Supporting Information

For

Visible-Light-Promoted C–S Cross-Coupling via Intermolecular Charge-Transfer

Bin Liu, ^{†,‡} Chern-Hooi Lim, ^{†,‡} Garret M. Miyake^{*,†,‡,⊥}

[†]Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States. [‡]Department of Chemistry and Biochemistry, [⊥]Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States

*Corresponding author, E-mail: garret.miyake@colostate.edu

Table of Contents

General Information	S3
General Experimental Procedure	S4
Optimization and Control Experiments	
Failed Substrates and S _n Ar Substrates	S7
Mechanistic Considerations	S8
a. UV-vis Absorption Spectra	S8
b. Time-Dependent Density Functional Theory Calculations	S11
NMR Shifts upon Base Addition to Thiols and Aryl Halides	
4-Methylbenzenethiol Sodium Salt as Cross-Coupling Partner	
Chemistry on the Roof: Sunlight-Driven Reaction	
Multi-Gram Scale Experiment	
Late-Stage Modifications of Drug Molecules	
Synthesis of Key Structures of 11β-HSD1 Inhibitors	S18
Characterizations	S19
References	
¹ H NMR and ¹³ C NMR Spectra of New Compounds	

General Information

DMSO was purchased from Sigma-Aldrich and sparged with nitrogen for 15 min temperature and stored under nitrogen atmosphere. at room 4'-Bromoacetophenone and p-Toluenethiol were purchased from TCI America. Cs₂CO₃ (ReagentPlus[®], 99%) was purchased from Sigma-Aldrich and the suppliers for the other sources of base are specified in Table S2. Aryl halides and thiols were purchased from Sigma-Aldrich, TCI or Alfa Aesar. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. One, sixteen inch strip of double-density white LEDs, purchased from Creative Lighting Solutions (item no. CL-FRS1210-5M-12V-WH), was wrapped inside a 400 mL beaker and used as a visible light source. The emission spectrum of the white LEDs was measured with an Ocean Optics ADC1000 spectrometer.¹

The ¹H and ¹³C NMR spectra were recorded at 300 MHz, 400 MHz or 500 MHz for ¹H or at 75MHz, 100 MHz or 125 MHz for ¹³C NMR, respectively. Deuterated solvents were purchased from Cambridge Isotope Laboratories (Andover, MA) and used as received. All ¹H NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvents. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets...etc, br = broad), coupling constant (Hz) and integration. All ¹³C NMR spectra are reported in ppm relative to CDCl₃ (77.0 ppm). Trimethyoxybenzene was used as an internal standard for NMR yields from proton analysis for the C-S bond formation reaction.

Flash column chromatography was performed by using a 100-150 times weight excess of flash silica gel 40-63 μ m from Aldrich. Fractions were analyzed by TLC using TLC silica gel F254 250 μ m precoated-plates from Merck and permanganate stain was used for UV-inactive compounds.

ESI mass spectrometry analysis was performed at the University of Colorado Boulder mass spectrometry facility using a Synapt G2 HDMS instrument, or Agilent 6220 TOF LC/MS with Agilent 1200 HPLC with multi-mode (combined ESI and APCI) at Colorado State University.

General Experimental Procedure

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with a compressed air gas tube for cooling. After the time specified in the reaction schemes, the reaction mixture was washed with water and extracted with EtOAc. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

Figure S1. Photograph of the reaction setup for C-S bond formation reaction using visible light LED beakers.

Optimization and Control Experiments

Table S1.	Visible-Light P	romoted C-S	couplings,	Effect of F	Reaction	Parameters ^a

	Br + HS	Base, S N ₂ , 25 °C	C, 1 h	S C
0 1			Ö	2h
	a Za			30
Entry	Base (eq)	Light	Solvent	Y (%) ^b
1	Cs_2CO_3 (1.5)	Yes	DMSO	97°
2	Cs_2CO_3 (1.5)	No	DMSO	Trace
3	Cs_2CO_3 (1.0)	Yes	DMSO	87
4	$Cs_2CO_3(0.5)$	Yes	DMSO	12
5	$Cs_2CO_3(0.0)$	Yes	DMSO	0
6	Cs_2CO_3 (1.5)	Yes ^d	DMSO	0
7	K ₂ CO ₃ (1.5)	Yes	DMSO	91
8	Na ₂ CO ₃ (1.5)	Yes	DMSO	24
9	Cs_2CO_3 (1.5)	Yes	DMF	35
10	$Cs_2CO_3(1.5)$	Yes	CH ₃ CN	0
11	$Cs_2CO_3(1.5)$	Yes	DMA	76

^aThe beaker with white light emitting diodes (LEDs) was cooled to room temperature with compressed air. ^bNMR yield using trimethoxybenzene as internal standard. ^cIsolated yield. ^dReaction performed in the presence of air.

