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Case sample collection 

We collected blood samples from those with treatment-resistant schizophrenia (TRS) 

in the UK through the mandatory clozapine blood-monitoring system for those taking 

clozapine, an antipsychotic licensed for TRS. Following national research ethics 

approval and in line with UK Human Tissue Act regulations we worked in partnership 

with the commercial companies that manufacture and monitor clozapine in the UK. 

We ascertained anonymous aliquots of the blood samples collected as part of the 

regular blood monitoring that takes place whilst taking clozapine due to a rare 

haematological adverse effect, agranulocytosis. The CLOZUK1 sample was 

assembled in collaboration with Novartis (Basel, Switzerland). The company, through 

their proprietary Clozaril® Patient Monitoring Service (CPMS), provided whole-blood 

samples and anonymised phenotypic information for 6,882 individuals with TRS 

(5528 cases post-QC), which were included in the in a recent schizophrenia GWAS 

by the PGC1. The CLOZUK2 sample, previously unreported, was assembled in 

collaboration with the other major company involved in the supply and monitoring of 

clozapine in the UK, Leyden Delta (Nijmegen, Netherlands). The company, through 

their proprietary Zaponex® Treatment Access System (ZTAS), provided whole-blood 

samples and anonymised phenotypic information for 7,417 of those taking clozapine 

(4973 cases post-QC). Both Clozaril® and Zaponex® are bioequivalent brands of 

clozapine licensed in the UK2.  

We restricted the CLOZUK1 and CLOZUK2 samples to those with a clinician 

reported diagnosis of treatment-resistant schizophrenia. The UK National Institute for 

Health and Care Excellence (NICE) advise prescription of clozapine is reserved for 

those with schizophrenia in whom two trials of antipsychotics have failed (including 

one second-generation antipsychotic)3 which mirrors the criteria for licensed use of 

clozapine. The sole alternative licensed indication for clozapine in the UK is for the 

management of resistant psychosis in Parkinson’s disease (PD)4 and, although this 

is a rare indication, we excluded PD patients (n=8) from the case dataset. We also 

excluded those with off-license indications, which included those with alternative 

clinician diagnoses of bipolar affective disorder and personality disorders (n=56). 

Together with the clinical guidelines outlined, these exclusions ensure that 

CLOZUK1 and CLOZUK2 samples are from those patients that conform to a clinical 

description of TRS. We have reported the use of CLOZUK1 as a schizophrenia 

dataset in previous publications1,5-7 and have presented evidence to support the use 

of TRS-defined individuals as valid schizophrenia samples8, which we have updated 

and expanded in the next section, including validation of a clinician diagnosis of TRS 

against research diagnostic criteria for schizophrenia.  

In addition we also included in our analysis a more conventional cohort of UK-based 

patients with schizophrenia (CardiffCOGS). Recruitment was via secondary care, 

mainly outpatient, NHS mental health services in Wales and England. These patients 

were not exclusively taking clozapine at the time of their recruitment. All cases 



underwent a SCAN interview9 and case note review followed by consensus research 

diagnostic procedures and were included if they had a DSM-IV schizophrenia or 

schizoaffective disorder-depressive type diagnosis, as previously reported5. The 

CardiffCOGS samples were recruited and genotyped in two waves: CardiffCOGS1 

(512 cases, included in a previous GWAS1) and CardiffCOGS2 (247 cases).  

Genotyping for these case samples was performed by the Broad Institute 

(Massachusetts, USA) for the CLOZUK1 sample and CardiffCOGS1 cases, using 

Illumina HumanOmniExpress-12 and OmniExpressExome-8 chips as described 

elsewhere5. The CardiffCOGS2 cases and the CLOZUK2 sample were genotyped by 

deCODE Genetics (Reykjavík, Iceland), using Illumina HumanOmniExpress-12 

chips. 

As all of these samples are intrinsically related and their recruitment and genotyping 

conforms to research and technical standards, thus we have combined them and 

used the term “CLOZUK” throughout this manuscript to describe the schizophrenia 

case dataset.  

 

Case sample validation 

Validation of Clinical Diagnosis 

In order to validate the clinical diagnosis of treatment-resistant schizophrenia in the 

CLOZUK sample we used the CardiffCOGS participants for whom we acquired both 

clinical and consensus research diagnosis. Prior to the research interview we 

obtained clinicians’ diagnoses for all participants. From participants on clozapine we 

selected those with a clinical diagnosis of schizophrenia and confirmed that this 

matched the diagnosis provided when the participant was started on clozapine (i.e. 

treatment-resistant schizophrenia) so as to be equivalent to the samples included in 

CLOZUK. We then compared this diagnosis with the consensus research DSM-IV 

diagnosis arrived after following a SCAN interview, note review and diagnostic 

procedures described above. 214 participants within the CardiffCOGS sample were 

taking clozapine and had a clinician-assigned diagnosis of treatment resistant 

schizophrenia. Following consensus research diagnosis, 194 of these participants 

were identified as having DSM-IV schizophrenia or schizoaffective disorder 

depressed sub-type, giving a positive predictive value (PPV) of 90.7%. Many 

international groups and consortia also consider other diagnoses as ‘schizophrenia’ 

samples, namely schizoaffective disorder bipolar type, delusional disorder and 

schizophreniform disorders1. If we expand our analysis to include these categories 

then 210 of 214 (PPV=98.1%) of those on clozapine with a clinical diagnosis of 

schizophrenia would receive a DSM-IV research diagnosis of one of these 

schizophrenia spectrum disorders. These results are entirely consistent with 

equivalent reports of the validity of clinician diagnoses in two Scandinavian 

studies10,11. 



