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Section S1. Approaches for incorporating impacts 

Previous studies have used either chemical transport models, response surface models, or impact 

factors for co-benefit analysis. Chemical transport models simulate the emission of air pollutants, 

their transformation via atmospheric chemical reactions, and their transport and removal 

processes in the atmosphere. Chemical transport models could theoretically be incorporated as a 

module within an IAM, with the resulting pollutant concentrations and their impacts considered 

endogenously during the IAM solution process. However, chemical transport models are too 

computationally intensive to be run in such an iterative fashion.  

An alternative to integrating a full-scale chemical transport model is the integration of a model 

emulator. An emulator is a simplified or “reduced form” model that can serve as a surrogate for 

the more complex model, sacrificing detail while still being able to capture the key relationships 

pertinent to the application. One type of emulator is a response surface model (RSM), which is 

developed from a set of sensitivity runs of the full-scale model. Fann et al. [1] developed an 

RSM to link emission changes to changes in PM2.5 concentrations, and thence to health benefits. 

Such model emulators for air quality and other environmental impacts are computationally 

intensive to develop, requiring multiple runs to characterize complex and nonlinear model 

behavior. Model emulators for air quality have not yet been integrated widely into IAMs such as 

GCAM to represent air quality, although they have been used to characterize climate impacts of 

emissions. For example, the Model for the Assessment of Greenhouse Gas Induced Climate 

Change (MAGICC) simple climate model [2], was used iteratively within GCAM to develop the 

RCP4.5 scenarios [3], and Hector, an open-source, object-oriented, simple climate carbon-cycle 

model has been coupled with GCAM to offer an even more rapid solution [4].   
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An even simpler approach is the use of impact factors to represent individual environmental 

impacts associated with economic activities [5,6] or aggregating multiple climate and 

environmental impacts into a single metric such as the social cost of atmospheric release [7]. 

Impact factors can be derived from a chemical transport model or a RSM. Recently, impact 

factors have also been developed using adjoint models that use a numerical derivative-based 

approach to link impacts to sources. For example, Lee et al. [8] quantified the effects on global 

premature mortality of changes to PM2.5 precursor emissions using the adjoint of the GEOS-

Chem chemical transport model. Akhtar et al. [9] used radiative forcing factors developed from 

the GEOS-Chem model as well. Potentially, impact factors can be integrated into an IAM and 

endogenized within the solver so that their values can be constrained and their costs can be 

considered in the model’s solution process.  

In this study, exogenously developed impact factors are integrated into GCAM-USA. The 

technology-rich representation in GCAM-USA provides detailed information about human and 

natural earth systems and the interactions between these systems, so the emission response to 

both climate polices and technological assumptions can be well captured and represented. The 

impact factors then allow for rapid estimation of the associated impacts due to the responses of 

each sector. This improvement allows us to explore a broader set of modeling scenarios with 

higher flexibility and computational efficiency.  
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Section S2. Development of PM2.5 health impact factors  

Fann et al. [5] calculate the monetized benefits of decreased premature mortality associated with 

a 1-ton reduction in directly emitted PM2.5 or PM2.5 precursor emissions (SO2 and NOx) from 17 

sectors in 2005 and 2016. This analysis is extended to 2020, 2025 and 2030 by the US EPA [10]. 

These factors consider both population growth, which affects the total incidence from exposure 

to air pollution, and economic growth, which affects the willingness to pay to reduce health risk. 

The Value of Statistical Life (VSL) is used to monetize mortality, which is adjusted in future 

years to account for income growth. However, the 2025 and 2030 estimates in US EPA [10] both 

used 2024 VSLs because income growth projections were unavailable beyond that year. 

The current paper estimates the health impact factors through 2050, considering impacts from 

both population growth and economic growth. Therefore, a two-step process has been conducted 

to develop the health impact factors based on the approach of Fann et al. [5] and US EPA [10]. 

