Stem Cell Reports, Volume 10

Supplemental Information

ADAM8 Is an Antigen of Tyrosine Kinase Inhibitor-Resistant Chronic Myeloid Leukemia Cells Identified by Patient-Derived Induced Pluripotent Stem Cells

Masashi Miyauchi, Junji Koya, Shunya Arai, Sho Yamazaki, Akira Honda, Keisuke Kataoka, Akihide Yoshimi, Kazuki Taoka, Keiki Kumano, and Mineo Kurokawa

Experimental Procedures

1 2 3

Transduction of CML cell lines

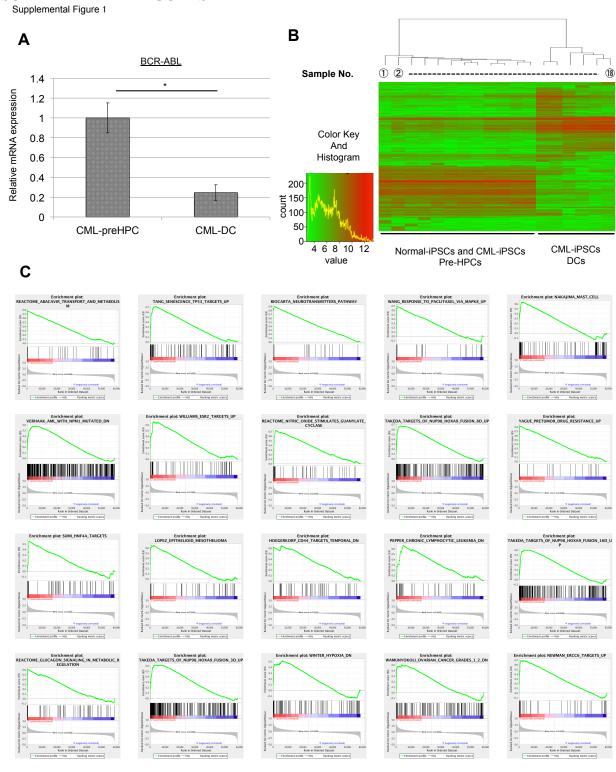
To obtain retrovirus supernatants, Plat-A packaging cells were transiently transfected with pMXs-ADAM8-flag-neo. 48 hr later, the viral supernatant was collected and utilized for infection. The vector-transduced cells were selected by medium containing G418 (0.8 mg/ml for K562 and 1.2 mg/ml for NCO2).

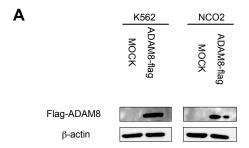
Immunoblotting

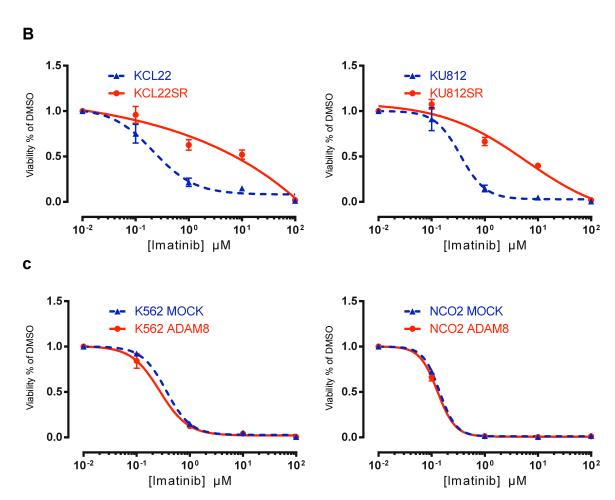
Cell lysates were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Membranes were probed with the following antibodies: anti-flag (Sigma), anti–c-Abl (Cell Signaling Technology) and anti– β -actin (Cell Signaling Technology). Blots were detected using an ImmunoStar Zeta (Wako Pure Chemical Industries) and an LAS-3000 image analyzer (Fujifilm), as recommended by the manufacturers.