Genetic Molecular validation of CLOZUK as a schizophrenia dataset  

The Schizophrenia Working Group of the Psychiatric Genomics Consortium 

identified 40 target subgroups within their primary GWAS analysis and performed a 

leave-one-out analysis1. Using risk alleles identified in the remainder of the primary 

sample, polygenic risk profile scores were calculated for all individuals in the target 

subgroup; and the ability of these scores to distinguish between cases and controls 

was then evaluated. The predictive value of the risk profile score when applied to 

CLOZUK1 was indistinguishable from its performance in other schizophrenia 

subgroups, indeed the values for Nagelkerke’s pseudo-R2 for CLOZUK are the 5th 

highest of all subsamples, implying that CLOZUK is one of the samples most highly 

enriched for schizophrenia risk alleles (see data for 'noclo_clo' in Extended data 

Figure 6b1).  In terms of CNVs, the rates of individual confirmed schizophrenia loci in 

CLOZUK1 are entirely consistent with those of the other schizophrenia studies12. As 

for CLOZUK2, sign test and polygenic score analyses, as described in the Methods 

section of the manuscript (Online Methods, section “Estimation and assessment of 

a polygenic signal”), confirm its similarity to the PGC samples in respect of 

schizophrenia-related genetic architecture. 

 

Control sample collection 

Control samples were collected from publicly available sources (EGA) or through 

collaboration with the holders of the datasets. Individual datasets were curated using 

the same procedures as the case-only datasets. In order to maximize the numbers of 

individuals that could be effectively included in the GWAS without introducing 

confounders, these datasets were chosen on the basis of having recruited 

individuals with self-reported UK ancestry (either exclusively or primarily) and having 

been genotyped on Illumina chips. A summarized view of all the datasets included in 

the GWAS is provided later in this document, which includes further details of the 

control datasets. 

 

Genotype quality-control (QC) 

Given the many data sources used and the variety of genotyping chips available, a 

stringent quality control (allowing only 2% of missing SNP and individual data) was 

performed separately in each individual dataset, using PLINK v1.913 and following 

standard procedures14. To facilitate merging and to avoid common sources of batch 

effects15, all SNPs in each dataset were also aligned to the plus strand of the human 

genome (build 37p13), removing strand-ambiguous markers in the process. As most 

control datasets lacked any markers in the Y chromosome or in the mitochondrial 

DNA, every SNP from these regions was discarded in the combined genotype data. 

The final merge of all case and control datasets left 203,436 overlapping autosomal 



SNPs. For the X-chromosome, we obtained data for all the cases and 13,085 (out of 

24,542) controls, which provided 4,612 overlapping SNPs. 

All individuals were imputed simultaneously in the Cardiff University high-

performance computing cluster RAVEN16, using the SHAPEIT/IMPUTE2 

algorithms17,18. As reference panels, a combination of the 1000 Genomes phase 3 

(1KGPp3) and UK10K datasets was used, as this has previously been shown to 

increase the accuracy of imputation for individuals of British ancestry, particularly for 

rare variants19.  

After imputation, a principal component analysis (PCA) of common variants (MAF 

higher than 5%) was carried out to obtain a general summary of the population 

structure of the sample, using the EIGENSOFT v6 toolset20. A plot of the first two 

PCs showed the existence of a large fraction of cases (~20%) with no overlapping 

controls (Supplementary Figure 1, A). A comparison with the 1KGPp3 dataset, 

performed using PCA and ADMIXTURE21 estimates, showed that most of these 

cases were similar in genetic ancestry to non-European individuals, namely from the 

East Asian or West African superpopulations (Supplementary Figure 1, B). In order 

to use only cases with matching control samples and to ameliorate population 

stratification in the association analysis22, all individuals not falling into an area 

delimited by the mean and 3 standard deviations of the two first principal 

components of the control samples were excluded from further analyses 

(Supplementary Figure 1, C). By repeating PCA only on the selected individuals, 

no outliers could be detected in the first two principal components, and ADMIXTURE 

plots were homogenised as well (Supplementary Figure 2).  

