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SUMMARY

Precision oncology uses genomic evidence to match
patients with treatment but often fails to identify all
patients who may respond. The transcriptome of
these ‘‘hidden responders’’ may reveal responsive
molecular states. We describe and evaluate a
machine-learning approach to classify aberrant
pathway activity in tumors, which may aid in hidden
responder identification. The algorithm integrates
RNA-seq, copy number, and mutations from 33
different cancer types across The Cancer Genome
Atlas (TCGA) PanCanAtlas project to predict aberrant
molecular states in tumors. Applied to the Ras
pathway, the method detects Ras activation across
cancer types and identifies phenocopying variants.
The model, trained on human tumors, can predict
response to MEK inhibitors in wild-type Ras cell
lines. We also present data that suggest that multiple
hits in the Ras pathway confer increased Ras activ-
ity. The transcriptome is underused in precision
oncology and, combined with machine learning,
can aid in the identification of hidden responders.

INTRODUCTION

Precision oncology matches cancer patients to specific thera-

pies based on genomic evidence, but it has benefited only a rela-

tively low proportion of cancer patients to date (Prasad et al.,

2016). While clinically promising, precision oncology lacks com-

plete and accurate matching strategies and fails to identify many
172 Cell Reports 23, 172–180, April 3, 2018 ª 2018 The Author(s).
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patients that could be matched using alternative approaches

(Kumar-Sinha and Chinnaiyan, 2018). Cataloging transcriptome

measurements across thousands of tumors enables a sys-

tems-biology perspective into the downstream consequences

of molecular perturbation. Detecting these perturbations using

transcriptomic states can improve precision oncology efforts

toward more accurate and complete pairing of patients to effec-

tive treatments (Cie�slik and Chinnaiyan, 2018).

In the largest uniformly processed cancer dataset to

date, The Cancer Genome Atlas (TCGA) PanCancerAtlas has

released multi-platform genomic measurements across thou-

sands of tumors from 33 different cancer types (Weinstein

et al., 2013). With this scale of data, researchers can build

and evaluate statistical models that stratify tumors based on

aberrant gene and pathway function. Previously, strategies

have been explored using expression signatures to stratify pa-

tients (Bild et al., 2006). Some strategies have used data from

individual cancer types. For example, gene expression signa-

tures in colon adenocarcinoma (COAD) and glioblastoma

(GBM) stratified tumors with aberrant KRAS and NF1 function,

respectively (Guinney et al., 2014; Way et al., 2017). Further-

more, data integration approaches incorporating pathway

connectivity, including PARADIGM, are used to characterize

pathway activity and infer gain- or loss-of-function events

(Vaske et al., 2010; Ng et al., 2012; Sokolov et al., 2016). An un-

supervised approach decomposing gene expression states in

cell lines to map pathway activity has been proposed (Kim

et al., 2017). Here, we introduce an elastic net penalized logistic

regression classifier to learn signatures of gene or pathway

alterations from gene expression assays of tumor biopsies

across cancer types. We applied our method across cancer

types to learn an independent, pan-cancer signature of

pathway aberration. Our method can be used to identify
commons.org/licenses/by/4.0/).
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Figure 1. Framing the Algorithm and Inte-

gration Tasks

(A) RNA-seq data (X) is multiplied by a vector of

gene weights (w) where the optimization task is to

find the optimalw to correctly classify the pathway

status matrix (y). We train the model with the train

partition and evaluate performance on a held-out

test set.

(B) The status matrix, y, is constructed by inte-

grating mutations and copy number alterations

(CNA). We consider activating or loss-of-function

mutations and high copy number gain and deep

copy number loss for oncogenes and tumor-sup-

pressor genes, respectively. Black squares indi-

cate aberrant events. For the Ras classifier, we

used non-silent somatic mutations and high copy

gains in the oncogenes KRAS, NRAS, and HRAS.
phenocopying variants and requires only gene expression data

for inference on new data. We apply our method to detect

Ras pathway activation pan-cancer.

The Ras pathway is frequently altered in many different cancer

types (De Luca et al., 2012).When the pathway is activated, often

by gain-of-function KRAS,NRAS, orHRASmutations or through

NF1 loss-of-function events, cells increase their translational

output, and unchecked cellular proliferation occurs (McCormick,

1989; Xu et al., 1990). Certain cancer types, such as pancreatic

adenocarcinoma (PAAD), skin cutaneous melanoma (SKCM),

thyroid carcinoma (THCA), lung adenocarcinoma (LUAD), and

COAD are known to be largely driven by mutations in Ras

pathway genes (Goretzki et al., 1992; Omholt et al., 2003; Pao

et al., 2005; di Magliano and Logsdon, 2013). Additionally, muta-

tions in the Ras pathway have been observed to be early events

driving tumorigenesis and have also been associated with poor

survival and treatment resistance (Garcia-Rostan et al., 2003;

Vauthey et al., 2013; Dinu et al., 2014; Hsu et al., 2016). Because

the Ras pathway is ubiquitously misregulated, developing spe-

cific therapeutic targets is one of the National Cancer Institute’s

key initiatives. However, Ras is also notoriously difficult to

therapeutically target, and accurate detection of its malfunction

is paramount (Stephen et al., 2014).