Immunofluorescence analysis

Lin-/c-Kit+/BCR-ABL+ cells were purified from BM of a murine model of CML. A total of 2×10^4 to 5×10^4 cells were cytospun onto glass slides. The cells were fixed with 3.7% formaldehyde in PBS for 30 minutes, permeabilized by treatment with 0.2% Triton X in PBS for 10 minutes, and blocked with 1% BSA in PBS for 60 minutes. Then, the slides were incubated with rabbit anti–ADAM8 polyclonal antibody (bs-4195R; 1:100 dilution; Bioss ANTIBODIES) overnight at 4°C, followed by incubation with Alexa Fluor 555 goat anti-rabbit IgG (1:250 dilution; Thermo Fisher SCIENTIFIC) for 3 hr. After the cells were washed, they were treated with ProLong Gold Antifade Reagent with DAPI (Thermo Fisher SCIENTIFIC). Fluorescence images were captured with BZ-X710 All-in-One Fluorescence Microscope (KEYENCE).

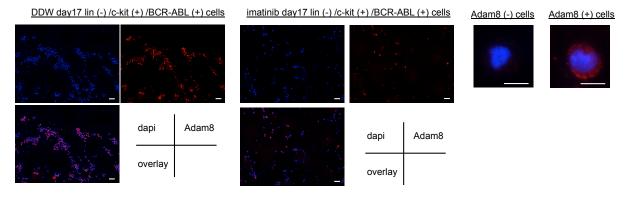

Retrovirus production and a murine model of CML

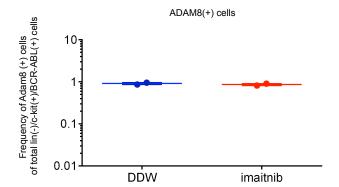

To obtain retrovirus supernatants, Plat-E packaging cells were transiently transfected with pGCDNsam-BCR-ABL-IRES-GFP. c-Kit+ sorted C57/B6 mouse BM cells were purified and incubated in α -MEM with 20% FCS, 1% PS and cytokines (50 ng/ml SCF, 50 ng/ml TPO, 10 ng/ml IL-6) at 37 °C in a 5% CO2 incubator for 24 hr, as previously described (Sato *et al.*, 2014). Subsequently, cultured cells were infected with retrovirus in the presence of RetroNectin (Takara Bio Inc.). The infected cells were collected 48 h after retrovirus infection, and vector-transduced cells were injected into lethally irradiated (9.5 Gy) recipient mice.

