Neuron, Volume 98

# **Supplemental Information**

# **Dunce Phosphodiesterase Acts as a Checkpoint**

### for Drosophila Long-Term Memory

## in a Pair of Serotonergic Neurons

Lisa Scheunemann, Pierre-Yves Plaçais, Yann Dromard, Martin Schwärzel, and Thomas Preat

#### А SPN-Gal4 labeling

GH298-Gal4 > UAS-mCD8::GFP



B dnc<sup>RNAi2</sup> in SPN : induced



tubGal80ts;VT026326-Gal4/+



VT026326-Gal4 > UAS-mCD8::GFP



tubGal80ts;VT026326-Gal4/+ tubGal80<sup>ts</sup>;GH298-Gal4/UAS-dnc<sup>RNAi1</sup> tubGal80<sup>ts</sup>;VT026326-Gal4>UAS-dnc<sup>RNAi1</sup> +/UAS-dncRNAi1

tubGal80<sup>ts</sup>;GH298-Gal4/UAS-dnc<sup>RNAi2</sup> tubGal80<sup>ts</sup>;VT026326-Gal4-Gal4>UAS-dnc<sup>RNAi2</sup> +/UAS-dncRNAi2

# $\mathsf{D}_{\mathsf{Dnc}}$ overexpression in SPN : non-induced



■ tubGal80<sup>ts</sup>;GH298-Gal4/+ ■ tubGal80<sup>ts</sup>;GH298-Gal4>UAS-Dnc<sup>+</sup> tubGal80<sup>ts</sup>;∨T026326-Gal4>UAS-Dnc<sup>+</sup> tubGal80<sup>ts</sup>;∨T026326-Gal4>UAS-Dnc<sup>+</sup>



VT026326-Gal4>UAS-Dnc<sup>+</sup>

+/UAS-Dnc+

VT026326-Gal4/+

### F Dnc overexpression in SPN



Figure S1: Supplemental information for Figure 1. A GH298-Gal4 expression was visualized with UASmCD8::GFP, which labels a pair of projection neurons located in the gnathal ganglia (GNG, arrowhead) that project to the superior clamp (SCL) surrounding the MB peduncle (arrowhead). VT026326-Gal4 was identified driving identical expression in the SPN (arrowhead), as shown by VT026326>UAS-mCD8::GFP labeling. B Expression of a second non-overlapping RNAi targeting Dnc using the thermo-inducible drivers tub-Gal80<sup>ts</sup>;GH298 and tub-Gal80<sup>ts</sup>;VT026326 results in significantly increased memory scores at 24 h, after 1 training cycle ( $F_{4/56}$  = 4,7, p = 0.01, n  $\ge$  9). **C** Non-induced controls for the Dnc knockdown experiment: flies kept at 18°C before the experiment showed no difference in memory performance compared to the genotypic controls ( $F_{7/56}$  = 0.6, p = 0.69, n  $\ge$  8). D Non-induced controls for the Dnc overexpression experiment: flies kept at 18°C before the experiment showed no difference in memory performance compared to the genotypic controls ( $F_{4/30}$  = 1.08, p < 0.87, n  $\geq$  7). E Constitutive overexpression of Dnc in the SPN impairs LTM using GH298-Gal4 ( $F_{2/29}$  = 4.81, p = 0.016, n  $\geq$  9) and VT026326-Gal4 ( $F_{2/29} = 10.51$ , p < 0.001,  $n \ge 9$ ). F Memory performances after 5x massed cycles were not affected by Dnc overexpression in the SPN ( $F_{4/42} = 0.59$ , p = 0.66, n  $\ge$  8). Data are presented as mean  $\pm$ SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using oneway ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.