The most direct method of assessing Ras activation is by tar-

geted sequencing of Ras. However, these methods would fail to

detect unknown variants in other genes that phenocopy Ras-

activating mutations. Detecting such tumors may enable more

patients to be targeted therapeutically. In the present study,

we describe our machine-learning approach that integrates

bulk RNA sequencing (RNA-seq), copy number, and mutation
C

data from the PanCanAtlas. We apply

the method to Ras genes and demon-

strate that our method can detect Ras

activation pan-cancer. The classifier

also identifies NF1 phenocopying events

in TCGA and prioritizes Ras wild-type

cell lines that respond to MEK inhibitors.

Manually curated oncogenic variants in

Ras pathway genes were assigned higher

classification scores than variants with
unknown significance. Our method can be applied to other can-

cer-associated genes and pathways as well. For example, the

DNA Damage Repair PanCanAtlas analysis working group

(AWG) applied this approach to detecting TP53 inactivation

(Knijnenburg et al., 2018).

RESULTS

Machine-Learning Models to Predict Pathway Activity
We developed a machine-learning approach to detect aberrant

pathway activity in tumors. The method integrated RNA-seq,

copy number, andmutation data. Themodels were trained using

tumors from TCGA PanCanAtlas, with a complete set of these

measurements, which included 9,075 tumors across 33 different

cancer types. The method is based on a logistic regression clas-

sifier framework regularized with an elastic net penalty. We used

RNA-seq as a measurement describing the expression state of a

tumor and trained the classifier to detect downstream gene

expression patterns consistent with aberrant pathway activity

(Figure 1A). The algorithm learned a combination of gene impor-

tance scores, or weights (w), that together learn to best separate

aberrant from wild-type expression patterns. As input during

training, tumors with any non-silent somatic variants in target

genes were included in the positive set (Figure 1B). We also

included copy number gains for oncogenes and deep copy num-

ber loss for tumor suppressor genes (Figure 1B). For complete

details about the model and training approach, refer to the

STAR Methods. In principle, this approach could be applied to

predict other gene or pathway events. Here, we applied the

method to classifying Ras activity.
ell Reports 23, 172–180, April 3, 2018 173



Figure 2. Evaluating Machine-Learning Clas-

sification of Ras Activation

(A) Cancer-type-specific percentages of Ras aber-

ration by copy number gain and deleterious muta-

tion in KRAS, HRAS, or NRAS. The colored squares

indicate whether the cancer type was included in

model training.

(B) Predicting Ras pathway activation metrics.

The gray lines represent classifier predictions on a

randomly shuffled gene expression matrix. Left:

receiver operating characteristic (ROC) curve and

area under the ROC (AUROC) curve given for

training, testing, and cross-validation (CV) sets. The

dotted navy line represents a hypothetical random

classifier. Right: precision recall (PR) curve and

corresponding area under the PR (AUPR) curve for

each evaluation set.

(C) Sparse classifier coefficients indicate which

genes impact classifier performance. log10_mut

represents tumor-specific non-silent mutation rate.

(D) Cancer-type-specific performance for the pan-

cancer model compared to separate models trained

on each cancer type independently.

See also Figures S2 and S3.
Detecting Ras Activation Pan-cancer
Wetrainedaclassifier todetect aberrantRasactivity in tumors, us-

ing knowledge of KRAS, HRAS, and NRAS mutations and copy

number gains (see Figure 1). These 3 core Ras genes differed

greatly in variant prevalence across cancer types. In the

PanCanAtlas, KRASmutations were widespread in PAAD (72%),

COAD (45%), rectum adenocarcinoma (READ, 42%), and LUAD

(31%), whileNRASmutations were common in SKCM (31%) (Fig-

ure S1A). We performed a differential expression analysis of

PanCanAtlas tumors, controlled for cancer type, comparing

wild-type against aberrant Ras tumors (Figure S1B; Data S1).

In the classifier, to enforce a more balanced class representa-

tion and to reduce performance metric inflation (Davis and Goa-

drich, 2006), we used samples from 16 of 33 cancer types for

training (Figure 2A). We also used the top 8,000most variably ex-

pressed genes by median absolute deviation (MAD) (see STAR

Methods for details). We then randomly held out 10%of the sam-

ples (n = 476) to create a test set. The test set was selected to

have the same proportion of cancer types and Ras statuses as

the training set. The training set consisted of the remaining

90% (n = 4,283), which included 3,374 Ras wild-type tumors

and 909 tumors with non-silent somatic Ras variants. Within

the training set, we performed 5-fold cross-validation (CV). We

report training (‘‘training’’), cross-validation (‘‘CV’’), and held-

out test set (‘‘testing’’) performance using these cancer types.

We also evaluated the final classifier on cancer types that were

initially filtered from training.

Overall, the classifier showed high performance, with an

area under the receiver operating characteristic (AUROC) curve
174 Cell Reports 23, 172–180, April 3, 2018
above 84% and an area under the preci-

sion recall (AUPR) curve above 63% in

the cross-validation and testing sets (Fig-

ure 2B). For the samples initially filtered

from training, we also observed reasonable
performance, with an AUROC curve of 75.2% and an AUPR

curve of 24.7%. Therefore, the classifier detected Ras activation

signal in tissues it was not exposed to during training. Applying

the final classifier to all 9,075 samples, we observed an 86.7%

AUROCcurve and a 61.2%AUPR curve.We provide Ras predic-

tion scores for each PanCancerAtlas sample in Data S2.