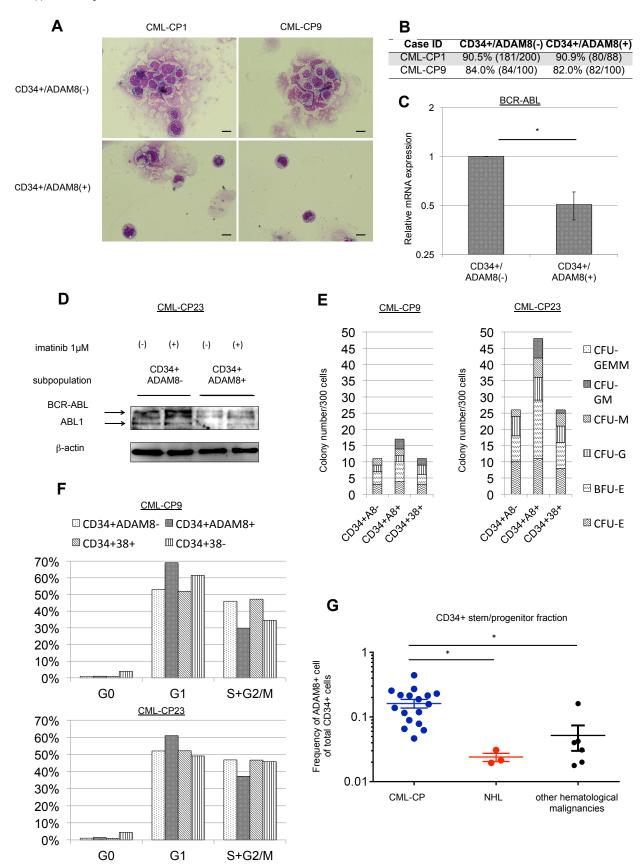

Cell-cycle analysis

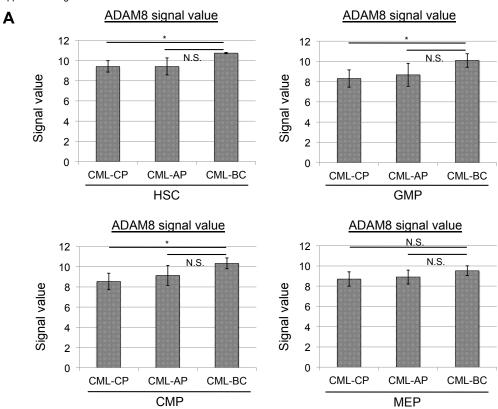
For cell-cycle analyses with anti-Ki67 antibody and Hoechst 33342, we followed the protocol described earlier with minor modification (Wilson *et al.*, 2008).

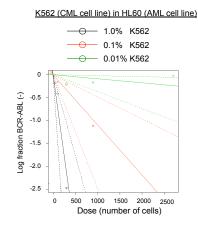
1 SUPPLEMENTAL FIGURES

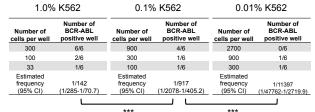


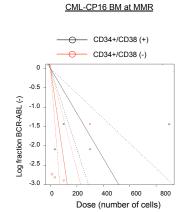


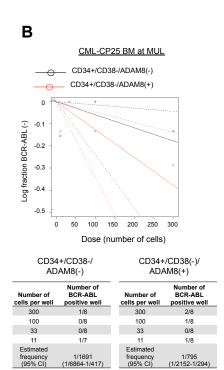


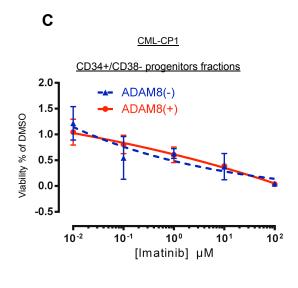

В


С






Α



CD34+/CD38(+)		CD34+/CD38(-)		
Number of BCR-ABL cells per well positive well		Number of cells per well	Number of BCR-ABL positive well	
900	6/8	300	6/8	
300	7/8	100	8/8	
100	6/8	33	8/8	
33	7/8	11	8/8	
Estimated frequency (95% CI)	1/172.8 (1/310.4-1/96.3)	Estimated frequency (95% CI)	1/42.6 (1/76.7-1/23.8)	

- Figure S1. Gene expression profiling of CML-pre-HPCs. Related to Figure 3
- 2 (A) The expression of mRNA levels of BCR-ABL in CML-pre-HPCs and CML-DCs. Real-time
- 3 quantitative PCR revealed that CML-pre-HPCs showed distinct expression levels of BCR-ABL
- from CMP-DCs. Data show means \pm s.d., n = 3 independent experiments. (P values: two-tailed
- 5 Student's *t*-test; * P < 0.05)
- 6 (B) Hierarchical Clustering analysis of gene expression. Samples are included two major clusters,
- one consists of pre-HPCs and another consists of DCs. All samples are listed in Supplemental
- 8 Table 2.
- 9 (C) GSEA analysis of CML-pre-HPCs. 20 of all 23 gene sets enriched from 3267 curated gene
- sets (false discovery rate q-value < 0.05) are shown. All 23 gene sets enriched from 3267 curated
- gene sets are desched in Supplemental Table 3.

Figure S2. Overexpression of ADAM8 in CML cell lines. Related to Figure 4

- (A) Overexpression of ADAM8-flag in CML cell line. Expression of ADAM8 is confirmed in two CML cell lines.
- (B) Viability assay of TKI-resistant cell lines which was previously reported. Viability assay
- distinguish TKI-resistant cell lines from sensitive cell lines. Data show means \pm s.d., n = 3
- independent experiments.
- 19 (C) Viability assay of CML cell lines which express ADAM8. Overexpression of ADAM8 has
- no effect on TKI-sensitivity in CML cell lines. Data show means \pm s.d., n = 3 independent
- 21 experiments.