The CLOZUK sample was further pruned by removing all individuals with inbreeding 

coefficients (F) higher than 0.2, and leaving only a random member of each pair with 

a relatedness coefficient ( ̂) higher than 0.2. Furthermore, to ensure the 

independence of our analyses with previous GWAS conducted by the Schizophrenia 

Working Group of the PGC, relatedness coefficients of CLOZUK individuals were 

also calculated with all the individual datasets included in the latest PGC GWAS1 

following approval by the Consortium. Detected genetic relatives (or duplicates) were 

excluded in CLOZUK in the same way as intra-population relatives. After this 

process, we excluded 3,103 individuals as PCA-based ancestry outliers, 5 

individuals due to heterozygosity and 985 individuals due to relatedness. Finally, 

35,802 samples (11,260 cases and 24,542 controls) with 9.66 million imputed 

markers (INFO>0.3; MAF>0.001; HWE p > 1x10-6) remained in the CLOZUK 

dataset. 

 

Estimating the proportion of true positives in PGC GWAS loci 

We used the uniformly minimum variance conditionally unbiased estimator 

(UMVCUE) of Bowden & Dudbridge 23 to estimate true effect sizes for the genome-



wide significant autosomal index SNPs from the previous GWAS of schizophrenia 

carried out by the PGC 1. This method combines replication data (here, the deCODE 

samples reported in the original study) with the discovery data to minimise upward 

biases in effect size due to “winner’s curse” (i.e. selecting SNPs with p<5x10 -8). We 

then estimated the probability that each SNP would be genome-wide significant in 

the combined CLOZUK+PGC meta-analysis, assuming that the effect size of the 

SNP in the CLOZUK sample was that estimated by the UMVCUE (i.e. a true 

positive). We did likewise assuming no effect in the CLOZUK sample (i.e. a false 

positive), and used these probabilities to estimate the proportion of true positive 

SNPs, along with a 95% confidence interval. 

Of the 108 SNPs reported in the original study, 7 were not available in our meta-

analysis, having been excluded in the QC pipeline carried out in the CLOZUK 

GWAS. Of the 101 remaining SNPs, 18 were not genome-wide significant in the 

combined CLOZUK+PGC analysis. (Note that this number is slightly higher than that 

in Supplementary Table 5 since the latter uses the most significant SNP in the 

region, which may be different to the original lead SNP). Assuming that all 101 

represent true signals, we expect 80 to remain GWS in our meta-analysis following 

the Bowden and Dudbridge approach (using the formula given in section 9.ii of the 

procedure described below, setting p=1). We actually observe 83, consistent with all 

the PGC signals being true positives, with a 95% CI of (0.8,1) –see section 9.iv of 

the procedure. 

Detailed procedure 

This was done using a similar pipeline to Hamshere et al. 24: 

1. Use the UMVCUE method to obtain estimates of effect sizes (log odds ratios) 

and variances for each of the index SNPs from the PGC study using both  the 

discovery (GWAS) and replication (deCODE) samples. 

2. Use these to simulate a “true” effect size in the CLOZUK sample: given 

UMVCUE effect size μ and its variance σ2, generate a random effect size (β) by 

sampling from a normal(μ, σ2).  Convert this into an odds ratio OR=eβ. 

3. Use this “true” effect size to simulate a log-OR (+variance) in CLOZUK by using 

its sample size and MAF. Let the minor (reference) allele be A and the other 

allele be a. The frequency of the minor allele is p and the odds ratio associated 

with the minor allele is B. There are N controls and M cases in CLOZUK. 

Consequently the observed frequency q of A alleles in controls is approximately 

distributed as a normal(p, p(1-p)/2N).  Sample q from this distribution and 

calculate (N1, N2), the corresponding number of A and a alleles in the controls 

(=2Nq, 2N(1-q) respectively). 

4. The frequency r of A alleles in cases is given by r=pB/(1+pB-p). Observed 

frequency s of A in cases is then approximately distributed as a normal(r,r(1-

r)/2M). Sample s and calculate corresponding numbers of A and a alleles  in 

cases (M1, M2) = 2Ms, 2M(1-s). 



5. Finally, use N1, N2, M1, M2 to calculate the observed effect size 

βs=ln(M1*N2/M2*N1) and its variance σs
2=(1/N1)+(1/N2)+(1/M1)+(1/M2) 

6. Meta-analyse the simulated CLOZUK log-OR and variance generated in the 

previous step with the actual log-OR and variance from the PGC GWAS using a 

fixed effects inverse-variance meta-analysis. 

7. Repeat 2)-6) 10,000 times to estimate the probability that the CLOZUK+PGC 

meta-analysis is genome-wide significant assuming UMVCUE “true” effects (i.e. 

the PGC GWAS result was a true positive) 

8. Repeat 3)-6) 10,000 times to estimate the probability that the CLOZUK+PGC 

meta-analysis is GWS assuming no effect in CLOZUK (i.e. the PGC GWAS 

result was a false-positive)  

9. Use the probabilities in 7) and 8), combined with the observed number of SNPs 

that were GWS in the CLOZUK+PGC meta-analysis to estimate the proportion of 

true positives: 

i. If Pi = probability that SNP i is genome-wide significant (GWS) in 

PGC+CLOZUK given that it is a true effect and Qi = probability that 

SNP i is GWS in PGC+CLOZUK given it is a false positive, and 

p=proportion of true positives, the overall probability that SNP i is GWS 

= p.Pi + (1-p).Qi.   