The Ras classifier consisted of automatically learned gene

weights, or importance scores. Training with an elastic net pen-

alty resulted in a sparse classifier, with only 185 genes contrib-

uting to classification. Genes and covariates with weights above

zero can be interpreted as being upregulated in tumors with acti-

vated Ras, while negative-weight genes are characteristic of tu-

mors with wild-type Ras (Figure 2C). The full classifier gene

weights are provided in Data S3. However, caution must be

exercised in interpreting these coefficients, as our elastic net

regularization approach induces sparsity, which means that

the solution represents a subset of genes associated with—

and, therefore, useful for identifying—Ras activation. A differen-

tial expression analysis of Ras aberrant to wild-type tumors

would reveal these downstream genes (Data S1).

Nevertheless, many of the classifier-implicated genes are

known modulators of the Ras/MAPK (mitogen-activated protein

kinase) pathway. For instance, high expression of ERRFI1

contributed to predicting tumors with activated Ras. ERRFI1 is

a tumor suppressor of various receptors in the Ras pathway

(Masoumi-Moghaddam et al., 2014). The top positive gene,

PBX3, is a transcription factor previously implicated in certain

astrocytomas (Ho et al., 2013b). The second top positive gene,

SPRY2, inhibits FGFR signaling and interacts with ERBB1. The



Figure 3. Cell-LinePredictionsofRasActivity

(A) Ras classifier trained on PanCanAtlas tumors

applied to a dataset of small airway epithelial cells

(GEO: GSE94937). The mutant cells included a

stably expressed KRAS G12V mutation.

(B) Ras classifier trained on PanCanAtlas tumors

applied to 737 cell lines from The Cancer Cell Line

Encyclopedia (CCLE). Cell lines with KRAS, HRAS,

or NRAS mutations are indicated in the right

boxes, and wild-type tumors are indicated in the

left boxes. Scores for cell lines with BRAF muta-

tions (green) and wild-type BRAF (gold) are also

shown.

(C and D) Drug activity area for (C) selumetinib

(AZD6244) and (D) PD-0325901 compared

against Ras classifier scores for 388 CCLE cell

lines with both gene expression and pharma-

cologic profiling data. Cell lines with mutant

(orange) or wild-type (blue) KRAS, HRAS, and

NRAS are indicated. The best fit lines, SE

estimates, correlation coefficients, and p values

are shown separately for cell lines with mutant

or wild-type Ras.
negatively associated genes are indicative of expression profiles

of wild-type Ras tumors. For example,CDK13was themost pre-

dictive gene and is involved in regulating transcription, which

potentially indicates an alternative mechanism driving transcrip-

tional disruption in wild-type Ras tumors. We also compared

pan-cancer classification with classifiers trained independently

within each cancer type. Both the cancer-type-specific and

pan-cancer classifiers had variable performance across cancer

types, with the pan-cancer model outperforming the models

optimized within cancer types approximately half of the time

(Figure 2D).

Ras Classifier Benchmarking Analyses
Weperformed several analyses to evaluate the robustness of the

Ras classifier. A null model trained on a randomly shuffled gene

expression matrix performed with about 50% AUROC and 20%

AUPR in holdout test and cross-validation sets, which indicates

strong performance of the model over this baseline (Figures S2A

and S2B). We also assessed performance of the classifier for de-

tecting Ras mutations and Ras copy number gains separately.

Performance was similar, with the mutations-only model per-

forming better than the combined model and the copy-num-

ber-only model performing worst (Figure S2C). Our model was

robust to dropping KRAS, NRAS, and HRAS and 11 other Ras-

opathy genes from the gene expression matrix (Figure S2D).

Lastly, performance was not impacted by covariate information

(Figure S2E).

We also explored gene coefficient relationships across

models. The high-weight-positive genes in the copy-only model

included C12orf11 (ASUN),MRPS35, ERGIC2, and CMAS, all of

which are located on chromosome 12p near KRAS, which may

indicate artifacts of common copy-gain events and be a result

of low sample size in the positive-copy-only set (Figure S2F).

Gene coefficients were similar across models when dropping

different Ras pathway genes (Figure S2G). Lastly, we compared
our machine-learning approach to a differential expression anal-

ysis of Ras mutant versus wild-type tumors controlled by cancer

type. The differential expression scores aligned closely with the

learned Ras classifier coefficients but identified many more

genes than the sparse classifier (Figure S2H) (Data S1). In sum-

mary, the Ras classifier differed depending on data-type inclu-

sion but was robust to input genes in the expression matrix,

did not rely on covariate data, and included similar but fewer

genes than a differential expression analysis.

Detecting Ras Activation in Cell Lines
We sought to determine whether predictions from the Ras clas-

sifier trained with TCGA tumors generalized to cell lines. We

applied the classifier to two cell-line datasets. First, we applied

the classifier to 10 small-airway epithelial cell RNA-seq profiles

(GEO: GSE94937) (Kim et al., 2017). The set consisted of 4

wild-type profiles and 6 KRAS G12V-expressing mutant pro-

files. Our classifier correctly classified 9 out of 10 profiles and

ranked all mutant profiles higher than all wild-type profiles

(p = 1.16e�2) (Figure 3A). Though the PanCanAtlas data do

not include gene-edited tumors that would allow us to directly

evaluate Ras oncogenicity, the cell lines from this independent

test set are induced to stably express a bona fide oncogenic

KRAS variant.