**Figure S2: Supplemental information for Figure 2. A** SPNsplit-Gal4>UAS-shi<sup>ts</sup> did not show any difference in memory performance as compared to the genotypic controls when the experiment was conducted at the permissive temperature (20°C) ( $F_{2/27} = 2,3$ , p = 0.11,  $n \ge 9$ ). **B** GH298-Gal4>UAS-shi<sup>ts</sup> and VT026326-Gal4>UAS-shi<sup>ts</sup> did not show any impairment in memory performance at the permissive temperature (20°C) ( $F_{4/46} = 1.21$ , p = 0.31,  $n \ge 8$ ). **C** The genetic intersection between VT026326-Gal80<sup>+</sup> and GH298, which turns-off Gal4 expression in the SPN, rescues LTM in flies expressing UAS-shi<sup>ts</sup>. GH298-Gal4>UASshi<sup>ts</sup>, VT026326-Gal80 flies and their genotypic controls displayed significantly higher memory performances than GH298-Gal4>UAS-shi<sup>ts</sup> flies ( $F_{4/44} = 4.2$ , p = 0.005,  $n \ge 8$ ). The performance of GH298-Gal4>UAS-shi<sup>ts</sup>, VT026326-Gal80 flies was statistically indistinguishable from the genotypic controls according to pairwise post-hoc comparisons. Data are presented as mean + SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using one-way ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.



**Figure S3: Supplemental information for Figure 3. A** Induced knockdown of Trh in the SPN using a second RNAi impaired LTM formation after 5x spaced training in tub-Gal80<sup>ts</sup>;GH298>UAS-Trh<sup>RNAi2</sup> ( $F_{2/27}$  = 14.13, p < 0.0001, n ≥ 8) and tub-Gal80<sup>ts</sup>;VT026326>UAS-Trh<sup>RNAi2</sup> ( $F_{2/32}$  = 32.45, P < 0.0001, N ≥ 8) flies. **B** Memory performance at 24 h after 5x massed training was not impaired by knockdown of Trh in the SPN with Trh<sup>RNAi2</sup>. Memory scores of tub-Gal80<sup>ts</sup>;GH298>UAS-Trh<sup>RNAi2</sup> and tub-Gal80<sup>ts</sup>;VT026326>UAS-Trh<sup>RNAi2</sup> flies did not differ from their respective controls ( $F_{4/42}$  = 1.75, p = 0.16, n ≥ 7). **C** Non-induced controls of the Trh knockdown experiment: all genotypes, kept at 18°C before the experiment, showed similar memory performance ( $F_{7/60}$  = 1.45, p = 0.19, n ≥ 7). Data are presented as mean + SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using one-way ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.

### A Anatomic connection of the SPN with dopaminergic MP1



Figure S4: Supplemental information for Figure 4. A SPN (green) and MP1 (magenta) were simultaneously visualized using VT026326-Gal4>UAS-tdTomato and 30E11-LexA>Aop-mCD8::GFP, respectively. GFP Reconstitution Across Synaptic Partners (GRASP) showing reconstituted GFP signals (green) at the level of the SPN projection around the MB peduncle in two additional examples. Scale bar: 5 µm. B Induced knockdown of the serotonergic receptor 5HT-2A at the adult stage in MP1 neurons using a second RNAi impaired LTM using tub-G80<sup>ts</sup>;NP0047 ( $F_{2/29}$  = 8.72, p = 0.001, n ≥ 9) and tub-G80<sup>ts</sup>;NP2758 ( $F_{2/28}$  = 8.15, p = 0.002,  $n \ge 9$ ). C Induced knockdown of the serotonergic receptor 5HT-2A at the adult stage in MP1 using a second RNAi after massed training did not impair LT-ARM scores ( $F_{4/52} = 0.65$ , p = 0.52, n  $\geq$  8). D Noninduced control flies for the 5HT-2A knockdown experiment: flies kept at 18°C before the experiment showed normal memory performance ( $F_{8/72}$  = 0.89, p < 0.52, n ≥ 7). E DPM blockade in VT64246-Gal4>UASshi<sup>ts</sup> after 5x spaced training was significantly different from VT64246-Gal4/+ but did not affect LTM performances in comparison to UAS-shi<sup>ts</sup>/+. F Locomotor activity in flies with induced 5HT-2A knockdown in MP1 measured during 3 h using the Trikinetics assay was normal ( $F_{2/9}$  = 3.8, p < 0.08, n = 3). G Locomotor activity after SPN blockade in GH298-Gal4>UAS-shi<sup>ts</sup> flies was different from +/UAS-shi<sup>ts</sup>, but not GH298-Gal4/+ ( $F_{2/9}$  = 7,9, p = 0.02, n = 3). H Dnc knockdown in the SPN did not alter locomotor activity in the flies  $(F_{2/9} = 3.43, p = 0.06, n = 3)$ . Data are presented as mean + SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using one-way ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.