ii. So, the expected total number of GWS SNPs is given by 

E(p) = Σi [(p.Pi + (1-p)Qi] 

And its variance by   

V(p) = Σi [(p.Pi + (1-p)Qi) . (p(1-Pi)+(1-p)(1-Qi)) 

iii. The maximum likelihood estimator of p is the value of p for which E(p) 

is equal to the observed number of GWS SNPs, O. If O is larger than 

E(p=1) then this is set equal to 1. 

iv. The 95% confidence interval for p is the set of values of p for which 

E(p) is not significantly different from O. That is: (O-E(p))2/V(p) <3.841 

 

Background selection effects on traits under negative selection 

The following theoretical analysis aims to characterise how the action of background 

selection (BGS) can influence the magnitude and frequency of effects that can be 

detected by GWA studies of negatively selected complex traits. Assuming that rates 

and distributions of mutational effects are evenly distributed over the genome, we 

conclude that genome regions under strong BGS can contribute more to heritability 

than regions under moderate BGS. This conclusion does not hold for neutral traits, 

for which the expectation is exactly the opposite.  



Detecting genotypic effects in a case-control GWAS design 

For the sake of simplicity we initially consider a haploid population of size n, in which 

the focus is on a pair of SNPs: One of them (x = [x1, x2,..xn]) is neutral and the other 

one (y = [y1, y2,…,yn]) has an effect on a quantitative trait. Let xj be the dosage (0 vs. 

1) of the reference allele of the neutral SNP on individual j and yj the dosage of the 

risk allele for the causal SNP in the same individual. The risk allele has an effect on 

a quantitative trait that correlates negatively with fitness. Let pj be the phenotypic 

value of individual j and, also, let yj be the genotypic value contributed by the 

causal SNP, where  is the average effect of the allele substitution. Finally, let r2 be 

the squared correlation of the allele dosages of both SNPs25: 
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In this set of equations,   
  is the true heritability attributable to the causal SNP and 

     
     

  is the heritability that is explained by the neutral SNP. These 

heritabilities are defined here for haploid genomes. However, considering a diploid 

organism, the corresponding heritability is slightly smaller than twice the haploid 

heritability (by a factor 1/2n) because haploid effects are negatively correlated within 

diploids due to sampling:  
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Now we consider specifically schizophrenia, which is traditionally analysed as a 

case-control trait. For such traits, the underlying phenotype is the susceptibility to the 

disorder (liability), which can be assumed to be normally distributed with a 

variance   
   . Assuming that the population prevalence of schizophrenia is k = 

0.007 28, a causal SNP for which the heterozygote increases susceptibility in k = 

1%1 has an effect on population prevalence of: 

                      

Here, p is the phenotypic value, z is the density of the normal distribution at the 

liability threshold and i is the mean phenotypic liability of the affected group. These 

variables are illustrated in a standard liability threshold model below29: 

 

From the previous equations, the substitution effect  measured on the liability scale 

is: 

                                              
1
 The equation    (    )(   ) (   (    ))⁄  can be used to transform susceptibility increases into 

odds-ratios. In this case, k =1% is equivalent to a marker OR = 1.011 for schizophrenia. 



  
  

 
 

    

     
                         

In the present manuscript we describe a meta-analysis of schizophrenia GWAS data 

of n = 105,318 selected individuals: 40,675 cases and 64,643 controls. In this 

sample, the observable prevalence of schizophrenia is increased 55 times with 

respect to the population prevalence (from k = 0.007 to k’ = 0.386). This causes that, 

for a SNP of k = 1% (as in the previous example), the effect in the sample must be 

computed from a prevalence of 38.6% (i’ = 0.991): 

   
  

  
 

    

     
                         

According to the sample characteristics, the 2 expected value is 

 [  ]         (    )      (   )           (    )                 

The term q’ stands for the frequency of the risk allele of the causal SNP in the 

sample, and it is expected to be close to its frequency in the population unless the 

effect k is very large, so     [    (    )]. Consequently, variances, 

covariances and, particularly, correlations of allele dosages in the sample are not 

expected to be very different from the corresponding values in the population.   

A rough approximation can be made for the statistical power of the present 

experiment. The critical value for a 2 -distribution with 1df for a typical genome-wide 

significance threshold of 5 x 10-8 is 29.72. Using this threshold, the non-centrality 

parameter (NCP) of a 2 distribution which gives a 5% probability of detection is 

14.50. So, for the aforementioned SNP to be detected with that probability in this 

GWA study, the following condition must be met: 

      [      (    )                 ], therefore 

      (    )                  

Given that the maximum values of     and q´(1 – q´) are 1 and 0.25 respectively, the 

minimal ' effect needed for detection is         , which corresponds to    

                  and a substitution effect in the population        

                 . This is equivalent to a theoretical SNP with OR = 1.017 and 

MAF = 50%. SNPs with smaller allele frequencies should have larger phenotypic 

effects to have minimal chances of being detected at this significance threshold. 