Next, we applied our Ras classifier to RNA-seq profiles from

737 different cell lines from the Cancer Cell Line Encyclopedia

(CCLE) with matched expression and mutation data (Barretina

et al., 2012) (Figure 3B). The Ras classifier assigned significantly

higher scores to Ras mutated (KRAS, HRAS, or NRAS) from Ras

wild-type cell lines (p = 6.35e�36). Of the 393 cell lines predicted

to be wild-type, 357 were labeled wild-type (negative predictive

value = 90.8%). However, only 153 of 344 cell lines that were pre-

dicted to be Ras mutated were labeled Ras mutant (precision =

44.5%). In total, 510 of 737 (69.2%) cell lines were predicted

correctly. In this case, the low precision could indicate either
Cell Reports 23, 172–180, April 3, 2018 175



Figure 4. Ras Activation across Ras Variants and Alternative Ras Pathway Members

(A) Cross-validation area under the receiver operating characteristic curve for predictingNF1 inactivation. Within and pan-cancer models are classifiers trained to

detect NF1 inactivation. The Ras model is the classifier trained in Figure 2. The pan-cancer NF1 classifier is shown in Figure S3.

(B) Ras classifier scores for sampleswith oncogenic or unconfirmed variants inKRAS,HRAS, andNRAS. Variant oncogenicity designations are based on curation

(see STAR Methods).

(C and D) Ras classifier scores stratified by Ras activity (KRAS,NRAS,HRAS) status and number of (C) aberrant mutations or (D) copy number alterations in other

Ras pathway members. The two rows of numbers above each graph indicate number of samples in each group (top) and percentage of samples assigned to

active Ras (bottom).

See also Figure S3.
that the classifier failed to generalize or that the classifier suc-

cessfully identified phenocopying events, which were negatives

from the point of view of evaluations but also what we aimed to

capture.

We sought to differentiate between these two possibilities

by using independent information that was not provided to

the classifier. First, we examined mutation status for BRAF,

a well-characterized oncogene downstream of Ras genes

(Davies et al., 2002). BRAF mutations that phenocopy Ras

would be counted as negatives and, if they were highly

ranked, would reduce the observed precision. Indeed, the

classifier assigned significantly higher scores to BRAF mutant

cell lines, compared to BRAF wild-type cell lines (p = 1.16e–

11) (Figure 3B). Of all 191 false-positives, 56 had BRAF muta-

tions (29.3%). The remaining false-positives indicated either

tumors incorrectly assigned or tumors that harbored other

phenocopying variants. Next, we tested CCLE pharmacolog-

ical response data to determine whether Ras classifier scores

were predictive of sensitivity to MEK inhibitors. We observed

a strong correlation of the Ras classifier scores with sensi-

tivity to two MEK inhibitors, selumetinib (AZD6244) and PD-

0325901 (Figures 3C and 3D). The correlation was primarily

driven by cell lines that were wild-type for Ras genes, impli-

cating several drug-sensitive cell lines that may have other-

wise been missed by direct sequencing of Ras genes. Taken
176 Cell Reports 23, 172–180, April 3, 2018
together, the evaluation of additional mutations and the drug

response data for Ras wild-type cell lines strongly suggested

that the low precision in this case was related to the identifica-

tion of phenocopying events.

Lastly, the classifier scored 34 cell lines harboring Ras muta-

tions as Ras wild-type. We observed that 22 of these 34 false-

negatives harbored variants annotated in the COSMIC database

(64%) (Forbes et al., 2017). Conversely, 144 of 152 true-positives

harbored COSMIC variants (95%), which is significantly higher

than the proportion in false-negatives, c2 = 26.1, degree of

freedom 1, p = 3.2e�7. Therefore, our classifier detected signal

at variant level resolution. We provide mean classifier scores for

all nucleotide (Data S4) and amino-acid (Data S5) Ras variants

observed in the CCLE.

Other Ras Pathway Variants Phenocopy Ras Activation
The Ras classifier was able to detect NF1-loss events particu-

larly well in CNS tumors (GBM, low-grade glioma [LGG], and

pheochromocytoma and paraganglioma [PCPG]). Performance

was comparable to that of NF1 classifiers built using cancer-

type-specific and pan-cancer models (Figure 4A). These tumors

were not included in training the Ras classifier. Detection of

NF1-inactivating events was also improved in COAD, OV, and

uterine corpus endometrial carcinoma (UCEC), as compared

to NF1-specific classifiers (Figure 4A). The Ras classifier’s



performance predicting NF1 loss of function was comparable to

that of distinct pan-cancer models trained specifically to detect

NF1 loss-of-function events (Figure S3).

We applied the Ras classifier to curated variants in 38 core Ras

pathway genes, which consisted of 34 oncogenes and 4 tumor-

suppressor genes (Chakravarty et al., 2017; Sanchez-Vega et al.,

2018). We provide Ras classifier scores for all Ras pathway mu-

tations detected in PanCanAtlas tumors (Data S4 and Data S5).

We observed an enrichment of high scores in tumors with onco-

genic variants in KRAS,NRAS, andHRAS (Figure 4B). Scores for

oncogenic BRAF variants were also enriched (Figure S4A). How-

ever, we noted that BRAF V600E mutations in THCA were over-

whelmingly predicted to be Ras wild-type (Figure S4B). We

trained a classifier for which we removed both of the BRAF-

dominated cancer types (THCA and SKCM) (Figure S4C). In

this model, we observed that THCA BRAF V600E mutations

were predicted to have Ras activation, which aligns with previ-

ous understanding of BRAF function and our cell-line analysis

(Figure S4D).