Table S2.	Visible-Light	Promoted C-S	couplings,	Effect of Base	Purity
-----------	---------------	---------------------	------------	-----------------------	--------

	Br + HS		DMSO h, 25 °C ↓ ↓	S
Entry	Base (1.5 eq)	Light	Atmosphere	Product (%)
1	Cs ₂ CO ₃	No	N_2	trace
2	Cs_2CO_3	Yes	Air	0
3	No	Yes	N_2	0
4	$Cs_2CO_3^a$	Yes	N_2	95
5	$K_2 CO_3{}^b$	Yes	N_2	92
6	Cs ₂ CO ₃ ^c	Yes	N_2	92
7	$K_2CO_3^d$	Yes	N_2	96

^aSigma Aldrich 99.995% trace metals basis. ^bSigma Aldrich 99.995% trace metals basis. ^cAlfa Aesar 99.994% trace metals basis. ^dAlfa Aesar 99.997% trace metals basis.

Control experiment with base of different grade purchased from different vendors.

Four reactions were performed in parallel (DMSO, 25 °C, *p*-Toluenethiol, 1.5 eq Base, 0.2 mmol scale): a) Cs₂CO₃ (Aldrich, 99.995% trace metal basis), b) K₂CO₃ (Aldrich, 99.995%), c) Cs₂CO₃ (Alfa-Aesar, 99.994%), and d) K₂CO₃ (Alfa-Aesar, 99.997%). The reactions were monitored by NMR and no appreciable differences in conversion and selectivity in these four reactions were observed.

Control experiments with substrates which could proceed through a S_NAr reaction.

Determined using TLC: Thin Layer Chromatography or NMR: Nuclear Magnetic Resonance

Failed Substrates and S_nAr Substrates

The substrates (1-13) did not yield products under standard reaction conditions. The substrates (14-18) yielded products even without light, which presumably reacted via S_nAr (nucleophilic aromatic substitution) mechanism.

Mechanistic Considerations

a. UV-vis Absorption Spectra

Figure S2. Control experiment with UV-visible absorption spectra (c = 6e-4 M)

Figure S3. Control experiment with UV-visible absorption spectra (c = 0.1 M)

Figure S4. Photograph showing the control experiments with various mixtures of 1a, 2a, and Cs_2CO_3 (c = 0.1 M). The solution is visibly yellow in color when 1a, 2a, and Cs_2CO_3 were mixed together in DMSO.

Figure S5. UV-vis absorption spectra at different concentrations ($\sim 10^{-4}$ M).

Figure S6. Plot of absorbance as a function of concentrations (~ 10^{-4} M). Path length = 1 cm.

Figure S7. UV-vis absorption spectra at different concentrations ($\sim 10^{-1}$ M).

Figure S8. Plot of absorbance as a function of concentrations ($\sim 10^{-1}$ M). Path length = 1 cm.

Figure S9. UV-vis absorption spectra with different functional groups substituted at the aryl bromides

Figure S10. UV-vis absorption spectra with different Solvents (c = 0.15M).

b. Time-Dependent Density Functional Theory Calculations

All calculations were performed using computational chemistry software package Gaussian 09 ver. D01. We acknowledge the use of computational resources provided by XSEDE - Comet supercomputer.

Ground state geometry of the thiolate-aryl halide EDA complex was optimized at the rM06/6-31+G(d,p)/CPCM-DMSO level of theory. Using this geometry, single point time-dependent density functional theory (TD-DFT) calculation was then performed using the rCAM-B3LYP/6-31+G(d,p)/CPCM-DMSO level of theory. The first 10 excited states of the EDA complex (composed of species **1a** and the deprotonated **2a**) are reported below. Dominant UV-vis absorption peaks with significant and relevant oscillator strengths (f value) highlighted in red.

Excited State1:Singlet-?Sym3.2359 eV383.15 nmf=0.0364 $< S^{**2} >= 0.000$ 82 -> 83 $0.70082 (\pi_{HOMO} - \pi_{LUMO}, 2^*(0.70082)^2 + 100 = 98\% \text{ contribution})$

Excited state symmetry could not be determined.