Note that the NCP of a GWAS marker can also be related to other parameters such 

as the disease risk model and the sample case/control ratio30, but for simplicity these 

have been omitted from our calculations. 

Detecting associations with causal SNPs in schizophrenia 



Schizophrenia has been shown to cause a reduction in fertility rate of Rf = 0.6531; 

average in both genders. Assuming a linear effect model on fitness32, a detectable 

SNP with an effect  of 0.016 liability units in the meta-analysis ( k = 0.01 in the 

population) has a selection coefficient of:  

s = k·k·Rf = 0.01·0.007·0.65 = 0.00004. 

It is known that mutations with deleterious effects larger than s = 1/2Ne, where Ne is 

the effective population size, are under active negative selection. In this model, it is 

expected that the larger the effect of the allele on the trait is, the lower the range of 

the randomly fluctuating frequency will be33. This establishes a negative correlation 

between Ne and the frequency of causal variants. Therefore, it would be unlikely to 

find large-effect alleles at common frequencies in large populations, as has been 

consistently shown in human complex traits and psychiatric disorders in particular34.  

Genetic drift also affects the correlation between SNPs, which reflects their linkage 

disequilibrium. The expected r2 values of a new mutation with other SNPs are initially 

of the order of 1/2Ne. This value is not reduced every generation by recombination 

as might be intuitively thought, but it is increased by drift up to a maximum value35: 

    
  

 

      
, where c is the recombination rate. 

Summing up, genetic drift affects the probability of detection of causal effects on 

negatively selected traits in two ways. Firstly, it increases the expected frequencies 

of deleterious mutations. Secondly, it increases the expected correlation between 

pairs of loci. As indicated above, the product of both terms q and r2 are included in 

the equation for the expected 2 in GWA studies. Note that, within some parameter 

ranges, the detection of causal effects for negatively selected traits could be 

increased in populations with small Ne, as these might harbour alleles of larger effect 

at higher frequencies and stronger LD. This effect is not expected for neutral traits 

because the amount of neutral variation, including variation for neutral traits, is 

proportional to Ne, which largely compensates the contrary but relatively small effect 

of Ne on r2. 

The same rationale can be extended to the effect of background selection (BGS) on 

detection of causal effects at different genome regions. The large-scale differences 

in the amount of neutral variation at genome regions are well explained by the BGS 

model: Selection on deleterious variants reduces variation at linked neutral sites in a 

way that is nearly equivalent to a reduction in Ne
36,37, with all of its associated effects. 

Genome regions with reduced Ne would have increased contributions to variation 

which can be effectively detected by GWAS of negatively selected traits. 

Simulation Study 1  

Reductions in Ne allow schizophrenia risk variants to persist at common frequencies 

and explain more heritability 



For testing the feasibility of detecting causal alleles in regions under BGS, pairs of 

causal-neutral biallelic loci were simulated for ten Ne values evenly distributed from 

4500 to 45000 diploid individuals. This range of population sizes accounts for the 

estimations of the effective size of human populations from the out-of-Africa event to 

current times38, and also represents a possible range of differences between 

genome regions. As it will be shown, the general conclusions are not expected to 

change for combinations of parameters out of this range. For each Ne value, ten 

effects evenly distributed from = 0.02 to 0.2 were simulated. Assuming the 

aforementioned prevalence for schizophrenia of k = 0.007, these  values represent 

odds ratios from OR = 1.06 to OR = 1.62, which are within the ranges detected by 

GWAS up to this date. The corresponding selective value s for each  was 

calculated as indicated above (s = k·k·Rf ) using the reduction in fertility value of Rf 

= 0.65 and       , where         as determined by the prevalence. Different 

recombination rates between the two loci were considered, but since the general 

trend does not change with differences in recombination, only the average rate c = 

0.000225 between neutral SNPs and causal candidates detected in the study was 

simulated for the whole set of 10 x 10 combinations of Ne and  values. This value of 

c is equivalent to a linkage between both SNPs of r2 ≈ 0.1, which is a commonly used 

value for LD-based clumping of GWAS results and is assumed to capture the 

majority of putatively causal SNPs at each locus39. 

Each combination of parameters was run for 108 generations. Every time an allele 

was lost, the same allele was reintroduced in the population as a single copy, but the 

results were re-scaled proportionally to Ne. Thus, the number of mutation events was 

proportional to Ne and the rate of mutation was the same for all the different effects. 

Each generation, frequencies at both loci and correlation between loci were 

computed. These were used to calculate the expectation  [  ] using a substitution 

effect ’ equivalent to a selected sample with the increased meta-analysis 

prevalence described in this work (k’=0.386). From that expectation, the probabilities 

of obtaining values of 2 > 29.72 (significant at the level 5•10-8) were in turn 

computed using the non-central 2 distribution for two sample sizes (n = 30,000 and 

n = 100,000) which are similar to the two GWAS described in the main manuscript. 