Lastly, in wild-type samples for KRAS, NRAS, and HRAS (Fig-

ure 4C, blue bars), we observed that Ras classifier scores

increased after subsequent mutations in other pathway genes.

In samples with a KRAS, NRAS, or HRAS mutation (Figure 4C,

red bars), classifier scores did not increase after additional mu-

tations to other genes in the pathway. However, more copy num-

ber events in other Ras pathway genes led to lower Ras classifier

scores in Rasmutated samples (Figure 4D). These results poten-

tially suggest that multiple hits in Ras pathway genes outside of

Ras genes themselves may confer an increased Ras activation

phenotype.

DISCUSSION

Wedescribed amachine-learningmethod to detectmalfunction-

ing genes and pathways in cancer and applied ourmethod to de-

tecting Ras activation. The method has variable performance

across cancer types but is generally sensitive and specific over-

all, is generalizable to cell-line data, largely aligns with curated

variant oncogenicity, and identifies phenocopying events lead-

ing to activated Ras. The approach can be applied generally to

other genes and pathways.

The cell-line evaluation included accurately detecting isogenic

lines transfected to express activating KRAS mutations and

identifying CCLE cell lines with known Ras and BRAFmutations.

We also demonstrated that CCLE Ras classifier scores were

correlated with the drug activity of two MEK inhibitors (selumeti-

nib and PD-0325901). In clinical trials, selumetinib did not in-

crease overall survival in KRAS mutant advanced non-small-

cell lung cancer (NSCLC) patients (Jänne et al., 2013, 2016).

PD-0325901 also failed to meet efficacy endpoints in KRAS

mutant NSCLC patients (Haura et al., 2010). Selumetinib and

PD-0325901 have also been tested acrossmany different cancer

types, including ovarian, thyroid, skin, hepatocellular, breast,

and colon cancers (Boasberg et al., 2011; Farley et al., 2013;

Ho et al., 2013a; Jänne et al., 2016; O’Neil et al., 2011). Selume-

tinib has shown promising results in treating children with NF1

mutant plexiform neurofibromas (Dombi et al., 2016), while PD-

0325901 has shown efficacy in treating NF1 mutant neurofi-
bromas in mouse- and human-derived malignant peripheral

nerve sheath xenografts (Jessen et al., 2013). Furthermore, the

classifier automatically learns similar gene coefficients of an

18-gene panel previously curated using a targeted differential

expression analysis to predict selumetinib sensitivity (Dry et al.,

2010). Overall, our results suggest a useful biomarker application

to potentially reveal hidden responders that may have otherwise

been missed by sequencing.

Our approach to detecting Ras activation is supervised and,

as with any supervised approach, is penalized by inaccurate la-

bels. We encountered this limitation when detectingBRAFmuta-

tions in THCA. BRAF mutations are known to activate ERK and

should not be classified as wild-type Ras (Oikonomou et al.,

2014). Our results suggest that, in situations with predicted con-

founding mutations, it may be best to withhold a cancer type

entirely during training. Withholding such data, as opposed to

re-building a new classifier post hoc that uses BRAF V600E mu-

tations as positive examples, may help to prevent a process of

classifier creep, in which the classifier is continually expanded

to improve metrics. Additionally, it is unclear how to best adjust

for hypermutated phenotypes, as these tumors are more likely to

have Ras mutations by chance. Unsupervised or semi-super-

vised methods to automatically retrieve gene expression signa-

tures may overcome labeling issues and may sidestep some of

the difficulties in modeling hypermutated tumors by first sepa-

rating sources of variation.

While mutual exclusivity analyses across pathways drives hy-

potheses and reveals etiological insights (Babur et al., 2015;

Mina et al., 2017), our findings suggest that, when multiple mu-

tations occur in Ras pathway genes, tumors exhibit a transcrip-

tional profile associated with increased Ras activity. This is

the opposite observation for copy number events, as more

events outside of KRAS, NRAS, and HRAS appear to confer

lower scores, which may indicate either some sort of dosage

response counteracting the effects of hyperactivation or alter-

native events that dampen accurate Ras classification. Further-

more, tumors harboring specific Ras pathway isoforms curated

by the PanCanAtlas Pathways AWG are generally predicted to

have higher scores than unconfirmed variants. We provide

scores for all observed somatic Ras variants for TCGA tumors

and CCLE cell lines at base-pair and amino-acid resolution

(Data S4 and Data S5) and present this resource for potential

follow-up study.

In conclusion, we presented a machine learning method to

predict Ras activity in individual bulk tumors using transcrip-

tomes. Our approach may sidestep requirements to profile mul-

tiple genomic measurements to detect Ras activation and iden-

tify more patients with activated Ras. Our approach can be used

as an additional method to improve precision oncology (Cie�slik

and Chinnaiyan, 2018). Subclonal mutations may also prevent

accurate Ras classification by gene sequencing. Training classi-

fiers with single-cell RNA-seq data may enable the detection of

rare events and can help to characterize intratumor heterogene-

ity. As data increase in scale and algorithms are better con-

structed to model disease heterogeneity, the ability to research

downstream responses of pathway misregulation and identify

multi-model therapies targeting various vulnerabilities of individ-

ual tumors will improve.
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Cancer Cell Line Encyclopedia Gene Expression Barretina et al., 2012 CCLE