Excited State 2: Singlet-?Sym 4.0543 eV 305.81 nm f=0.0001 <S**2>=0.000 81 -> 83 0.68847

Excited state symmetry could not be determined.

Excited State	3:	Singlet-?Sym	4.0754 eV	304.23 nm	f=0.0001	<s**2>=0.000</s**2>
76 -> 83		0.65280				
76 -> 91		0.11507				

Excited state symmetry could not be determined.

Excited State	4:	Singlet-?Sym	4.2165 eV	294.04 nm	f=0.0216	<s**2>=0.000</s**2>
82 -> 84		0.52518				
82 -> 87		0.14545				
82 -> 89		0.41827				

Excited state symmetry could not be determined.

Excited State	5:	Singlet-?Sym	4.3896 eV	282.45 nm	f=0.1373	<s**2>=0.000</s**2>
82 -> 85	5	0.20104				
82 -> 80	6	0.20812				
82 -> 8'	7	0.41952 (π _{HOMC}	$-\pi_{LUMO+4}, 2^{*}(0)$.41952)^2*10	0 = 35% con	ntribution)
82 -> 88	8	0.39804 (пномс	$-\pi_{LUMO+5}, 2^{*}(0)$.39804)^2*10	0 = 32% con	ntribution)

82 -> 89 -0.12413 82 -> 92 0.13025

E

Excited state syn	Excited state symmetry could not be determined.							
Excited State	6:	Singlet-?Sym	4.5069 eV	275.10 nm	f=0.0162	<s**2>=0.000</s**2>		
82 -> 84		0.46663						
82 -> 87		-0.17226						
82 -> 89		-0.46169						
Excited state sys	mmetry c	ould not be determ	ined.					
Excited State	7:	Singlet-?Sym	4.5838 eV	270.49 nm	f=0.1135	<s**2>=0.000</s**2>		
82 -> 85		0.37118						
82 -> 86		0.24615						
82 -> 87		-0.26832						
82 -> 89		0.10525						
82 -> 90		0.11234						
82 -> 91		0.24975						
82 -> 92		-0.15793						
82 -> 93		-0.21253						
82 -> 95		0.10313						
Excited state sys	Excited state symmetry could not be determined.							
Excited State	8:	Singlet-?Sym	4.7694 eV	259.96 nm	f=0.0407	<s**2>=0.000</s**2>		
77 -> 83		_0 2005/						

77 -> 83	-0.29954
79 -> 84	-0.18071
80 -> 83	0.54640
82 -> 86	-0.12367

Excited state symmetry could not be determined.

Excited State	9:	Singlet-?Sym	4.7730 eV	259.76 nm	f=0.0094	<s**2>=0.000</s**2>
80 -> 83		-0.16233				
82 -> 85		0.38498				
82 -> 86		-0.33730				
82 -> 87		0.11451				
82 -> 92		-0.27487				
82 -> 93		0.11525				
82 -> 97		-0.19303				
Excited state syn	mmetry c	ould not be deter	mined.			
Excited State	10.	Singlat 2Sum	1 8118 N	255 01 nm	f = 0.0616	~\$**7_000

Excited State 10: Singlet-?Sym 255.91 nm f=0.0646 *2>=0.000 4.8448 eV <S 81 -> 84 0.16037 0.10830 81 -> 85 81 -> 86 0.21540 81 -> 87 0.40282 81 -> 88 0.37849 81 -> 90 0.13087 81 -> 92 0.20198

NMR Shifts upon Base Addition to Thiols and Aryl Halides

Figure S11. NMR shift of thiol. Thiol: thiol+ d_6 -DMSO. Thiol (Cs₂CO₃): thiol+ Cs₂CO₃+ d_6 -DMSO. Thiol (Cs₂CO₃+4-Bromoacetophenone): thiol+Cs₂CO₃ +4-Bromoacetophenone + d_6 -DMSO.

Figure S12. NMR shift of 4-Bromoacetophenone.4-Bromoacetophenone:4-Bromoacetophenone:etophenone+ d_6 -DMSO.4-Bromoacetophenone(Cs₂CO₃):4-Bromoacetophenone+Cs₂CO₃+ d_6 -DMSO.4-Bromoacetophenone(Cs₂CO₃+thiol):thiol+Cs₂CO₃+4-Bromoacetophenone + d_6 -DMSO.

4-Methylbenzenethiol Sodium Salt as Cross-Coupling Partner

To investigate if the varying metal carbonate bases affecting reactivity is due to the deprotonation step or due to a secondary effect in the charge transfer event, we subjected 4-methylbenzenethiol sodium salt to our C-S bond formation conditions without external base. The reactions proceeded smoothly and yielded the desired compound in high yield. This result revealed that varying metal carbonate bases affecting reactivity is due to the deprotonation step.