2223

Figure S3. The expression of Adam8 in a murine CML model. Related to Figure 4

- 24 (A) Experimental scheme for analysis of Adam8 in a murine CML model.
- 25 (B) Immunofluorescence microscopy of Adam8 in Lin-/c-Kit+/BCR-ABL+ BM of a murine
- 26 CML model. Scale bars: 50 um (left), 10 um (right).
- 27 (C) The frequency of Adam8+ cells does not show significant difference between DDW cohort
- and imatinib cohort. Data show means \pm s.e.m. n = 2 mice.

29 30

Figure S4. Characterization of ADAM8+/CD34+ cells in primary samples of newly

- 31 **diagnosed CML-CP patients.** Related to Figure 4
- 32 (A) Microscopy of CD34+/ADAM8+ cells in BM of CML-CP patients at diagnosis. Scale bars:
- $10 \, \mu m$
- 34 (B) FISH analysis of CD34+/ADAM8+ cells. The frequency of BCR-ABL+ cells does not show
- significant difference between CD34+/ADAM8+ cells and CD34+/ADAM8- cells.
- 36 (C) The expression of mRNA levels of BCR-ABL in CD34+/ADAM8+ cells. CD34+/ADAM8+
- cells had lower expression levels of BCR-ABL than CD34+/ADAM8-. Data show means \pm
- s.e.m., n = 2 patients. (P values: two-tailed Student's t-test; * P < 0.05)
- 39 (D) The expression of protein levels of BCR-ABL in CD34+/ADAM8+ cells. CD34+/ADAM8+
- cells had lower expression levels of BCR-ABL than CD34+/ADAM8-.
- 41 (E) CFC assay of CD34+/ADAM8+ cells. CFC assay revealed the distinct colony-forming
- capacity of CD34+/ADAM8+ cells. Data show means, n = 2, technical replicates.
- 43 (F) Cell-cycle analysis of CD34+/ADAM8+ cells. CD34+/ADAM8+ cells accumulated in G1
- phase of cell cycle. Data show means, n = 2, technical replicates.

- 1 (G) ADAM8 expression in BM of patients with CML-CP (n = 18), NHL (n = 3) and other
- hematological malignancies (AML: n = 1, ALL; n = 1, MDS; n = 1, CMML; n = 3) on FCM
- analysis. The frequency of ADAM8+ cells is significantly higher in CD34+.
- Data show means \pm s.e.m. n = shown above, patients. (*P* values: two-tailed Student's *t*-test; * *P* < 0.05)

- Figure S5. ADAM8 expression in patients with the progressive phase of CML. Related to Figure 5
- 9 (A) The expression of ADAM8 in primary sample with progressive phase of CML. Published
- array data (GSE47927) showed that primary samples from CML-BC highly expressed ADAM8
- in the subpopulations. HSC: hematopoietic stem cell, CMP: common myeloid progenitor, GMP:
- granulocyte monocyte progenitor, MEP: megakaryocyte erythroid progenitor. Data show means
- \pm s.d. CML-CP; n = 6, CML-AP; n = 4, CML-BC; n = 2 patients.

14 15

16 17

- Figure S6. The frequency of residual CML cells in ADAM8+/CD34+/CD38+ subpopulation of CML-CP patients with optimal TKI response under the treatment of TKI. Related to Figure 6
- (A) Limiting dilution assay of CML cell lines and CD34+/CD38- fractions as controls. Data of cell line and a patient show n = 1. (CI: confidential interval).

 (P values: chi-square test; *P < 0.05, **P < 0.01, ***P < 0.001)
- 21 (B) The frequency of residual CML cells in ADAM8- and ADAM8+ subpopulation among 22 CD34+/CD38- fraction. Data of a patient show n = 1.
- 23 (C) TKI-sensitivity of ADAM8+/CD34+/CD38- cells in a patient with newly diagnosed CML-CP. Data show means \pm s.d. n = 3 technical replicates.