Step 1: Extrapolation of “deaths per ton” factors based on population growth 

Fann et al. [5] and US EPA [10] report both health impact factors ($/ton) and the VSLs ($/death) 

applied for each analysis year.  The “incidence per ton” factors, which reflect population growth, 

are obtained through dividing the former by the latter (Fig S1). The “incidence per ton” factors 

for other modeling years (2010, 2035, 2040, 2045, and 2050) are then calculated using the linear 

relation in Fig S1 with GCAM-USA population projections (Table S1).   

Step 2: Adjustment for income growth (willingness to pay) 

To be more consistent with GCAM-USA socioeconomic assumptions, we projected U.S. per 

capita income (GDP, in 2010 dollars) using GCAM-USA and calculated VSLs for all modeling 
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years (Table S2). The estimation is based on a benchmark of $8.3 million in 2005 [11] and an 

income elasticity of 0.5 [12]. 

Finally, the dollar per ton health impact factors (Table S3) are calculated by multiplying the 

income-adjusted incidence per ton values by the VSLs projected for each modeling year. The 

estimates for 2005, 2015, 2020, 2025 and 2030 are slightly lower than those of Fann et al. [5] 

and US EPA [10], since this paper applied VSL projections based on the per capita income 

projected by GCAM-USA and a lower benchmark VSL in 2005. The estimates in this paper 

consider income growth to 2050, while US EPA [10] adjusted VSL based on income growth 

only to 2024, so that their 2025 and 2030 values are likely underestimates.  
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Figure S1 Linear regression between incidence (mortality) per ton emission avoided (2005, 2016, 

2020, 2025 and 2030) and total population for four sectors from Fann et al. [5]. Panes: (a) 

Electric generating units; (b) Industrial point source; (c) On-road; and (d) Residential wood 

combustion.  
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Table S1 U.S. population projection in GCAM-USA for all scenarios1. 

Year Population (Thousand) 

2005 299,839 

2010 321,813 

2015 336,377 

2020 349,743 

2025 365,229 

2030 379,129 

2035 393,438 

2040 407,489 

2045 421,987 

2050 437,264 

1 In GCAM-USA, population is a prescribed input, which does not vary across these modeling scenarios.  
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Table S2 Projected U.S. per capita income (GDP) and value of a statistical life (VSL) in all the 

modeling years. 

Year Per capita GDP1 VSL2 

2005 51.9 8.3 

2010 51.0 8.2 

2015 54.7 8.5 

2020 58.3 8.8 

2025 61.7 9.0 

2030 65.2 9.3 

2035 68.8 9.6 

2040 73.3 10.0 

2045 77.7 10.3 

2050 83.1 10.7 

1 In million 2010 dollars at a Market Exchange Rate basis 

2 In million 2010 dollars; 2005 VSL in bold red is used as benchmark to translate VSLs in future years. 
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Table S3 Economic value of 1-ton reduction in directly emitted PM2.5 or PM2.5 precursor 

emissions from electricity, transportation and industry sectors from 2010 to 2050 (2010 $/ton 

avoided). 