Chemistry on the Roof: Sunlight-Driven Reaction

NMR yield: 84%

The reaction was set up in the laboratory according to the general procedure, using the Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), p-toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. Then, the storage flask was exposed to natural sunlight irradiation beside the window of room 363 in the Department of Chemistry and Biochemistry at the University of Colorado, Boulder from 2:20 PM to 3:50 PM on April 10th, 2017, on a partially cloudy day. The ¹H NMR yield is 84% by using trimethoxybenzene as internal standard.

Figure S13. Picture of set-up for the sunlight-driven reaction

Multi-Gram Scale Experiment

A 100 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (19.54 g, 60 mmol, 1.2 eq.), 4'-Bromoacetophenone (9.95 g, 50 mmol, 1.00 eq.), *p*-Toluenethiol (7.45 g, 60 mmol, 1.2 eq.) and 60 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After 14 hours, the reaction mixture was washed with water and extracted with EtOAc three times. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product (9.710 g, 80%).

Figure S14. Photographs of multi-gram scale experiment. Left: Isolated C-S coupled product; Right: Reaction mixture after irradiation.

Late-Stage Modifications of Drug Molecules

Synthesis of Key Structures of 11β-HSD1 Inhibitors

To evaluate our method for making bioactivities molecules, we subjected 2-chlorobenzenethiol and 2-bromobenzenethiol to our C-S bond formation conditions. The reactions proceeded smoothly and yielded the C-S bond containing target compounds in high yield.

Characterizations

General Procedure

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), aryl halides (0.2 mmol, 1.00 eq.), thiols (0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After the time specified in the reaction schemes, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

1-(4-(Phenylthio)phenyl)ethan-1-one (3a)²

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), benzenethiol (33.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 4 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 43mg, 92%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes);

¹**H NMR (300 MHz, CDCl₃)** δ 7.84 (dt, J = 8.7, 2.1 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.44 –7.41 (m, 3H), 7.23 (dt, J = 8.7, 2.1 Hz, 2H), 2.57 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.1, 144.9, 134.5, 133.8, 132.1, 129.7, 128.9, 128.8, 127.5, 26.44

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₂OS ([M+H]⁺) 229.0687, found 229.0685.

1-(4-(p-Tolylthio)phenyl)ethan-1-one (3b)³

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Cl, 95%; X = Br, 47 mg, 97%; X = I, 89%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes);

¹**H NMR (300 MHz, CDCl₃)** δ7.82 – 7.78 (m, 2H), 7.41 (dt, *J* = 8.1 2.1 Hz, 2H), 7.24 – 7.21 (m, 2H), 7.18 – 7.14 (m, 2H), 2.54 (s, 3H), 2.40 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 145.9, 139.3, 134.4, 134.1, 130.5, 128.8, 127.9, 126.6, 26.4, 21.2

HRMS (ESI-TOF): m/z calcd. for C15H14OS ([M+H]+) 243.0844, found 243.0848.

1-(4-((2,6-Dimethylphenyl)thio)phenyl)ethan-1-one (3c)⁴

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 2,6-dimethylbenzenethiol (41.4 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water,

extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 44 mg, 85%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes);

¹**H NMR (300 MHz, CDCl₃)** δ 7.79 (dt, J = 8.7 Hz, 2.1 Hz, 2H), 7.31 – 7.22 (m, 3H), 6.97 (dt, J = 8.7 Hz, 2.1 Hz, 2H), 2.54 (s, 3H), 2.43 (s, 6H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 145.3, 143.9, 133.6, 129.9, 128.9, 128.7, 124.8, 26.4, 21.7

HRMS (ESI-TOF): m/z calcd. for C₁₆H₁₆OS ([M+H]⁺) 257.1000, found 257.0998.

1-(4-((3,5-Dimethylphenyl)thio)phenyl)ethan-1-one (3d)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 3,5-dimethylbenzenethiol (41.4 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 36 mg, 70%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes);

¹**H NMR (300 MHz, CDCl₃)** δ 7.83 – 7.79 (m, 2H), 7.22 – 7.19 (m, 2H), 7.14 – 7.13 (m, 2H), 7.02 (dt, *J* = 3.0, 1.1 Hz, 1H), 2.55 (s, 3H), 2.32 (s, 3H), 2.31 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.1, 145.5, 139.4, 134.3, 131.6, 131.2, 130.7, 128.8, 127.2, 26.4, 21.2

HRMS (ESI-TOF): m/z calcd. for $C_{16}H_{16}OS$ ($[M+H]^+$) 257.1000, found 257.1000.