**Figure S5: Supplemental information for Figure 5. A** Knockdown of the 5HT-2A receptor in MP1 using a second RNAi resulted in decreased Ca<sup>2+</sup> activity in MP1 neurons and a loss of the oscillatory pattern after 5x spaced training in comparison to control flies (frequency: *t* test,  $t_{11} = 6.8$ , p < 0.001; amplitude: *t* test,  $t_{11} = 2.4$ , p = 0.031, n = 6). Power spectra are shown for each genotype. **B** Comparing the randomly generated subdivisions group #1 and group #2 of all calcium traces from naïve flies resulted no significant effects of MP1 activity (frequency: *t* test,  $t_{24} = 0.09$ , p = 0.92; amplitude: *t* test,  $t_{24} = 0.73$ , p = 0.46, n = 24). **C** Blockade of synaptic transmission from the DPM using Aop-shi<sup>ts</sup> did not alter MP1 Ca<sup>2+</sup> activity (frequency: *t* test,  $t_{10} = 0.21$ , p = 0.83; amplitude: *t* test,  $t_{10} = 0.56$ , p = 0.58, n = 6) in comparison to the genotypic control flies (frequency: *t* test,  $t_8 = 1.8$ , p = 0.1; amplitude: *t* test,  $t_8 = 0.18$ , p = 0.42, n = 6). Power spectra are shown for each genotype and condition. **D** Knockdown of the Trh receptor in SPN using a second RNAi shows decreased Ca<sup>2+</sup> activity in MP1 after 5x spaced training in comparison to control flies (frequency: *t* test,  $t_{11} = 12.8$ , p = 0.017; amplitude: *t* test,  $t_{11} = 2.6$ , p = 0.024, n = 6). Power spectra are

shown comparing frequency bands for each genotype. Data are presented as mean ± SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant.

### A TrpA1 in SPN : no activation



0 ↓ VT026326-LexA/+ ↓ +/Aop-TrpA1;+/UAS-5HT-2A<sup>RNAi2</sup> ↓ VT026326-LexA>Aop-TrpA1/+;UAS-5HT-2A<sup>RNAi2</sup>/+ ↓ VT026326-LexA>Aop-TrpA1/+; NP0047-Gal4>UAS-5HT2A<sup>RNAi2</sup>/+ ↓ VT026326-LexA/+;NP0047-Gal4/+

**Figure S6: Supplemental information for Figure 6. A** GH298-Gal4>UAS-TrpA1 and VT026326-Gal4>UAS-TrpA1 flies exhibited normal memory performance when the experiment was conducted at the non-activating temperature (20°C) ( $F_{4/46} = 1.21$ , p = 0.31,  $n \ge 8$ ). **B** Likewise, flies expressing VT026326-LexA>AopTrpA1;NP0047-Gal4/+ and VT026326-LexA>AopTrpA1;NP0047-Gal4>UAS-5HT-2A<sup>RNAi</sup> exhibited normal memory performance when the experiment was conducted at the non-activating temperature (20°C) ( $F_{4/40} = 1.75$ , p = 0.16,  $n \ge 8$ ). Data are presented as mean ± SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using one-way ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.



**Figure S7: Supplemental information for Figure 7. A** Expressing UAS-TrpA1 in the SPN does not affect memory performance after 1-pulse training at 1 h, when the experiment is conducted at low temperature  $(F_{4/35} = 0.3, p = 0.83, n = 7)$ . **B** Flies expressing UAS-shi<sup>ts</sup> in the SPN exhibit normal 1-h memory after 1-pulse training at the permissive temperature  $(F_{4/35} = 0.27, p = 0.81, n = 7)$ . **C** Non-induced controls for Trh<sup>RNAi</sup> expression in the SPN  $(F_{4/35} = 0.9, p = 0.7, n = 8)$ . **D** Non-induced controls for 5HT-2A<sup>RNAi</sup> expression in MP1 neurons  $(F_{4/35} = 1.1, p = 0.8, n = 8)$ . Data are presented as mean ± SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using one-way ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.