  Sector 

Emissions Year Electricity1 Transportation2 Industry3 Building4 

Primary PM2.5 2010 112,542 296,761 224,121 295,776 

2015 118,534 328,247 237,067 328,247 

2020 127,804 346,897 246,480 346,897 

2025 138,319 387,293 276,638 387,293 

2030 152,124 437,356 313,756 437,356 

2035 180,270 554,512 366,701 462,224 

2040 196,808 617,176 401,491 502,908 

2045 214,161 683,559 438,056 545,505 

2050 234,676 761,530 481,234 595,937 

SO2 2010 29,797 18,506 33,367 86,124 

2015 31,913 17,324 35,560 89,356 

2020 33,777 19,171 38,341 91,289 

2025 36,885 21,209 42,418 110,655 

2030 40,883 24,720 46,588 123,601 

2035 48,770 24,798 57,358 125,352 

2040 53,400 26,352 63,203 134,975 

2045 58,266 27,943 69,367 144,972 

2050 64,011 29,855 76,629 156,870 

NOx 2010 4,230 5,874 5,085 10,100 

2015 4,741 6,656 5,562 11,853 

2020 4,930 7,029 5,934 12,780 

2025 5,348 7,746 6,455 13,832 

2030 5,895 8,652 7,226 15,212 

2035 7,093 11,154 9,403 17,141 

2040 7,791 12,437 10,452 18,857 

2045 8,526 13,797 11,564 20,665 

2050 9,392 15,394 12,870 22,796 
 

1 Derived from values reported in “Electric generating units” sector in Fann et al. [5]  
2 Derived from values reported in “On-road” sector in Fann et al. [5] 
3 Derived from values reported in “Industrial point source” sector in Fann et al. [5] 
4 Derived from values reported in “Residential wood combustion” sector in Fann et al. [5] 
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Section S3. Development of biomass supply restrictions 

One previous GCAM study by Calvin et al. [13] explored the trade-offs of different land and 

bioenergy policies to achieve climate targets, in which one scenario greatly restricted the end-use 

and transformative consumption to 100 EJ per year in the U.S. by 2100. This work adopts the 

same assumption in our NUC/CCS scenarios from 2010 to 2050, which leads to a total biomass 

consumption of 21 EJ per year by 2050. No biomass supply constraints were applied to BASE 

and RE scenarios.  

Fig S2 shows the total biomass consumption under each technology and policy scenario in the 

U.S. In 2010 the total biomass consumption is 2.8 EJ per year. When no CO2 target was applied, 

biomass consumption increased by 5.0 EJ/yr and 4.7 EJ/yr in 2050 relative to 2010 in BASEREF 

and REREF, respectively, while NUC/CCSREF increased only 1.8 EJ/yr. Under a 50% CO2 

reduction target, the biomass consumption grows rapidly in BASE50 and RE50, but increases 

only slightly in NUC/CCS50. Under an 80% CO2 reduction target, the biomass consumptions in 

2050 are significantly different across technological assumptions, ranging from 47 EJ/yr in RE80 

to 21 EJ/yr in NUC/CCS80, as a result of limited biomass supply. Therefore, limited bioenergy 

supply could have considerable impact in achieving low-carbon goals.  

Fig S3 further shows the biomass supply by sector. In BASEREF, the majority of biomass 

supply comes from purpose-grown biomass after 2030, while under 50% and 80% reduction 

scenarios, residue biomass dominates the biomass supply. Consistent with the biomass 

consumption pattern, NUC/CCS scenarios have significantly limited biomass supply relative to 

BASE and RE.  
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Figure S2 Total biomass consumption (EJ per year) for each technology and policy scenario in 

the U.S. 
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Figure S3 Biomass production (EJ per year) by sector for each technology and policy scenario.  
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Section S4. Electric sector technology assumptions 

Electric sector capital cost assumptions that were used in the BASE, NUC/CCS, and RE sets of 

scenarios are summarized in Table S4 for 2015, 2030 and 2050. BASE values are the default 

costs assumed in GCAM-USA v4.3. These values are obtained from Muratori et al. [14]. See the 

notes below Table S4 for additional information about assumptions. These values in Table S4 do 

not capture some of the recent capital cost reductions in onshore wind and solar PV. In Section 

S9 we provide a sensitivity analysis in which alternative cost trajectories for onshore wind and 

solar PV are evaluated. The results from those sensitivity runs suggest that our conclusions in the 

manuscript are robust when considering uncertainty in renewable costs. Updating electric sector 

capital costs across the model in a consistent manner is a larger endeavor and beyond the scope 

of the work presented in the manuscript.  

Electric sector, technology-specific water withdrawal and consumption factors are summarized 

in Table S5. These factors are derived from Macknick et al. [15]. 

Emission factors for post-2010-vintage electric sector technologies are provided in Table S6. 

These data come from two sources. NOx and SO2 data were derived from the documentation for 

the Integrated Planning Model (IPM), version 5.13. IPM is an electric sector model used in U.S. 

Environmental Protection Agency (US EPA) regulatory modeling activities [16]. PM2.5 values 

are instead obtained from the “Greenhouse Gases, Regulated Emissions, and Energy Use in 

Transportation” (GREET) model. The factors from GREET were derived from US EPA data.    
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Table S4 Capital cost assumptions for electricity generation technologies (2010$/kW). 

