Oligonucleotides used in this study

For the following CRISPR targeting RNAs (crRNAs), target-specific sequences have a yellow background. For repair templates, altered nucleotides are in red, altered restriction endonucleases are underlined, and crRNA target sequences have a yellow background. For dsRNA template primers, target-specific sequences are underlined.

C04A11.4 (WY1208; fd130)

crRNA: 5'-CAGGAGUUCUGUUACGAAGGGUUUUAGAGCUAUGCU-3' Alt-RTM CRISPR-Cas9 tracrRNA: IDT (CA#1072534) was used for all CRISPR injections. Locus amplification: 5'-CCACCGAACAAACCCAATTG-3' and 5'-CGGAGCATTTAAGCCACCAT-3' Locus sequencing: 5'-ATATTCGGTCATTGTGGCCC-3' and 5'-CTGGGTTTCACACTGCAACA-3'

F56D12.6 (WY1209; fd131)

crRNA: 5'-GCUCGAUCGGAAGCCGGCGCGUUUUAGAGCUAUGCU-3' Locus amplification: 5'-GACTATCGCCTCAACTCAGA-3' and 5'-CTTCTCTATTTCCGCAGCTC-3' Locus sequencing: 5'-GGAAGCGTGGATTCTGTGAT-3' and 5'-CAGCGAGCACCTTTTTACGA-3' dsRNA primers: 5'-TAATACGACTCACTATAGGGAGA<u>GGACGATTGGCGGAACAAAA</u>-3' and 5'-TAATACGACTCACTATAGGGAGAG<u>TGTCCAGGTTCGAATTTCC</u>-3'

B0302.1 (WY1217; fd139)

crRNA: 5'-TGAGCCGATTCTCTCGTCTGGUUUUAGAGCUAUGCU-3' Locus amplification: 5'-GCAACACGCCTATCACAGTT-3' and 5'-TCCGGAGAATCTGTTCTCTG-3' Locus sequencing: 5'-TCAAATGTCGGACGAGGAGAGA3' and 5'-CATTTAACTGAGGGTACCCG-3' dsRNA primers: 5'-TAATACGACTCACTATAGGGAGA<u>CCATTCGAATATGCCCGCAA</u>-3' and 5'-TAATACGACTCACTATAGGGAGA<u>TGAGTCACTGGTTTTGCCTG</u>-3'

F48E8.5 (WY1211; fd133)

crRNA: 5'-GCAAAGAGTTTGAAGCGAATGUUUUAGAGCUAUGCU-3' Locus amplification: 5'-GTTCTCAATCCGCGAGGCA-3' and 5'-TCGATTACAAGCCGAGTGCT-3' Locus sequencing: 5'-GGAGCAGATTCTGAAGGAGA-3' and 5'-ACAGTTCTTGGCTTCCTCTG-3' Repair template:

5'-CTTGTCGAGGATGACGTGCCGAATGTCAGATTCAACGCCGCAAAGAGTTTAAAGCGAA TTGAAAAGAACTTGACCCCAAGGTGACAGGAAAATCTTTTTCACTATCCCAATTT-3' (Creates Dral site)

W07E11.1

crRNA: 5'-TCAAACTTTGCACGGAGAACGUUUUAGAGCUAUGCU-3' Locus amplification: 5'-CTCAGAAGCTGGAGTTGGAA-3' and 5'-TCTCTCCAGCAACTCCTCTA-3' Locus sequencing: 5'-GTGCTCACGATGAACAACCT-3' and 5'-AATGGATCCGAACTCGAGCA-3' Repair template: GATGAGAAAATGTCACTTGAACACCTGCCCGGTTGGAGTCGCTACTCA<u>AGATCT</u>TGTTCTCCGTGCAAAGTTTGA TGGAAAGCCAGAACACGTTGTCAACTATATG (Creates BglII site)

dsRNA primers:

5'-TAATACGACTCACTATAGGGAGA<u>ACTTAAAGTGCGCTAACCCG</u>-3' and 5'-TAATACGACTCACTATAGGGAGA<u>CCACCAGAGAGACATTTTCC</u>-3'

т09в9.4

crRNA: 5'-GCTTGTTGGAATGTGCAATC GUUUUAGAGCUAUGCU-3' Locus amplification: 5'-ATCAGGAGGAATTGATGCGC-3' and 5'-CGGCTTCGATACGAATAGCT-3' Repair template: ATCGTCAGCAACTCAACGAAACTGCCCATTTGCACATTGAAAACAAA<u>AGCTAGTTGGAATATGCAATC</u>AAGAGA GACGTCGATCGCAAGCTACAGAGGCTGAAGTCAAAAAATgttagtga (Ablates HindIII site) dsRNA primers: 5'-TAATACGACTCACTATAGGGAGA<u>ACACCGCTGCCTGATAATCA</u>-3' and 5'-TAATACGACTCACTATAGGGAGA<u>TGACTTCAGCCTCTGTAGCT</u>-3'

F53A9.7

crRNA: 5'-GCTTGTTGGAATGTGCAATCTCAGTGTGAACAACAGTTGG-3' Locus amplification: 5'-GATCGGGCGTCAAAAATGGG-3' and 5'-ACTACACACCACTTTGAAGAAACA-3' Repair template: CATACGGAGGACACGGAGGATATGCTCCACCACCAGTCCATGGAGC<u>TCCAGAAACACGCCGACGGTCGTT</u> CACACTGACGGAGGACATCACGGACACGTTGACACCCATCACCATGA (Creates Hpy188III site)

T05A10.1

R04E5.10

crRNA: 5'-GCTTGTTGGAATGTGCAATCATTGAAATCTCCGAATTTAA-3' Locus amplification: 5'-AGCACAAAGATGAATCAATCGTCA-3' and 5- TGACTGTACGATACGTGTGCAT-3' Repair template: ATATATTAAAAACAATTACAGATTCATTCATTGAAATCTCCGAATTTAATAGATGATATCGTACTACTCAAATCTA

CAGCTTCGATTTCTCCAAAAACACAAAGACAGTT (Creates EcoRV site)

WGS, variant detection, and sibling subtraction method (SSM)

Our sequencing effort was designed to provide 20× average coverage of the *C. elegans* genome (105 Mb) to provide adequate depth to detect causative single-nucleotide polymorphisms (SNPs) in our experimental datasets. 2×125 paired-end library construction (150-bp insert) and sequencing were performed using the Tru-Seq DNA PCR-free Library Preparation Kit, and all

samples were sequenced in one lane on an Illumina HiSeq2000. We sequenced genomes from the non-mutant comparator for each mutant and also each of the five mutants described in this paper. All raw Illumina data are deposited in the NCBI Sequence Read Archive (http://trace. ncbi.nlm.nih.gov/Traces/sra) (BioProject ID PRJNA415825). Quality assessment was carried out with FastQC (*http://www.bioinformatics.babraham.ac.uk/projects/fastqc/*). Residual adapters and low-quality and short reads were removed via Trimmomatic v0.35 (BoLGER *et al.* 2014).

Following quality control, we performed the remaining analyses with Galaxy (AFGAN *et al.* 2016) following a modified version of the CloudMap protocol (MINEVICH *et al.* 2012). Protocols described below (*SSM Variant Detection* and *SSM Variant Subtraction*) can be accessed through the shared workflows on UseGalaxy.org. Individual tools used in Galaxy are noted in italics below (LI AND DURBIN 2009; LI *et al.* 2009; MCKENNA *et al.* 2010; CINGOLANI *et al.* 2012a; CINGOLANI *et al.* 2012b).