**Figure S8: Supplemental information for Figure 8. A** Naïve *dnc*<sup>*t*</sup> mutant flies displayed enhanced calcium oscillations in MP1 neurons in comparison to the genotypic control flies (frequency: *t* test,  $t_{14} = 6.9$ , p < 0.0001; amplitude: *t* test,  $t_{14} = 2.1$ , p = 0.051, n = 9). **B** VT057280>UAS-mCD8::GFP labeling confirmed that VT057280-Gal4 is capable of driving expression in the SPN (white arrowheads). **C** The behavioral phenotype was confirmed via blockage by shi<sup>ts</sup>. Flies in which neuronal transmission was blocked for 3 h after conditioning showed impaired memory performance at 24 h ( $F_{2/30} = 7,43$ , p = 0.0027,  $n \ge 10$ ). **D** After 5x massed training, SPN blockage during consolidation did not affect 24-h memory ( $F_{2/24} = 1.2$ , p = 0.31,  $n \ge 8$ ). **E** After 5x spaced training, no differences in memory performance were observed at 24 h when RNAi was not induced ( $F_{2/24} = 0.92$ , p = 0.41,  $n \ge 8$ ). **F** After 5x spaced training, forskolin treatment was still able to induce a PKA activation that was detectable by the AKAR2 sensor. The magnitude of the forskolin-induced activation was reduced compared to naïve flies (*t* test,  $t_{19} = 3.9$ , p = 0.001, n = 10;11). Data are presented as mean + SEM. \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.0001, ns = not significant. Statistical tests were performed using one-way ANOVA. Stars indicate the least significance level in a Newman-Keuls post-hoc comparison of indicated groups.

| Genotype                                                         | Shock<br>reactivity | Oct          | МСН           |
|------------------------------------------------------------------|---------------------|--------------|---------------|
|                                                                  |                     |              |               |
| UAS-Dnc⁺/+                                                       | 53.27 ± 7.18        | 55.14 ± 5.99 | 47.06 ± 7.18  |
| VT026326-Gal4/+                                                  | 60.1 ± 5.86         | 40.69 ± 6.58 | 58.85 ± 7.95  |
| VT026326-Gal4/ UAS-Dnc⁺                                          | 49.49 ± 5.72        | 31.57 ± 6.68 | 56.96 ± 7.39  |
| GH298-Gal4/+                                                     | 53.73 ± 7.34        | 36.55 ± 3.64 | 54.95 ± 9.07  |
| GH298-Gal4/ UAS-Dnc⁺                                             | 41.49 ± 6.74        | 54.2 ± 6.99  | 46.03 ± 12.39 |
| UAS-Trh <sup>RNAi1</sup> /+                                      | 61.19 ± 7.76        | 47.53 ± 4.94 | 51.36 ± 3.75  |
| tubG80 <sup>ts</sup> ;VT026326-Gal4/+                            | 70.07 ± 6.18        | 47.99 ± 5.88 | 56.87 ± 5.76  |
| tubG80 <sup>ts</sup> ;VT026326-Gal4/UAS-Trh <sup>RNAi1</sup>     | 58.56 ± 6.82        | 52.28 ± 4.6  | 50.54 ± 3.75  |
| tubG80 <sup>ts</sup> ;GH298-Gal4/+                               | 67.76 ± 5.13        | 57.82 ± 6.04 | 59.46 ± 7.47  |
| tubG80 <sup>ts</sup> ;GH298-Gal4/ UAS-Trh <sup>RNAi1</sup>       | 66.44 ± 5.74        | 44.22 ± 4.11 | 45.72 ± 6.98  |
| UAS-Trh <sup>RNAi2</sup> /+                                      | 60.41 ± 3.46        | 53.28 ± 5.2  | 59.25 ± 8.18  |
| tubG80 <sup>ts</sup> ;VT026326-Gal4/ UAS-Trh <sup>RNAi2</sup>    | 66.67 ± 4.96        | 51.51 ± 5.68 | 59.46 ± 7.47  |
| tubG80 <sup>ts</sup> ;GH298-Gal4/ UAS-Trh <sup>RNAi2</sup>       | 51.75 ± 7.2         | 44.64 ± 4.61 | 56.27 ± 7.34  |
| UAS-5HT-2A <sup>RNAi1</sup> /+                                   | 70.43 ± 4.59        | 57.08 ± 6.83 | 56.02 ± 6.6   |
| tubG80 <sup>ts</sup> ;NP0047-Gal4/+                              | 51.84 ± 6.78        | 49.29 ± 4.01 | 48.56 ± 7     |
| tubG80 <sup>ts</sup> ;NP0047-Gal4/<br>UAS-5HT2A <sup>RNAi1</sup> | 51.84 ± 6.78        | 49.29 ± 4.01 | 57.15 ± 6.34  |
| tubG80 <sup>ts</sup> ;NP2758-Gal4/+                              | 60.25 ± 4.53        | 52.88 ± 5.37 | 49.38 ± 6.58  |
| tubG80 <sup>ts</sup> ;NP2758-Gal4/<br>UAS-5HT2A <sup>RNAi1</sup> | 62.81 ± 4.58        | 59.13 ± 6.97 | 50.0 ± 5.62   |
| UAS-5HT-2A <sup>RNAi2</sup> /+                                   | 57.12 ± 3.44        | 48.15 ± 7.66 | 49.78 ± 5.25  |
| tubG80 <sup>ts</sup> ;NP0047-Gal4/ UAS-5HT2A <sup>RNAi2</sup>    | 37.42 ± 9.15        | 55.81 ± 5.52 | 41.61 ± 8.18  |
| tubG80 <sup>ts</sup> ;NP2758-Gal4 / UAS-5HT2A <sup>RNAi2</sup>   | 61.63 ± 5.6         | 49.93 ± 6.93 | 46.63 ± 4.83  |