1-(4-((4-Methoxyphenyl)thio)phenyl)ethan-1-one (3e)⁵

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 44 mg, 85%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:6 EtOAc:hexanes);

¹**H** NMR (300 MHz, CDCl₃) δ 7.80 (dt, J = 8.7 Hz, 2.1 Hz, 2H), 7.49 (dt, J = 8.7 Hz, 2.1 Hz, 2H), 7.11 (dt, J = 8.7 Hz, 2.1 Hz, 2H), 6.98 (dt, J = 8.7 Hz, 2.7 Hz, 2H), 3.87 (s, 3H), 2.55 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.1, 160.7, 146.8, 136.8, 133.9, 128.8, 125.8, 121.4, 115.4, 55.4, 26.4

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₄O₂S ([M+H]⁺) 259.0793, found 259.0794.

1-(4-((4-Fluorophenyl)thio)phenyl)ethan-1-one (3f)⁶

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-fluorobenzenethiol (38.4 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water,

extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 38 mg, 77%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes);

¹**H NMR (300 MHz, CDCl₃)** δ 7.84 – 7.79 (m, 2H), 7.54 – 7.44 (m, 2H), 7.17 – 7.09 (m, 4H), 2.55 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 163.3 (d, *J* = 248.5 Hz), 145.1, 136.5 (d, *J* = 8.4 Hz), 134.5, 128.9, 126.8, 117.0 (d, *J* = 21.9 Hz), 26.4

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₁FOS ([M+H]+) 247.0593, found 247.0594.

1-(4-((4-Chlorophenyl)thio)phenyl)ethan-1-one (3g)⁷

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-chlorobenzenethiol (43.2 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 50 mg, 95%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc : hexanes);

¹**H NMR (300 MHz, CDCl₃)** δ 7.85 – 7.81 (m, 2H), 7.43 – 7.35 (m, 4H), 7.23 – 7.20 (m, 2H), 2.56 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 143.9, 134.9, 134.8, 130.94, 129.9, 129.0, 127.8, 26.5

HRMS (ESI-TOF): m/z calcd. for $C_{14}H_{11}ClOS$ ($[M+H]^+$) 263.0297, found 263.0294.

1-(4-((4-Hydroxyphenyl)thio)phenyl)ethan-1-one (3h)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-mercaptophenol (37.8 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:2 EtOAc:hexanes) as white solid (X = Br, 25mg, 50%).

Physical State: white solid;

 $\mathbf{R}_f = 0.1$ (silica gel, 1:6 EtOAc:hexanes);

¹**H** NMR (300 MHz, d_6 -DMSO) δ 10.03 (s, 1H), 7.82 (dt, J = 8.7, 2.1 Hz, 2H), 7.39 (dt, J = 8.7, 2.6 Hz, 2H), 7.09 (dt, J = 8.7, 2.1 Hz, 2H), 6.90 (dt, J = 8.7, 2.7 Hz, 2H), 2.50 (s, 3H)

¹³C NMR (**75 MHz**, *d*₆-DMSO) δ 197.3, 159.5, 146.7, 137.4, 134.1, 129.4, 125.7, 118.4, 117.6, 26.9

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₂O₂S ([M-H]⁻) 243.0480, found 243.0478.

1-(4-((4-Aminophenyl)thio)phenyl)ethan-1-one (3i)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-aminobenzenethiol (37.5 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 14 hours, the reaction mixture was washed with water,

extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:1 EtOAc:hexanes) as yellow solid (X = Br, 30 mg, 60%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, 1:1 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl**₃) δ 7.77 (dt, *J* = 8.7, 2.1 Hz, 2H), 7.33 (dt, *J* = 8.7, 2.4 Hz, 2H), 7.08 (dt, *J* = 8.7, 2.1 Hz, 2H), 6.72 (dt, *J* = 8.7, 2.4 Hz, 2H), 3.91 (s, 2H), 2.53 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.2, 147.9, 147.8, 137.0, 133.6, 128.7, 125.3, 117.7, 116.0, 26.4

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₃NOS ([M+H]⁺) 244.0796, found 244.0805.

2-((4-Acetylphenyl)thio)benzoic acid (3j)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 2-mercaptobenzoic acid (46.2 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (8:1 DCM:MeOH) as white solid (X = Br, 35 mg, 64%).