Technologies1 BASE2 NUC/CCS3 RE4 

 2015 2030 2050 2015 2030 2050 2015 2030 2050 

Coal (conventional 

pulverized)  

1010 975 936       

Coal (IGCC) 1394 1241 1121       

Coal (IGCC CCS) 2301 1953 1724 1504 1337 1081    

Gas (CC) 366 353 339       

Gas (CC CCS) 732 640 583 673 579 511    

Nuclear 

(Gen_II_LWR) 

1917 1917 1917       

Nuclear (Gen_III) 1917 1850 1775 1377 1181 945    

CSP 1673 1314 1115    1199 918 817 

PV 650 579 523    716 253 224 

Wind 698 620 560    586 421 419 

 

1 All technologies not presented are assumed to be the same as GCAM-USA default values 
2 BASE scenarios assume the same cost assumptions as GCAM-USA default values 
3 Adopted from Iyer et al. [17] - advanced technology scenario cost assumptions for nuclear and CCS technologies. 

Cells with blanks indicate the same value as the BASE. 
4 Adopted from Iyer et al. [17] - advanced technology scenario cost assumptions for wind, PV and CSP 

technologies. Cells with blanks indicate the same value as the BASE. 
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Table S5 Water use factors (withdrawal and consumption) for electricity generation technologies 

adopted in this study (trillion gallon/EJ output), modified from Macknick et al. [15] 

GCAM-USA technology Withdrawal Consumption 

 2010 Future 2010 Future 

biomass (conventional) 3.49 0.24 0.11 0.15 

biomass (IGCC CCS) 0.16 0.16 0.15 0.15 

biomass (IGCC) 0.11 0.11 0.10 0.10 

coal (conventional 

pulverized CCS) 

0.16 0.16 0.15 0.15 

coal (conventional 

pulverized) 

4.14 0.28 0.14 0.19 

coal (IGCC CCS) 0.16 0.16 0.15 0.15 

coal (IGCC) 0.11 0.11 0.10 0.10 

CSP 0.13 0.24 0.13 0.24 

CSP storage 0.24 0.24 0.24 0.24 

gas (CC CCS) 0.14 0.14 0.11 0.11 

gas (CC) 1.38 0.07 0.05 0.06 

gas (steam/CT) 3.50 0.24 0.12 0.15 

nuclear (Gen_II_LWR) 4.71 0.31 0.15 0.19 

nuclear (Gen_III) 0.31 0.31 0.19 0.19 

geothermal 0.54 1.00 0.54 1.00 

refined liquids (CC CCS) 0.16 0.16 0.15 0.15 

refined liquids (CC) 0.11 0.11 0.10 0.10 

refined liquids (steam/CT) 3.58 0.33 0.17 0.23 
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Table S6 Future (new build) electric EFs (Tg/EJ) (NOx and SO2 from coal, gas and biomass are 

from IPM; PM2.5 are from GREET). 

 Technologies  NOx SO2 PM2.5 

Coal (conventional pulverized)  3.0E-02 2.6E-02 1.6E-02 

Coal (IGCC) 5.6E-03 6.5E-03 7.0E-02 

Coal (IGCC CCS) 5.6E-03 6.5E-03 7.0E-02 

Gas (CC)  4.7E-03 0.0E+00 1.3E-04 

Gas (CC CCS)  4.7E-03 0.0E+00 1.3E-04 

Gas (steam/CT) 4.7E-03 0.0E+00 3.4E-03 

Refined liquids (CC) 1.1E-01 2.6E-01 9.4E-03 

Refined liquids (steam/CT) 2.4E-01 3.1E-02 6.2E-03 

Biomass boiler  8.6E-03 3.4E-02 3.1E-02 
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Section S5. Global carbon prices for GHG reduction scenarios 