These probabilities were used to calculate two parameters: First, the product f(1 – f), 

where f is the frequency of a neutral SNP that is significantly associated with the trait 

(Supplementary Note Figure 1). Second, the product of the sum of probabilities of 

detection of the effect allele over generations, until the neutral SNP is lost or fixed, 

multiplied by f(1 – f)r2 (Supplementary Note Figure 2). This product is proportional to 

  
    , the expected heritability explained by a neutral SNP relative to the squared 

substitution effect.  

Two main and related conclusions can be obtained from the simulations. First, for 

any particular effect OR in the figures , the frequencies of SNPs significantly 

associated with causal effects increase as Ne decreases. This is coincident with the 

observation of the abundance of common SNPs at genome regions under strong 



BGS. Secondly, the contribution to heritability increases for decreasing Ne, which 

supports the mechanism proposed to explain the relationship between genomic 

regions under BGS and schizophrenia risk loci. 

An additional block of simulations of 10 x 10 combinations of Ne and  values was 

carried out for the same combination of parameters, but this time for a neutral trait 

(Rf = 0). The results show a completelly different pattern: First, the product f(1 – f) 

does not change with Ne (Supplementary Note Figure 3). Second, the explained 

heritability tends to increase as Ne increases (Supplementary Note Figure 4). This 

allows us to predict that genome regions under strong BGS contribute less to the 

heritability of neutral traits than weakly selected regions, which is congruent with the 

expectation of increasing levels of neutral variation as Ne increases.  

 

        

SUPPLEMENTARY NOTE FIGURE 1. Average product f(1 – f) of allele frequencies at neutral SNPs significantly 

associated with effects on schizophrenia (vertical axis and colour scale). Two sample sizes are shown: n=30,000 

(left) and n=100,000 (right). The surface is given as a function of Ne and the odds ratio (OR) of the causal SNP, 

which is derived from the corresponding effect  in the population (see text). 

           

            

SUPPLEMENTARY NOTE FIGURE 2.  Relative contributions to the heritability of the SNPs significantly 

associated with effects (f[1 – f]r
2
) in the schizophrenia simulations. Note that these contributions must be 

multiplied by    to obtain the absolute contribution to heritability. Two sample sizes are shown: n = 30,000 (left) 

and n = 100,000 (right). Notice that the scale in which this statistic is reported is arbitrary but both plots have the 

same scale and can be compared. 



       

SUPPLEMENTARY NOTE FIGURE 3. Average product f(1 – f) of allele frequencies at neutral SNPs significantly 

associated with effects on a neutral trait (vertical axis and colour scale). Two sample sizes are shown: n = 30,000 

(left) and n = 100,000 (right). The surface is given as a function of Ne and the odds ratio (OR) of the causal SNP, 

which is derived from the corresponding effect  in the population (see text). 

 

       

SUPPLEMENTARY NOTE FIGURE 4. Relative contributions to the heritability of the SNPs significantly 

associated with effects (f[1 – f]r
2
) in the neutral trait simulations. Note that these contributions must be multiplied 

by    to obtain the absolute contribution to heritability. Two sample sizes are shown: n = 30,000 (left) and n = 

100,000 (right). Notice that the scale in which this statistic is reported is arbitrary but both plots have the same 

scale and can be compared. 

 

  



Simulation Study 2 

Reduction in Ne due to negative selection is caused by BGS and allows for improved 

detection of risk alleles in GWAS settings 

The following study describes computer simulations which illustrate that BGS can 

also increase the probability of detecting causal SNPs for a quantitative trait in a 

GWAS setting. It does not intend to be a comprehensive study regarding a range of 

different scenarios and parameters, but to support the feasibility of the BGS effect in 

generic negatively-selected traits which might not fit to a liability threshold model. 

Forward individual simulations were carried out using the software SLiM40 for a 

diploid population of constant size N = 1,000 individuals, run for 100,000 

generations. A single genome sequence of 1Mb was assumed where mutations 

occurred at a rate μ = 10–7 per-nucleotide and generation. The recombination rate 

between nucleotides was assumed to be c = 10–8, constant across the whole 

sequence, implying an average value of 1cM per 1Mb. 

Mutations were assumed to appear at random along the sequence such that 74% of 

mutations were neutral, 24% were assumed to be deleterious for fitness with a 

homozygous effect obtained from an exponential distribution with mean s. Five 

different scenarios were considered using a range of mean values of s (0, 0.0001, 

0.001, 0.01 and 0.1) in order to simulate different magnitudes of BGS. The 

remainder 1% mutations were assumed to be slightly deleterious, with a constant 

selection coefficient s = 0.001 (2Ns = 2), and to be true quantitative trait loci (QTL) 

with an effect of one environmental standard deviation. All effects, both for fitness 

and for the quantitative trait were assumed to be additive. Phenotypes of individuals 

for the quantitative trait were obtained adding a normal environmental deviation to 

the genotypic value. 