**Table S1: Supplemental olfactory acuity and shock response data for Figures 1, 3 and 4.** Gal80<sup>ts</sup>;GH298>UAS-dnc<sup>+</sup> and Gal80<sup>ts</sup>;VT026326>UAS-dnc<sup>+</sup> flies exhibit normal olfactory acuity for octanol (Oct,  $F_{4/42} = 1.53$ , p = 0.21,  $n \ge 8$ ) and methylcyclohexanol (MCH,  $F_{4/42} = 0.43$ , p = 0.78,  $n \ge 8$ ) as well as normal shock response ( $F_{4/42} = 1.02$ , p = 0.41,  $n \ge 8$ ). Inducing Trh knockdown by Trh<sup>RNAi1</sup> or Trh<sup>RNAi2</sup> in Gal80<sup>ts</sup>;GH298 and Gal80<sup>ts</sup>;VT026326- flies resulted in normal olfactory acuity for octanol (Oct,  $F_{4/34} = 0.38$ , p = 0.904,  $n \ge 7$ ) and methylcyclohexanol (MCH,  $F_{4/34} = 0.36$ , p = 0.91,  $n \ge 7$ ) as well as normal shock response ( $F_{4/34} = 0.92$ , p = 0.49,  $n \ge 8$ ). Inducing 5HT-2A knockdown in the SPN of Gal80<sup>ts</sup>;NP0047 or tubGal80<sup>ts</sup>;NP2758 expressing UAS-5HT-2A<sup>RNAi1</sup> or UAS-5HT-2A<sup>RNAi2</sup> flies resulted in normal olfactory acuity for octanol (Oct) when using RNAi1 ( $F_{4/44} = 0.54$ , p = 0.58,  $n \ge 7$ ) or RNAi2 ( $F_{4/40} = 0.5$ , p = 0.61,  $n \ge 7$ ), normal olfactory acuity for methylcyclohexanol (MCH) when using RNAi1 ( $F_{2/23} = 0.51$ , p = 0.61,  $n \ge 7$ ) or RNAi2 ( $F_{4/42} = 0.36$ , p = 0.69,  $n \ge 7$ ), and normal shock response when using RNAi1 ( $F_{2/23} = 0.51$ , p = 0.61,  $n \ge 7$ ) or RNAi2 ( $F_{4/42} = 0.36$ , p = 0.69,  $n \ge 7$ ), and normal shock response when using RNAi1 ( $F_{4/42} = 0.92$ , p = 0.49,  $n \ge 7$ ) or RNAi2 ( $F_{2/40} = 3.1$ , p = 0.061,  $n \ge 7$ ). Data are presented as mean ± SEM. Statistical tests were performed using one-way ANOVA. No significant difference was found in a Newman-Keuls post-hoc comparison with each parental control.