While GCAM-USA has state-level resolution for the U.S., it also represents 31 additional global 

regions. These regions can trade energy resources, including biomass. Trade has the potential to 

affect how the model opts to meet GHG reduction targets for the U.S. For example, when faced 

with an 80% target, GCAM-USA could potentially import large quantities of biomass from other 

regions. In the real world, however, it is unlikely that the U.S. would institute such a target 

without other many other countries around the world also seeking to reduce GHG emissions. In 

such a scenario, those other countries would be competing with the U.S. for biomass and other 

low-carbon energy resources. Blanford et al. [18] used a CO2 tax applied to the rest of the globe 

(excluding the U.S.) to simulate competition for resources. We adopt this approach and derive 

our values from Blanford et al. Values used in this study are shown in Table S7.  
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Table S7 CO2 prices (2010$/tC) applied for all GCAM regions except the US for CO2 reduction 

targets, modified from Blanford et al. [18] 

Year 50% CO2 reduction 80% CO2 reduction 

2010 0 0 

2015 57.98 85.24 

2020 74.00 115.11 

2025 94.46 146.93 

2030 120.54 187.51 

2035 153.84 239.33 

2040 196.34 305.44 

2045 250.60 389.83 

2050 319.84 497.53 
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 Section S6. Time series model results 

 

Within the manuscript, results are typically shown for 2010 and 2050. Understanding the 

trajectories of results for intermediate years may be of interest to some readers. This section 

includes time series results for sectoral CO2 emissions (Fig S4), electricity generation by 

technology (Fig S5), water withdrawal and consumption for electricity production (Figs S6 and 

S7, respectively), and monetized PM2.5 health costs and benefits (Figs S8 and S9, respectively).     
 

Figure S4 CO2 emissions (million tonnes C per year) by sector for each technology and policy 

scenario. 
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Figure S5 Electricity generation (EJ per year) by technology and policy scenario.  

 

 

 

EJ/yr 
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Figure S6 Water withdrawal for electricity generation (trillion gallons per year) by technology 

for each scenario.  
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Figure S7 Water consumption for electricity generation (trillion gallons per year) by technology 

for each scenario.  
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Figure S8 Monetized PM2.5 health costs for different technology and policy scenarios (billion 

2010$ per year) in U.S. energy system by sector in 2050. The difference between low-carbon 

scenarios and BASEREF (gray pattern) indicates the PM health co-benefits from CO2 policies 
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Figure S9 PM2.5 health co-benefits relative to BASEREF (billion 2010$ per year) by sector for 

each low-carbon scenario.  
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Figure S10 Electricity generation cost (2010 $/GJ) for each technology and policy scenario. 
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Section S7. Additional scenario comparison graphics 

 

In this section, additional model results are provided. These figures illustrate changes in sectoral 

fuel use and technologies in the industrial (Fig S11), on-road vehicles (Fig S12), and buildings 

(Fig S13) sectors. Since residential wood combustion was found to be an important driver of 

PM2.5 emissions, we also show the change in residential heating by technology relative to 

BASEREF for each scenario (Fig S14).     
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Figure S11 U.S. industrial final energy by fuel (EJ per year) in 2010 and for each of the 

technology and policy scenarios in 2050. 
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(a) 

 

(b) 

 

Figure S12 U.S. light duty vehicle (a) and heavy duty vehicle (b) service output by fuel in 2010 

and for each of the technology and policy scenarios in 2050. 
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Figure S13 U.S. building final energy by fuel (EJ per year) in 2010 and for each of the 

technology and policy scenarios in 2050. 
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Figure S14 Changes of U.S. residential heating service output by technology under each low-

carbon scenario relative to BASEREF in 2050 values for each scenario.  
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Section S8. State-level water results  

While national, scenario-specific water withdrawal and consumption changes are shown in the 

manuscript, GCAM-USA also produces state-level results. In Fig S15, changes in withdrawals 

and consumption are shown relative to BASE80. General national trends are visible (e.g., 

NUC/CCS80 requires more withdrawals and has greater consumption, while RE80 has the 

opposite response). Differences in sign and magnitude are also apparent from state to state. 