SUPPLEMENTAL TABLES

1 2

3 Table S1. List of all ES-like clones obtained

		Stem cell			G-banded	
	Clone		 Integration	Teratoma	chromosomal	BCR-ABL
	No.	expression		formation		expression
Healthy	12	\bigcirc	\bigcirc	\bigcirc	46 XY	
donor	14	\bigcirc	\bigcirc	\bigcirc	46 XY	
	17	\bigcirc	\bigcirc	\bigcirc	46 XY	
CML-CP	1	0				
patient No.1	2					
	3	0	\bigcirc	\bigcirc	46 XY t(9;22)	\bigcirc
	4	0				\bigcirc
	5	\bigcirc	\bigcirc	\bigcirc	46 XY t(9;22)	\bigcirc
	6	0				
	7	\bigcirc				
	8	\bigcirc	0		46 XY t(9;22)	\bigcirc
	9 to 14	0				\bigcirc
CML-CP	1	\bigcirc			46 XY	×
patient No. 2	2	\bigcirc	0			×
	3	\bigcirc	\bigcirc	\bigcirc	46 XY	×
	4	\bigcirc	\bigcirc	\bigcirc	46 XY t(9;22)	\bigcirc
	5					×
	6	0				×
	7					×
	8	\circ			46 XY t(9;22)	\circ

Table S2. Hierarchical Clustering analysis of gene expression profiles

Sample No.	Sample	Subpopulation	Treatment
1	Normal-iPSCs H_1	pre-HPCs	imatinib 2.5 μM
2	CML-iPSCs Pt 1_2	pre-HPCs	imatinib $2.5~\mu M$
3	Normal-iPSCs H_2	pre-HPCs	imatinib 2.5 μM
4	Normal-iPSCs H_2	pre-HPCs	DMSO
5	CML-iPSCs Pt 1_2	pre-HPCs	DMSO
6	Normal-iPSCs H_1	pre-HPCs	DMSO
7	CML-iPSCs Pt 2	pre-HPCs	DMSO
8	CML-iPSCs Pt 2	pre-HPCs	imatinib $2.5~\mu M$
9	Normal-iPSCs P t2	pre-HPCs	DMSO
10	Normal-iPSCs Pt 2	pre-HPCs	imatinib 2.5 μM
11	CML-iPSCs Pt 1_1	pre-HPCs	DMSO
12	CML-iPSCs Pt 1_1	pre-HPCs	imatinib $2.5~\mu M$
13	CML-iPSCs Pt 1_1	DCs	DMSO
14	CML-iPSCs Pt 1_1	DCs	imatinib 2.5 μM
15	CML-iPSCs Pt 1_2	DCs	DMSO
16	CML-iPSCs Pt 1_2	DCs	imatinib 2.5 μM
17	CML-iPSCs Pt 2	DCs	DMSO
18	CML-iPSCs Pt 2	DCs	imatinib 2.5 μM

Table S3. GSEA analysis for CML-pre-HPCs compared to CML-DCs in the absence of imatinib. 23 gene sets enriched from 3267 curated gene sets (C2) are listed (FDR q-value < 0.05).

No. of gene sets	Names of gene sets	FDR q-value
1	REACTOME_ABACAVIR_TRANSPORT_AND_METABOLISM	0.041
2	TANG_SENESCENCE_TP53_TARGETS_UP	0.041
3	BIOCARTA_NEUROTRANSMITTERS_PATHWAY	0.041
4	WANG_RESPONSE_TO_PACLITAXEL_VIA_MAPK8_UP	0.041
5	NAKAJIMA_MAST_CELL	0.041
6	VERHAAK_AML_WITH_NPM1_MUTATED_DN	0.041
7	WILLIAMS_ESR2_TARGETS_UP	0.041
8	REACTOME_NITRIC_OXIDE_STIMULATES_GUANYLATE_CYCL ASE	0.041
9	TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_8D_UP	0.041
10	YAGUE_PRETUMOR_DRUG_RESISTANCE_UP	0.041
11	SUMI_HNF4A_TARGETS	0.041
12	LOPEZ_EPITHELIOID_MESOTHELIOMA	0.041
13	HOEGERKORP_CD44_TARGETS_TEMPORAL_DN	0.045
14	PEPPER_CHRONIC_LYMPHOCYTIC_LEUKEMIA_DN	0.045
15	TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_16D_UP	0.045
16	REACTOME_GLUCAGON_SIGNALING_IN_METABOLIC_REGUL ATION	0.044
17	TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_3D_UP	0.044
18	WINTER_HYPOXIA_DN	0.046
19	WAMUNYOKOLI_OVARIAN_CANCER_GRADES_1_2_DN	0.046
20	NEWMAN_ERCC6_TARGETS_UP	0.046
21	CHEN_NEUROBLASTOMA_COPY_NUMBER_GAINS	0.046
22	WIERENGA_STAT5A_TARGETS_DN	0.048
23	OUILLETTE CLL 13Q14 DELETION UP	0.048

- **Table S4. Characteristics of patients**Table shows information of patients at the time of diagnosis, whose samples were used in the
- present study.