In the last generation a sample of 100 individuals was taken from the population and 

a GWAS was performed using PLINK, discarding variants with frequency smaller 

than MAF = 1%. The number of SNPs analysed varied from about 4,000 (s = 0) to 

about 2,000 (s = 0.1). 

In order to compare the probability of detection of causal SNPs under dif ferent levels 

of BGS, the top twenty SNPs with the lowest probability from the GWAS analysis 

were considered, and the number of true causal QTLs in these 20 SNPs was 

recorded. To quantify the magnitude of the genomic reduction in effective population 

size due to BGS the nucleotide diversity ( ) was scored for all neutral SNPs. Each 

scenario was replicated 1,000 times. 

As expected, negative selection was found to result in a reduction in neutral 

diversity, which is a clear signature of the BGS process and is related to genomic Ne 

(Supplementary Note Figure 5). Such a reduction was paired with an increased 

number of detected QTLs (Supplementary Note Figure 6). For strong values of the 



selection coefficient (s = 0.1), however, both effects were weaker than for 

intermediate values (s = 0.01), as mutations of large effect do not result in strong 

BGS because they persist less time in the population. 

 

 

SUPPLEMENTARY NOTE FIGURE 5.  Average neutral nucleotide diversity for scenarios with different mean 

selection coefficients of deleterious mutations, where s = 0 implies no BGS. Bars indicate one standard error for 

the mean across replicates.  

 

 

SUPPLEMENTARY NOTE FIGURE 6. Percentage of causal variants (QTLs, mutations affecting the quantitative 

trait) found by GWAS within the 20 top SNPs according to their probability for scenarios with different mean 

selection coefficients of deleterious mutations, where s = 0 implies no BGS. Bars indicate one standard error for 

the mean across replicates.  
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 Detail of samples included in the present study 

 

Samples marked with an asterisk * were included in the PGC schizophrenia study 1; 

all other samples have not previously been reported in schizophrenia GWAS  

 

Summarized description of control samples 

WTCCC2: Wellcome Trust Case-Control Consortium unscreened controls from the 

UK Blood Bank and 1958 Birth Cohort (NCDS).  

 

Cardiff Controls: Unscreened blood donor controls recruited in Wales by Cardiff 

University in collaboration with the NHS Blood and Transplant Authority.   

 

Generation Scotland: Samples from individuals recruited by the Generation 

Scotland Scottish Family Health Study (GS:SFHS). While in the original design there 

was no selection on the basis of medical status or history, these controls have been 

screened for psychiatric disorders using SCID criteria. 

 

T1DGC: Unscreened controls used by the Type 1 Diabetes Genetics Consortium, 

recruited in the UK through the 1958 Birth Cohort. This recruitment was intended to 

be independent from WTCCC2, though any sample overlaps were addressed by the 

GWAS QC pipeline (see Online Methods). 

Samples in the CLOZUK study 

DATASET Samples in GWAS Genotyping chip Reference 

CLOZUK1 5,528 OmniExpress 24* 

CardiffCOGS1 512 OmniExpress 12* 

CLOZUK2 4,973 OmniExpress This study 

CardiffCOGS2 247 OmniExpress This study 

WTCCC2 4,641 Illumina 1.2M  41,42* 

Cardiff Controls 1,078 OmniExpress 43* 

Generation 

Scotland 
6,480 OmniExpress 44 

T1DGC 2,532 HumanHap 550 45 

POBI 2,516 Illumina 1.2M 46,47 

TWINSUK 2,426 Illumina 317/610/660/1M 48 

QIMR  2,339 Illumina 317/610/660 49,50 

TEDS 1,752 OmniExpress 51 

GERAD 778 Illumina 660 52 



POBI: Individuals genotyped for the “People of the British Isles” project, which 

collected samples from geographically diverse rural communities throughout the UK. 

The sample is unscreened for psychiatric illness and was recruited from 

predominantly older age brackets (mode 60-69 years at time of collection). 

 

TWINSUK: This sample consists of individuals recruited through the Twins Health 

Registry of the Department of Twin Research of King’s College London. The 

samples included in this study were unrelated and screened for self-reported 

psychiatric disorders. We selected one individual randomly from each twin pair. 

 

QIMR: This sample is a mixture of controls screened for Major Depressive Disorder 

(MDD) and unscreened controls from an Australian community sample. Unrelated 

individuals included in this study were ascertained through studies of twin families. 

 

TEDS: Individuals recruited through the Twins Early Development Study. The 

sample is formed by selected unrelated individuals from the original twin-based 

design. Though unscreened for psychiatric disorders, these individuals had no 

severe medical problems nor suffered severe problems peri- or postnatally. 

 

GERAD: This sample was obtained from the Genetic and Environmental Risk for 

Alzheimer’s disease (GERAD) Consortium. All of these controls were elderly and 

screened for dementia using the MMSE or ADAS-cog assessments. 