Exploring these differences fully is beyond the scope of this study. However, we hypothesize 

that the differences are a result of state-specific conditions, including: initial technology stock, 

stock turnover, and access to fossil and renewable resources. These factors would influence the 

technologies and fuels used in BASE80, and thus would affect the technologies and fuels that are 

displaced under NUC/CCS80 and REF80.   
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Figure S15 Water withdrawal and consumption of alternative pathways in 2050 for the 

continental U.S. states. Blue colors reflect lower water use compared with the BASE, red colors 

indicate higher water use compared with the BASE.  
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Section S9. Regional PM2.5 health benefits for the 50% reduction low-carbon pathways 

In the manuscript, regional health benefits are shown for the 80% reduction low-carbon 

pathways (Fig 6). In Fig S16, results of equivalent calculations for the 50% low-carbon pathways 

are shown. Patterns are similar between the two sets of graphics; however, the magnitudes of 

changes in the 80% results are greater.   
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Figure S16 Regionally-aggregated estimates of annual PM2.5 health benefits of NUC/CCS50 and 

RE50 relative to BASE50 in 2050.  Blue colors represent additional health benefits; red colors 

represent damages (billion 2010$). 
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Section S10. Sensitivity analysis: Alternative cost assumptions for wind and solar 

As discussed in Section 4 of this Supplemental Information, electric sector costs for GCAM-

USA were developed from Muratori et al. [14]. These are the default values we use in our study. 

Cost projections into the future are based upon technology-specific improvement curves. 

However, these smooth curves do not capture some of the recent and substantial reductions in 

electric sector technology costs. We have made additional runs of GCAM-USA with updated 

costs for solar PV and wind power, with the goal of evaluating whether capturing these recent 

trends more fully would alter the conclusions of our study. A full update to electric sector costs 

would also involve re-evaluation of coal, nuclear, gas, and other technologies. Such an update is 

beyond the scope of this manuscript and Supplemental Information.  

Updated wind capital cost assumptions are developed using the Department of Energy 2016 

Wind Technologies Market Report, which was created by Lawrence Berkeley National 

Laboratory (LBNL) [19]. That report included historic wind costs, as well as projections into the 

future. The projections, which differed by wind class, included high, medium and low estimates. 

The resulting set of projections, starting in 2015, are shown in Fig S17. The GCAM-USA default 

trajectory is also shown on the figure in black.  

To create an updated baseline trajectory, we averaged the medium projections across each wind 

class, then calculated the percent change relative to the 2010 starting point, the left-most end of 

the dashed line in Fig S17. These percent changes were then applied to the GCAM-USA 2010 

starting value to develop a new baseline, BASE-updated, which is shown with a red line in Fig 

S17. A similar approach was applied to develop the RE-updated trajectory, which was based on 

an average of the lowest-cost projection for each wind class. RE-updated is indicated by a thick 

blue line. We used a straight average across wind classes as opposed to a weighted average. As 

our goal was to provide alternative sensitivity cases, we felt averaging across wind classes was 

sufficient.    

Utility-scale solar PV costs were updated using a similar methodology. The source of the solar 

PV cost projections was the 2015 Utility-Scale Solar Report by LBNL [20]. See Fig S18 for 

Default and updated solar PV cost trajectories.  

Percent reductions of the updated wind and solar PV costs relative to the default costs are 

summarized in Table S8. Solar PV capital cost reductions are much greater than those of wind, 

but both represent substantial reduction compared to GCAM-USA defaults. These differences 

suggest that a more formal update to GCAM-USA electric sector costs could be warranted to 

support future applications.  

Results for 2050 that are generated using the updated BASE and RE costs are compared with 

those generated using Default costs in Figs S19 through S24.  

Fig S19 shows electricity production by technology for the BASE80 and RE80 cases. For 

BASE80 (an 80% system-wide CO2 reduction target), there are several noticeable differences in 

model response when using the updated solar PV and wind costs (Wind/PV). With these lower-

cost renewables, the market shares for each increase substantially, and, together, wind and solar 

achieve approximately 50% of generation. This market share comes at the expense of coal and 

gas, both with and without CCS, and biomass with CCS. Furthermore, since electricity can be 
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produced at lower cost, the total amount of electricity produced increases by nearly 20%. For the 

RE80 case, the Default and Wind/PV results in 2050 are much more similar to each other. These 

changes reduce electric sector water consumption, shown in Fig S21, since wind and solar have 

very little water requirements relative to most other technologies.  