6

Samples used for the establishment of CML-iPSCs.

Case No.	Use	Age	Gender	Ph1 (G-band)	FISH <i>BCR-ABL</i>	BCR-ABL type
CML-CP 1	FCM	66	Male	20/20 (100%)	N/A	p210
CML-CP 2	FCM	59	Female	20/20 (100%)	180/200 (90%)	p210 (b3a2)
CML-CP 3	FCM	66	Male	20/20 (100%)	193/200 (96.5%)	p210 (b3a2)
CML-CP 4	FCM Establishment of CML-iPSCs Pt.2	22	Male	20/20 (100%)	171/200 (85.5%)	p210 (b3a2)
CML-CP 5	FCM	54	Female	20/20 (100%)	194/200 (97%)	p210 (b3a2)
CML-CP 6	FCM	40	Male	20/20 (100%)	N/A	p210 (b3a2)
CML-CP 7	FCM	66	Male	20/20 (100%)	188/200 (94%)	p210 (b2a2)
CML-CP 8	FCM	62	Female	19/20 (95%)	N/A	p210 (b3a2)
CML-CP 9	FCM	56	Male	20/20 (100%)	N/A	p210 (b2a2)
CML-CP 10	FCM	65	Male	20/20 (100%)	192/200 (96%)	p210 (b2a2)
CML-CP 11	FCM	61	Female	20/20 (100%)	196/200 (98%)	p210 (b3a2)
CML-CP 12	FCM	58	Male	19/20 (95%)	N/A	p210 (b3a2)
CML-CP 13	FCM	33	Male	16/20 (80%)	N/A	p210 (b3a2)
CML-CP 14	FCM	51	Female	17/20 (85%)	N/A	p210 (b2a2)
CML-CP 15	FCM	65	Male	20/20 (100%)	N/A	p210 (b3a2)
CML-CP 16	FCM Limiting dilution assay	42	Male	20/20 (100%)	N/A	p210 (b2a2)
CML-CP 17	FCM	75	Female	20/20 (100%)	192/200 (96%)	p210 (b2a2)
CML-CP 18	FCM	54	Female	20/20 (100%)	N/A	p210 (b3a2)
CML-CP 19	FCM	63	Female	20/20 (100%)	186/200 (93%)	p210 (b3a2)
CML-CP 20	FCM	51	Female	19/20 (95%)	192/200 (96%)	p210 (b3a2)
CML-CP 21	FCM	35	Male	20/20 (100%)	N/A	p210
CML-CP 22	FCM	86	Male	20/20 (100%)	193/200 (96.5%)	p210 (b2a2)
CML-CP 23	FCM	23	Female	20/20 (100%)	N/A	p210 (b3a2)
CML-CP 24	Limiting dilution assay	67	Female	20/20 (100%)	N/A	p210 (b3a2)
CML-CP 25	Limiting dilution assay	49	Female	20/20 (100%)	N/A	p210 (b3a2)
CML-CP 26	Establishment of CML-iPSCs Pt.1	44	Male	20/20 (100%)	N/A	p210 (b3a2)

Table S5. List of antibodies for flow cytometery Each table shows antibodies used for mouse cells and human cells.