Tool	Function	Parameters
Map with BWA for Illumina [Galaxy version 1.2.3]	Aligns reads to the C. elegans WS220 (ce10)] genome	 The parameters used for alignment were as follows: Library matepaired = Paired-end, Maximum edit distance (aln -n) = 0 Fraction of missing alignments given 2% uniform base error rate (aln -n) = 0.04 Maximum number of gap opens (aln -o) = 1, Maximum number of gap extensions (aln -e) = -1 Disallow long deletion within [value] bp towards the 3'-end (aln -d) = 16 Disallow insertion/deletion within [value] bp towards the end (aln -i) = 5 Number of first subsequences to take as seed (aln -l) = -1, Maximum edit distance in the seed (aln -k) = 2 Mismatch penalty (aln -M) =3 Gap open penalty (aln -O) = 11 Gap extension penalty (aln -E) = 4 Proceed with suboptimal alignments if there are no more than INT equally best hits (aln -R) = Null Disable iterative search (aln -N) = No Maximum number of alignments to output in the XA tag for reads paired properly (samse/sampe -n) = 3 Maximum number of alignments to output in the XA tag for disconcordant read pairs (excluding singletons) (sampe -N) = 10, Maximum insert size for a read pair to be considered as being mapped properly (sampe -a) = 500 Maximum occurrences of a read for pairing (sampe -o) = 100000 Specify the read group for this file? (samse/sampe -r) = No Job Resource Parameters = Use default job resource parameters

Filter SAM [Galaxy version 1.0.0] Add or Replace Groups [Galaxy version 1.56.0]	Removes Orphaned and misaligned pairs Alters BAM file read groups	 1: Flag Read is paired = Yes 2: Flag Read is mapped in proper pair = Yes Read group ID (ID tag) = 1 Read group sample name (SM tag) = rgSM, Read group library (LB tag) = rgLB Read group platform (PL tag) = rgPU Specify additional (optional) arguments = Use pre-set defaults Output bam instead of sam = Yes.
Realigner Target Creator [Galaxy version 0.0.4]	Identifies Intervals for local realignment	 [[1]] Basic GATK options: How strict should we be in validating the pedigree information = STRICT Interval set rule = UNION Type of reads downsampling to employ at a given locus = NONE Type of BAQ calculation to apply in the engine = OFF, BAQ gap open penalty (Phred Scaled) = 40 Use the original base quality scores from the OQ tag = No Value to be used for all base quality scores when some are missing = -1 How strict should we be with validation = STRICT Interval merging rule = ALL Disable experimental low-memory sharing functionality = No Makes the GATK behave non-deterministically that is, the random numbers generated will be different in every run = No. [[2]] Basic Analysis options: Window size for calculating entropy or SNP clusters (windowSize) = 10 Fraction of base qualities needing to mismatch for a position to have high entropy (mismatchFraction) = 0.15 Minimum reads at a locus to enable using the entropy calculation (minReadsAtLocus) = 4 Maximum interval size = 500
<i>Indel Realigner</i> [Galaxy version 0.0.6]	Performs Local alignment based on sequence intervals identified by <i>Realigner Target</i> <i>Creator</i> [Galaxy version 0.0.4]	 Basic GATK and Basic Analysis options: LOD threshold above which the realigner will proceed to realign = 5.0 Use only known indels provided as RODs = No [(1)] Basic GATK options: How strict should we be in validating the pedigree information = STRICT, Interval set rule = UNION Type of reads downsampling to employ at a given locus = NONE Type of BAQ calculation to apply in the engine = OFF BAQ gap open penalty (Phred Scaled) = 40.0