Cancer Cell Line Encyclopedia Mutations Barretina et al., 2012 CCLE

Cancer Cell Line Encyclopedia Variants Barretina et al., 2012 https://data.broadinstitute.org/ccle/

CCLE_DepMap_18Q1_maf_20180207.txt

Deposited Data

The Cancer Genome Atlas Genome Data Commons https://gdc.cancer.gov/about-data/

publications/pancanatlas

Software and Algorithms

Python v3.5.2 Python Core Team https://www.python.org/

Sci-Kit Learn v0.18.1 Pedregosa et al., 2011 http://scikit-learn.org/

Pandas v0.20.3 McKinney 2010 http://pandas.pydata.org

Seaborn v0.7.1 Waskom et al., 2016

(https://doi.org/10.5281/zenodo.54844)

https://seaborn.pydata.org/

R v3.4.3 R Core Team https://www.R-project.org

dplyr v0.7.1 Wickham et al., 2017 http://dplyr.tidyverse.org/

ggplot2 v2.2.1 Wickham 2009 http://ggplot2.tidyverse.org/

Custom Classifier Software This paper https://github.com/greenelab/pancancer

Other

Curated Ras Pathway Genes Sanchez-Vega et al., 2018 N/A

Curated Ras Pathway Variants Chakravarty et al., 2017 http://oncokb.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Casey S.

Greene (csgreene@upenn.edu). The Cancer Genome Atlas will provide instructions on how to access publicly available data.

METHOD DETAILS

Training machine learning classifiers to detect aberrant gene events
We integrated Illumina RNaseq, multi-center mutation calls (MC3), and GISTIC2.0 copy number threshold calls from The Cancer

Genome Atlas (TCGA) PanCanAtlas project to classify aberrant pathway function (Mermel et al., 2011). We downloaded TCGA data-

sets from the GenomeData Commons (GDC). In total, there were 9,075 tumors that weremeasured on all three platforms that passed

quality control filtering. We subset the gene expression matrix to the 8,000 most variably expressed genes by median absolute de-

viation (MAD), as genes that do not vary are unlikely to be useful for classification and to reduce training time. We dropped the target

genes of interest (e.g., KRAS,NRAS,HRAS orNF1) when training themodels to prevent themodel from potentially relying too heavily

on dosage-specific effects of these genes instead of the downstream response to their activation.We also removed the samples with

the highest mutation burden to remove potential false positives. We defined these samples based on five standard deviations above

the log10 total non-silent somatic mutation count per sample. Because we were interested in a balanced training set based on aber-

rant gene events, we further filtered samples to include only cancer-types with greater than 15 target gene events and a proportion of

negatives to positives no less than 5%.

Using this data, we trained a supervised elastic net penalized logistic regression classifier with stochastic gradient descent (Zou

and Hastie, 2005). Our model is trained on RNaseq gene expression (X) to predict gene status (Y) (see Figure 1). To control for tumors

with a hypermutator phenotype and potential tissue-specific expression patterns, we included cancer-type dummy variables and per

sample log10 mutation count in the model as covariates. We defined gold standard gene status using loss of function mutation and
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deep copy number losses for tumor suppressor genes and gain of function mutations and large copy number gains for oncogenes.

For simplicity and to reduce the requirement for extensive manual curation, we considered any non-silent mutation including inser-

tion-deletions in the gene body or mutations in splice site regions of target genes. For the specific focus of the paper, we integrated

gain of function mutation and copy number gains for the oncogenes (KRAS, NRAS, and HRAS), and loss of function and deep copy

number losses for the tumor suppressors (NF1). For example, if a tumor had a deleterious mutation or copy number amplification in

one of these genes, we considered the Ras status equal to one.

The objective of the classifier is to determine the probability a given sample (i) has a Ras event given the sample’s RNaseq mea-

surements (Xi). In order to achieve the objective, the classifier learns a vector of coefficients or gene-specific weights (w) that optimize

the following penalized logistic function.

Pðyi = 1 jXiÞ= fðXiwÞ= 1

1+ e�wXi

negative loglikelihood = L= �
Xn

i = 1

yi logPðyi = 1 jXiÞ+ ð1� yiÞlogPðyi = 0 jXiÞ

w= argmin
�
L+a

X
rjw jrl

�

Where a and l are regularization and elastic net mixing hyperparameters that are only active during training, respectively. Using a

training set consisting of 90% of the full dataset, equally balanced for different proportions of included cancer-types and Ras status,

we performed cross validation over the hyperparameter grid: l = {0.15, 0.155, 0.16, 0.2, 0.25, 0.3, 0.4} and a = {0.1, 0.13, 0.15, 0.18,

0.2, 0.25, 0.3}. We used balanced 5-fold cross validation based on the highest cross-validation area under the receiver operating

characteristic (AUROC).

We trained the Ras classifier using optimal hyperparameters (l = 0.15 and a = 0.1) and assessed performance on training, testing

(held out 10% of data) and across 5-fold cross-validation intervals. In 5-fold cross-validation, the data are partitioned into five even

sets (balanced by Ras status and cancer-type). Four of the folds, called training intervals, are used to construct themodel. Themodel

is then evaluated on the fifth fold, which is called the evaluation fold. The reported training performance comes from the folds used for

training, while the cross-validation performance uses the evaluation fold. Therefore, performance on cross-validation intervals are the

predictions reported on the training set samples when they were included in the internal cross-validation evaluation fold. The full

model is reported in Data S3 and all resulting classification scores in Data S2 is the model learned from the training set alone.