Refined liquid production, shown in Fig S20, does not change dramatically under the Wind/PV 

assumption. However, decreases in biomass-to-liquids does occur. Our hypothesis is that the 

lower wind and solar PV costs allow the model to target more of the necessary emission 

reductions to the electric sector.   

Sectoral PM2.5 emissions are shown in Fig S22. The greatest changes from Wind/PV occur in the 

electric sector, although there is also a decrease in industrial PM2.5. Residential PM2.5 emissions 

are largely unchanged. This is an important result since it reinforces a key conclusion from our 

manuscript: PM2.5 emissions from residential wood combustion can offset a portion of the health 

benefits associated with the RE pathway. This result is further illustrated in Fig S23, where 

health disbenefits occur in the residential sector for both RE80 runs. Similarly, residential wood 

combustion plays an important role in offsetting the health co-benefits in RE scenarios (Fig S24). 
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Figure S17. Default and updated cost assumptions for wind energy. The default GCAM-USA projection 

is shown by the thick black line. The updated BASE and RE values are shown by the thick red and blue 

lines, respectively. The thin lines represent the range of high, medium, and low projections across wind 

categories.  
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Figure S18. Default and updated cost assumptions for solar PV. The default GCAM-USA projection is 

shown by the thick black line. The updated BASE and RE values are shown by the thick red and blue 

lines, respectively. The thin lines represent the range of high, medium, and low projections from the 2015 

Utility-Scale Solar Report by LBNL. 

 

  

0

500

1000

1500

2000

2500

3000

3500

4000

2010 2015 2020 2025 2030 2035 2040 2045 2050

Solar PV Capital Cost (2015 $/kW)

Default

BASE-

updated

RE-

updated



SI-Page 43 
 

      Table S8. Percent reduction from default GCAM-USA wind and solar PV capital costs with 

alternative values 

Technologies1 BASE2 RE4 

 2015 2030 2050 2015 2030 2050 

Solar PV 30% 54% 64% 30% 67% 80% 

Wind 31% 8% 6% 31% 24% 23% 
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Figure S19. Comparison of U.S. electricity generation (EJ per year) by technology in 2010 and 

2050. Generation in 2050 is shown for the BASE80 and REF80 scenarios, for both default 

GCAM-USA wind and solar PV capital costs (Default) as well as for revised costs (Wind/PV).  
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Figure S20. Comparison of U.S. liquid fuel production (EJ per year) by technology in 2010 and 

2050. Production in 2050 is shown for the BASE80 and REF80 scenarios, for both default 

GCAM-USA wind and solar PV capital costs (Default) as well as for revised costs (Wind/PV).  
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Figure S21. Comparison of U.S. water consumption (trillion gallons per year) for electricity 

production by technology in 2010 and 2050. Consumption in 2050 is shown for the BASE80 and 

REF80 scenarios, for both default GCAM-USA wind and solar PV capital costs (Default) as well 

as for revised costs (Wind/PV). 
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Figure S22. Comparison of PM2.5 emissions by sector in 2010 and 2050. Emissions in 2050 are 

shown for the BASE80 and REF80 scenarios, for both default GCAM-USA wind and solar PV 

capital costs (Default) as well as for revised costs (Wind/PV).  
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Figure S23. Comparison of monetized PM2.5-related health benefits for BASE80 and RE80 in 

2050, relative to BASEREF. Positive values indicate health benefits from pollutant emissions 

reductions; negative values indicate health damages; the Net value is the sum of positive and 

negative values for each scenario. Values are shown both when using default GCAM-USA wind 

and solar PV capital costs (Default) as well as for revised costs (Wind/PV).  
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Figure S24. Change in fuel use for residential heating, RE80-BASE80, for both default GCAM-

USA wind and solar PV capital costs (Default) as well as for revised costs (Wind/PV).  
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