		 Use the original base quality scores from the OQ tag = No Value to be used for all base quality scores, when some are missing = -1 How strict should we be with validation = STRICT Interval merging rule = ALL Disable experimental low-memory sharing functionality = No Makes the GATK behave non-deterministically that is, the random numbers generated will be different in every run = No. [(2)] Basic Analysis options: Percentage of mismatching base quality scores at a position to be considered having high entropy = 0.15 Simplify BAM = No Consensus Determination Model = USE_READS Maximum insert size of read pairs that we attempt to realign = 3000 Maximum positional move in basepairs that a read can be adjusted during realignment = 200 Max alternate consensuses to try = 30 Max reads (chosen randomly) used for finding the potential alternate consensus = 120 Max reads allowed at an interval for realignment = 20000 Don't output the original cigar or alignment start tags for each realigned read in the output bam = No
<i>Mark Duplicate Reads</i> [Galaxy version 1.56.0]	Removes Duplicate reads	 Remove duplicates from output file = Yes Assume reads are already ordered = Yes Regular expression that can be used to parse read names in the incoming SAM file = [a-zA-Z0-9]+:[0-9]:([0-9]+):([0-9]+):([0-9]+).* The maximum offset between two duplicate clusters in order to consider them optical duplicates = 100
Generate pileup from BAM dataset [Galaxy version 1.1.2]	Generates pileup file	 Whether or not to print the mapping quality as the last column = Do not print the mapping quality as the last column Whether or not to print only output pileup lines containing indels = print all lines Where to cap mapping quality = 30 Call consensus according to MAQ model? = No
<i>Varscan</i> [Galaxy version 0.1]	Allows for filtering variants across a range of allele frequency thresholds with SNPs and INDELs called separately	 Select your desired range of allele frequency thresholds = 100% - FA1, FA3; 90% -FA2, FA4 (Sup); 0% - FA1, FA3; 10% - FA2, FA4 (Non-Sup) Minimum read depth = 8 (Sup); 3 (Non-Sup) Minimum supporting reads =1 Minimum base quality at a position to count a read =24 Minimum frequency to call homozygote = FA1, FA3 - 100%; FA2, FA4 - 90% p-value threshold for calling variants = 0.99

VCFCombine [Galaxy Version 1.0.0_rc1.0] VCF-VCF intersect [Galaxy version 1.0.0_rc1.0	Combines SNP and INDEL VCF Performs Subtraction	 Select both SNP and INDEL files generated by the tool Varscan. Mutant variant file was selected as the second VCF dataset and the NMSC variant file as the first VCF dataset. Then the following options were chosen to perform the subtraction: Union or intersection = Intersect Invert selection? = Yes compare records up to this many bp away (window size) = 30 output whole loci when one alternate allele matches = Yes Advanced controls = Don't use advanced options.
<i>SnpEff</i> [Galaxy version 1.0]	Annotates Variants	 Input format = VCF Output format = Tabular Genome = <i>Caenorhabditis elegans</i>: WS220.64 Upstream/Downstream length = 10000 bases Filter homozygous/heterozygous changes = No Filter Filter homozygous/heterozygous changes = None Chromosomal position = Use default (based on input type).

Results from the above analysis can be downloaded from Galaxy and further subsetted according to individual need (*e.g.*, variants within coding regions or that occur on a particular chromosome). In addition, we recommend confirming candidate variants intended for experimental validation further by examining the individual non-mutant comparator and mutant alignments within a genome browser such as IGV (Robinson *et al.* 2011; Thorvaldsdóttir *et al.* 2013). This is to remove false positive candidates that are the result of a low number of reads in the Non-suppressed sibling strains. These are not called as variants in the Non-suppressed siblings and thus are not subtracted.

REFERENCES

- Afgan, E., D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier *et al.*, 2016 The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44: W3-W10.
- Bolger, A. M., M. Lohse and B. Usadel, 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
- Cingolani, P., V. M. Patel, M. Coon, T. Nguyen, S. J. Land *et al.*, 2012a Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 3: 35.
- Cingolani, P., A. Platts, L. Wang le, M. Coon, T. Nguyen *et al.*, 2012b A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80-92.
- Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.
- Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.
- McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis *et al.*, 2010 The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297-1303.
- Minevich, G., D. S. Park, D. Blankenberg, R. J. Poole and O. Hobert, 2012 CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 192: 1249-1269.
- Zuryn, S., S. Le Gras, K. Jamet and S. Jarriault, 2010 A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 186: 427-430.