Mouse

Epitope	Clone	Fluorophore	Supplier
Gr-1	RB6-8C5	Biotin	BioLegend
Mac-1	M1/70	Biotin	BioLegend
B220	RA3-6B2	Biotin	BioLegend
TER-119	TER-119	Biotin	BioLegend
CD3ε	145-2C11	Biotin	BioLegend
CD4	GK1.5	Biotin	BioLegend
CD8a	53-6.7	Biotin	BioLegend
CD127	A7R34	Biotin	BioLegend
Sca-1	E13-161.7	APC-Cy7	BioLegend
c-Kit	2B8	PE-Cy7	BioLegend

Human

Epitope	Clone	Fluorophore	Supplier
CD34	581	PE-Cy7	Biolegend
	4H11	APC	eBioscience
CD38	HIT2	FITC	Biolegend
CD43	DFT1	PE	BECKMAN COULTER
	4-29-5-10-21	PerCP-eFluor 710	eBioscience
CD45	H130	APC	Biolegend
CD90	5E10	Alexa Fluor 647	Biolegend
ADAM8	REA331	PE	Miltenyi Biotec
	REA331	APC	Miltenyi Biotec
IgG isotype	MOPC-21	Alexa Fluor 647	Biolegend
IgG isotype	679.1Mc7	PE	BECKMAbN COULTER

Table S6. List of primers

Gene	Use	Forward	Reverse
IL1RL1	real-time qPCR	ATGGGGTTTTGGATCTTAGCAAT	CACGGTGTAACTAGGTTTTCCTT
MEIS1	real-time qPCR	GATATAGCCGTGTTCGCCAAA	CGGTGGCAGAAATTGTCACAT
ADAM8	real-time qPCR	CGATGATGCTGCCTGCGATTG	CGCAGGTGGAGGTGAAGTT
BCR-ABL	real-time qPCR	AACTCCAGACTGTCCACAGCA	AACGAGCGGCTTCACTCA
18s RNA	real-time qPCR	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG
OCT3/4	RT-PCR	CCCCAGGGCCCCATTTTGGTACC	ACCTCAGTTTGAATGCATGGGAGAGC
OCT3/4 (transgene)	RT-PCR	CATTCAAACTGAGGTAAGGG	TAGCGTAAAAGGAGCAACATAG
KLF4	RT-PCR	ACCCATCCTTCCTGCCCGATCAGA	TTGGTAATGGAGCGGCGGGACTTG
KLF4 (transgene)	RT-PCR	CCACCTCGCCTTACACATGAAGA	TAGCGTAAAAGGAGCAACATAG
SOX2	RT-PCR	TTCACATGTCCCAGCACTACCAGA	TCACATGTGTGAGAGGGGCAGTGTGC
SOX2 (transgene)	RT-PCR	TTCACATGTCCCAGCACTACCAGA	TTTGTTTGACAGGAGCGACAAT
L-MYC	RT-PCR	GCGAACCCAAGACCCAGGCCTGCTC	CCAGGGGTCTGCTCGCACCGTGATG
L-MYC (transgene)	RT-PCR	GGCTGAGAAGAGGATGGCTAC	TTTGTTTGACAGGAGCGACAAT
LIN28	RT-PCR	AGCCATATGGTAGCCTCATGTCCGC	TCAATTCTGTGCCTCCGGGAGCAGGGTAGG
LIN28 (transgene)	RT-PCR	AGCCATATGGTAGCCTCATGTCCGC	TAGCGTAAAAGGAGCAACATAG
EBNA-1 (transgene)	RT-PCR	ATCAGGGCCAAGACATAGAGATG	GCCAATGCAACTTGGACGTT
GAPDH	RT-PCR	ACCACAGTCCATGCCATCAC	TCCACCACCCTGTTGCTGTA
BCR-ABL	Pre-amplification	AGAAGCTTCTCCCTGACATCCG	GGTACCAGGAGTGTTTCTCCAGACTG
	one-step RT-PCR	TGAAACTCCAGACTGTCC	TCAGACCCTGAGGCTCAAAG
ACTINB	Pre-amplification	CCAACCGCGAGAAGATGAC	TAGCACAGCCTGGATAGCAA
	one-step RT-PCR	CGCGAGAAGATGACCCAGAT	CACAGCCTGGATAGCAACGT

1 SUPPLEMENTAL REFERENCES

- Wilson, A., Laurenti, E., Oser, G., van der Wath, R. C., Blanco-Bose, W., Jaworski, M., Offner,
- 3 S., Dunant, C. F., Eshkind, L., Bockamp, E., et al. (2008) Hematopoietic Stem Cells Reversibly
- 4 Switch from Dormancy to Self-Renewal during Homeostasis and Repair, *Cell*, 135, 1118–1129.