 

 

Summarized description of replication samples 

deCODE1: The Icelandic sample consisted of cases and controls who were 

recruited and diagnosed in Iceland as previously described53. Diagnoses were 

assigned according to Research Diagnostic Criteria (RDC) using the Schedule for 

Affective Disorders and Schizophrenia Lifetime Version (SADS-L). Controls were 

recruited as a part of various genetic programs at deCODE and were not screened 

for psychiatric disorders. The  study was approved by the National Bioethics 

Committee and the Icelandic Data Protection Authority, and all participants provided 

written, informed consent. 

 

Replication samples 

DATASET Cases Controls Genotyping chip Reference 

deCODE1 681 137,678 HumanHap/OmniExpress 53 

deCODE2 885 924 HumanHap 54 

iPSYCH 3,226 10,583 HumanCoreExome/PsychChip 56,57 

TOP 970 5,039 OmniExpress - 



deCODE2: This sample included cases and controls from Italy, Georgia, Macedonia, 

Russia and Serbia; these individuals were recruited and diagnosed as detailed 

elsewhere54. All studies were approved by local ethics committees, and all 

participants provided written, informed consent. 

 

iPSYCH: The Danish data consists of two samples (GEMS2 and iPSYCH-SCZ). In 

both samples cases were identified from the Danish Psychiatric Central Research 

Register55, and diagnosed with SCZ by a psychiatrist according to ICD10. Eligible 

were singletons born to a known mother and resident in Denmark on their one-year 

birthday. Samples were linked using the unique personal identification number to the 

Danish Newborn Screening Biobank at Statens Serum Institute, where DNA was 

extracted from Guthrie cards and whole genome amplified in triplicates as described 

previously 56,57. The study was approved by the Danish regional scientific ethics 

committee and the Danish data protection agency.  

 

TOP: Thematically Organized Psychosis (TOP) Study cases participating in the 

current study were mainly included from the Therapeutic Drug Monitoring laboratory 

at Diakonhjemmet Hospital, Oslo. This laboratory is used for monitoring of nearly all 

schizophrenia patients treated with clozapine and other antipsychotics in the region. 

We obtained anonymous aliquots of the blood samples collected as part of the 

regular blood monitoring and DNA was extracted and used in the current study 

based on approval from the Regional Committee for Medical and Health Research 

Ethics. The healthy controls were randomly selected from statistical records of 

persons from the same catchment area as the cases. Participants were between 18-

60 years old and healthy based on clinical examination and disease history, and 

none had any history of severe mental disorders, head injury, neurological disorders, 

illicit drug use, close relatives with severe mental disorder or medical problems that 

somehow could interfere with brain function. All participants provided written 

informed consent and the human subjects protocol was approved by the Regional 

Committee for Medical and Health Research Ethics and the Norwegian Data 

Protection Agency. In addition, healthy blood donors from the same region were 

included in the control sample. They were all thoroughly screened for diseases, and 

provided blood for DNA analysis, in line with approval from the Regional Committee 

for Medical and Health Research Ethics. 
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Supplementary Figure 1 

 

Population structure of the complete CLOZUK dataset. A: PCA showing cases and 

controls, notice the large spread in the cases. B: ADMIXTURE plot (K=3), names of 
ancestral components represent the most similar 1KGPp3 superpopulation. C: PCA 
showing the individuals finally selected for the GWAS. 



Supplementary Figure 2 

 

Population structure of the CLOZUK subset selected for the GWAS. A: PCA showing 

cases and controls, notice the profiles are almost completely overlapping. B: 
ADMIXTURE plot (K=3), names of ancestral components represent the most similar 
1KGPp3 superpopulation. 



Supplementary Figure 3 

 

QQ plot of CLOZUK and PGC2 meta-analysis. 



Supplementary Figure 4 

 

Index SNP p-values for all clumps in the meta-analysis (CLOZUK+PGC) compared 

with PGC. Dotted lines show the genome-wide significant threshold for the two 

datasets. The red line indicates a null of equal p-values in both datasets, and thus 

index SNPs to the left of this line (toward y axis) show increased significance in our 

meta-analysis. All clumps in the xMHC have been excluded from this plot.



Supplementary Figure 5 

 

Schizophrenia association for genes within bins of pLI, an ExAC-based measure of intolerance to functional sequence variation. 

Bins are based on increasing 0.1 intervals of the statistic, and thus all LoF-intolerant genes (defined as pLI > 0.9) are in bin 10.       

P-values correspond to the statistical significance of a MAGMA competitive gene-set analysis.  



Supplementary Figure 6 

 

Schizophrenia SNP-based heritability enrichment, as estimated by LDSR, is influenced by the intensity of background selection 

(“B”) and the genomic location. Error bars indicate enrichment standard errors. Asterisks indicate the significance of enrichment for 

each group of SNPs (* <= 0.05; ** <= 0.01<; *** <= 0.001). 



Supplementary Figure 7 

 

QQ Plot of the CLOZUK GWAS. 



Supplementary Figure 8 

 

Manhattan plot of the CLOZUK GWAS (N=35,802; 11 260 cases, 24,542 controls). 
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