Evaluating machine learning classifiers
We evaluated the pan-cancer classifiers in various ways. For every evaluation, we reported the AUROC and area under the precision-

recall (AUPR) curve. We also compared gene specific classifiers built using pan-cancer data to classifiers trained independently us-

ing only data from individual cancer-types. In these cases, each cancer-type specific model was optimized individually. We

compared how the pan-cancer model performed on individual cancer-types compared to individual cancer-type optimizations.

Additionally, we cataloged the performance of the Ras classifier to predict NF1 inactivation in various cancer-types. NF1 is a tumor

suppressor of Ras and we postulated that it would have similar downstream consequences that could be captured by the Ras clas-

sifier. Therefore, we performed the same procedure of filtering datasets and training pan and within cancer-type classifiers for NF1.

We compared these NF1 evaluations against the Ras classification. Lastly, we evaluated the Ras classifier on predicting aberrant

mutations of other genes and variants in the Ras pathway and in two different cell line datasets.

Classifier Benchmarking Analyses
Wedetermined the robustness of the classifier by evaluating performance under various input features and prediction tasks.We eval-

uated potential inflation of performance metrics by training a null model on a randomly shuffled input gene expression matrix. We did

not shuffle the covariate information or the y matrix. Performance on the random shuffling of genes, while maintaining the same ratio

of Ras mutations, provides insight into how the model would be expected to perform in a scenario lacking Ras activation signal. We

also performed the same shuffling and classifier testing procedure as internal negative controls in every pan-cancer model and report

ROC/PR curves and AUROC/AUPRs in each figure.

To assess value added in combining mutation and copy number data in the prediction task (altering the y matrix), we trained pan-

cancer classifiers with the same procedure described above to predict Ras mutations and Ras copy number gains separately. The

combined model presented here is the same model trained in Figure 2. To test the effect of dropping KRAS, HRAS, and NRAS from

the model (altering the X matrix), we trained models with the previously described procedure with the input gene expression matrix

without dropping Ras genes. We also tested a classifier after dropping 14 genes from the Expanded RASopathy Panel (Genetic

Testing Registry). The genes included BRAF, CBL, HRAS, KRAS, MAP2K1, MAP2K2, NF1, NRAS, PTPN11, RAF1, SHOC2,

SOS1,SPRED1, andRIT1. For the two previous comparisons, we compared the learned gene expression coefficients to the classifier

trained in Figure 2. For the dropping genes analysis, we added back all dropped genes as zero weights. We also compared the
e2 Cell Reports 23, 172–180.e1–e3, April 3, 2018



performance of gene expression-only and covariate-only models (altering the Xmatrix) to the combinedmodel presented in Figure 2.

The y matrix remained the same, but each model was trained on only a subset of the combined X matrix. The differentially expressed

genes visualized in Figure S2H were obtained from the differential expression analysis described below.

Differential Expression Analysis
We performed a differential expression analysis using the limma Bioconductor package (Ritchie et al., 2015). We adjusted the model

by cancer-type by including cancer-type indicator variables in the limma design matrix. We considered all 9,074 samples and 20,500

genes in this analysis. We zero-one normalized the input matrix by gene prior to fitting with limma.

Cell Line Validation
We applied the Ras classifier to two independent cell line datasets. The first dataset was generated by Kim et al. (2017) and was

deposited in the Gene Expression Omnibus (Edgar et al., 2002) with the identifier GEO: GSE94937. We used the preprocessed

form of the data from (Kim et al., 2017). We also used data from 737 cell lines from the CCLE that hadmatching RNaseq andmutation

data (Barretina et al., 2012). Of these 737, 708 also had variant level annotations. In order to apply the classifier to both cell-line data-

sets, we z-score normalized gene expression values and subset the data to classifier genes, independently. 177 out of 185 (96%) of

the features were in common to classifier genes in both datasets, so we proceeded to make predictions with this subset. In order to

apply the predictions, we used the following transformation:

s= fðXiwÞ= 1

1+ e�wX

Where s is the classifier prediction, w is the gene weights, and X is the corresponding subset cell line gene expression matrix.

We used the CCLE pharmacologic profiling data, which measured the activity of 24 drugs across 504 CCLE cell lines

(CCLE_NP24.2009_profiling_2012.02.20.csv). Data were accessed from https://portals.broadinstitute.org/ccle/data (Barretina

et al., 2012).

Ras Pathway and Oncogenicity Curation
We used the PanCanAtlas Pathways Working Group definition of 38 core Ras pathway genes (Sanchez-Vega et al., 2018). We ob-

tained oncogenicity assignments for mutations in these genes using OncoKB (Chakravarty et al., 2017) and additional manual cura-

tion by the PanCanAtlas Pathways AWG. Themanual curation included referencing MutSig (Lawrence et al., 2013), hotspot analyses

(Chang et al., 2016), and GISTIC Peaks (Mermel et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSES

We performed all machine learning model training, testing, and evaluations using sci-kit learn (version 0.18.1) with python 3.5.2 (Pe-

dregosa et al., 2011). We processed data using a combination of pandas (version 0.20.3) and dplyr (version 0.7.1) and visualized re-

sults using a combination of seaborn (version 0.7.1), ggplot2 (version 2.2.1), and PathwayMapper (Bahceci et al., 2017). R packages

were run on R version 3.4.0. Please refer to the Key Resources Table and the available GitHub repository (https://github.com/

greenelab/pancancer) for full software version details.We evaluated all classifiers using AUROC and AUPR. The AUROC is a metric

describing the overall trade-off between true positive and false positive rates, while the AUPRmeasures precision against recall for a

given classifier. An AUROC of 0.5 constitutes random guessing. We describe specific filtering steps for each analysis in various pla-

ces in theMethod Details section of the STARMethods. We describe overall sample and gene filtering in the Training subsection. We

discuss additional gene filtering for evaluating all alternative genes in the Evaluation subsection. We set random seeds in all compu-

tational analyses in order to preserve reproducibility. We performed independent t tests with unequal variances when comparing

classifier scores for curated variants versus variants of unknown significance per Ras pathway gene. We performed the same test

comparing CCLE cell line Ras classifier scores for Ras wild-type versus Ras (KRAS, HRAS, or NRAS) mutant samples and for

Ras wild-type, BRAF wild-type versus Ras wild-type, BRAF mutant. Using the up to 388 cell lines with both gene expression and

pharmacology data measured, we fit linear regression models comparing drug activity versus Ras classifier scores for all 24 drugs

to Ras wild-type and Rasmutant cell lines individually. Using a Bonferroni adjusted p value (0.05 / (24 * 2) = 0.001), we implicated two

high correlated drugs (AZD6244 (Selumetinib) and PD-0325901). Selumetinib was tested on 387 cell lines while PD-0325901 was

tested on 388 cell lines. We also used a chi square test for proportions of Ras mutations annotated as COSMIC variants in true pos-

itives compared to false negatives with a null hypothesis that both sets of samples have the same proportion of COSMIC variants.

DATA AND SOFTWARE AVAILABILITY

All analytical results can be reproduced using the code available at https://github.com/greenelab/pancancer.There, we provide in-

structions to replicate the computing environment, download versioned data, and all scripts to reproduce the entire analysis pipeline.

The pipeline is modular and amendable to generate classifiers and predictions for any combination of genes, pathways, and TCGA

PanCanAtlas cancer-types. The source code has been deposited to Zenodo at https://doi.org/10.5281/zenodo.1186801.
Cell Reports 23, 172–180.e1–e3, April 3, 2018 e3
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Figure S1. Ras pathway alteration percentages in TCGA PanCanAtlas; related to Figure 2 and Data S1. (A) 
Percentage of KRAS, HRAS, and NRAS mutations and copy number gains across 33 different cancer-types from 
TCGA PanCanAtlas. (B) Differentially expressed genes between Ras aberrant and Ras wild-type PanCanAtlas 
tumors. Analysis is controlled for cancer-type. 
 

 



 
 
Figure S2. Benchmarking PanCancer Ras Classifiers; related to Figure 2. (A) Receiver operating 
characteristic (ROC) curve and (B) Precision recall (PR) curve for a null model trained on a randomly shuffled 
RNAseq matrix. Also provided are the area under the ROC (AUROC) and area under the PR (AUPR) curves 
for training, testing, and cross validation sets. (C) ROC curve for three models predicting: 1) Ras mutations 
only; 2) Ras copy number gains only; 3) Combined data (model in Figure 2). The AUROC is provided for both 
training and testing sets. (D) ROC/AUROC across train and test sets for dropping different genes from the 
RNAseq matrix. The Drop Ras model is the model provided in Figure 2. (E) ROC/AUROC across train and 
test sets for using expression data or covariates only. The combined model is the model provided in Figure 2. 
In all ROC curves, the dashed navy line represents a hypothetical random guess classifier. Gene coefficients 
for the models presented in (F) panel C and in (G) panel D. The points are colored by the model presented in 
Figure 2. (H) Differential fold change for tumors with active Ras against tumors with wild-type Ras compared 
against the Ras classifier gene coefficients provided in Figure 2. Red points correspond to labelled genes. 

 
 

 



 
 
Figure S3. Pan-cancer NF1 classification performance; related to Figures 2 and 4A. (A) Cancer-type specific 
percentages of NF1 inactivation by copy number loss and deleterious mutation. The colored squares indicate if the 
cancer type was included in model training. (B) Receiver operating characteristic (ROC) curve and Area under the 
ROC curve (AUROC) given for training, testing, and cross-validation (CV) sets. (C) Precision Recall (PR) Curve 
and corresponding area under the PR (AUPR) curve for each evaluation set. Cancer-type specific CV (D) AUROC 
and (E) AUPR for the NF1 pan-cancer model compared to separate models trained on each cancer type 
independently. ROC and PR curves for predicting NF1 inactivation in (F) GBM and (G) LGG using the pan-cancer 
model. The grey lines represent predictions made on a shuffled gene expression matrix. 
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Figure S4. Predicting BRAF with the Ras Classifier; related to Figure 2. (A) Predictions for tumors with 
oncogenic or unconfirmed variants in BRAF given by the Ras classifier evaluated in Figure 2. (B) Ras 
classifier scores assigned to samples with BRAF V600E mutations stratified by cancer type. A score above 0.5 
indicates a prediction of activated Ras. (C) Ras classifier evaluation after removing THCA and SKCM from 
training. ROC and PR curves for the Ras classifier without THCA and SKCM does not indicate reduced 
performance. The grey lines represent predictions made on a shuffled gene expression matrix. (D) Ras 
classifier without THCA and SKCM classify BRAF V600E as Ras wildtype in THCA, but not in SKCM. 
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