 
quantification. For most 
transcripts, many of the 
constituent exons were 
not detected. No single 
protocol had a 
satisfactory 
performance at all 
metrics. 

AUGUSTUS, 
GSTRUCT and 
Transomics 
demonstrated high 
precision. mGene 
exhibited diminished 
performance on 
human RNA-seq 
data, suggesting 
that method 
performance can 
depend on the 
organism under 
study. 
 

Transcript assembly 
remains an outstanding 
challenge for whole-
transcriptome shotgun 
sequencing. The study 
revealed that accuracy 
can be substantially 
improved by combining 
RNA-seq data with 
analysis of the genome 
sequence. 
 

Challenge Publication20 Metrics for 
evaluating transcript reconstruction 
methods. Open-source codebase, 
test data and program output 
available in the public domain at 
http://www.gencodegenes.org/rgasp
_archive.html  

ICGC-TCGA 
DREAM Somatic 
Mutation Calling 
(SMC) Challenge21 
 
(2012) 
 
400 registrants  
40 teams 

Identify cancer-associated 
somatic mutations (single 
nucleotide variants (SNVs)  
and structural variants) 
from whole-genome next-
generation sequencing 
data. Simulated data and 
patient data were provided. 

Simulated Leaderboard 
Rounds: GS: in silico 
genomes. Scoring: 
sensitivity, specificity and 
balanced accuracy. 
 
Real Tumour Final Round: 
predictions were based on 
validation experiments 
based on the submitted 
predictions. 

The leaderboard played 
a critical role. Teams 
were able to rapidly 
improve, particularly in 
precision, once they had 
an initial performance 
estimate. This suggests 
that real-time feedback 
can yield improved 
methods with low risk of 
overfitting. 

Consensus model 
from the first three 
simulated data 
rounds resulted in a 
‘meta’ algorithm that 
is far superior to any 
single algorithm 
used in genomic 
data analysis to 
date, highlighting 
the importance of 
considering a 
wisdom of crowds 
approach. 

This challenge was 
useful to compare and 
promote innovation in 
methods for cancer 
somatic mutation 
calling. The new tool 
‘Bam Surgeon’ used in 
this Challenge to 
simulate tumour 
genomes was tested 
and improved with input 
from participants.  

Challenge Publication21 10 Patient-
derived tumour–normal paired 
genomes from prostate and 
pancreatic cancers. 
Living benchmarks leaderboards 
open indefinitely to allow rapid 
comparison of methods. 
Simulator of a tumour genome, Bam 
Surgeon, is open source. 
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