Physical State: white solid;

 $R_f = 0.3$ (silica gel, 8:1 DCM:MeOH)

¹**H** NMR (300 MHz, d_6 -DMSO) δ 7.99 (dt, J = 8.7, 2.1 Hz, 2H), 7.92 (dd, J = 7.8, 1.2 Hz, 1H), 7.56 (dt, J = 8.4, 2.1 Hz, 2H, 2H), 7.46 – 7.40 (m, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 6.98 (dd, J = 8.0, 0.9 Hz, 1H), 2.60 (s, 3H).

¹³C NMR (**75 MHz**, *d*₆-DMSO) δ 197.7, 167.9, 140.3, 138.6, 136.7, 133.4, 132.9, 131.2, 130.6, 129.9, 129.6, 126.5, 27.2

1-(4-(Naphthalen-2-ylthio)phenyl)ethan-1-one (3k)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), naphthalene-2-thiol (48.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1.5 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 40 mg, 71%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 8.04 (t, J = 1.2 Hz, 1H), 7.84 – 7.78 (m, 5H), 7.57 – 7.48 (m, 3H), 7.28 – 7.24 (m, 2H), 2.55 (s, 3H)

¹³**C NMR (75 MHz, CDCl₃)** δ 197.1, 144.8, 134.6, 133.8, 133.3, 133.0, 130.4, 129.4, 129.3, 128.9, 127.8, 127.7, 127.6, 127.0, 126.9, 26.5

HRMS (ESI-TOF): m/z calcd. for C₁₈H₁₄OS ([M+H]⁺) 279.0844, found 279.0844.

1-(4-((4-Methoxybenzyl)thio)phenyl)ethan-1-one (3l)⁸

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7

mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), (4-methoxyphenyl)methanethiol (46.2 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:5 EtOAc:hexanes) as white solid (X = Br, 40 mg, 74%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:5 EtOAc:hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 7.85 (dt, J = 8.7, 2.1 Hz, 2H), 7.35 – 7.28 (m, 4H), 6.86 (dt, J = 8.7, 2.1 Hz, 2H), 4.19 (s, 2H), 3.81 (s, 3H), 2.57 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.1, 159.0, 144.4, 134.1, 129.9, 128.7, 128.0, 126.9, 114.1, 55.3, 36.6, 26.4

HRMS (ESI-TOF): m/z calcd. for C₁₆H₁₆O₂S ([M+H]⁺) 273.0949, found 273.0947.

(4-Methoxyphenyl)(phenyl)sulfane (4a)⁹

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), iodobenzene (40.8 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 24 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow oil (X = I, 37 mg, 85%).

Physical State: pale yellow oil;

 $R_f = 0.4$ (silica gel, hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.49 – 7.41 (m, 2H), 7.32 – 7.11 (m, 5H), 6.93 (dt, *J* = 8.7, 2.7 Hz, 2H), 3.85 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 159.8, 138.6, 135.4, 128.9, 128.2, 125.8, 124.3, 115.0, 55.4

HRMS (ESI-TOF): m/z calcd. for C₁₃H₁₂OS ([M+H]⁺) 216.0609, found 216.0612.

4-(Phenylthio)phenol (4b)¹⁰

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), iodobenzene (40.8 mg, 0.2 mmol, 1.00 eq.), 4-mercaptophenol (37.8 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 24 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:1 EtOAc:hexanes) as white solid (X = I, 10 mg, 25%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:1 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.40 – 7.35 (m, 2H), 7.27 – 7.12 (m, 5H), 6.86 – 6.82 (m, 2H), 4.98 (s, 1H)

¹³C NMR (75 MHz, CDCl₃) δ 155.8, 138.4, 135.5, 128.9, 128.4, 125.9, 124.7, 116.5

HRMS (ESI-TOF): m/z calcd. for C₁₂H₁₀OS ([M]⁺) 202.0452, found 202.0457.

4-(Phenylthio)aniline (4c)¹⁰

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), iodobenzene (40.8 mg, 0.2 mmol, 1.00 eq.), 4-aminobenzenethiol (37.5 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 24 hours, the reaction mixture was isolated by flash

chromatography (1:1 EtOAc:hexanes) as yellow solid (X = I, 15 mg, 37%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, 1:1 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.34 – 7.30 (m, 2H), 7.24 – 7.19 (m, 2H), 7.15 – 7.07 (m, 3H), 6.70 – 6.66 (m, 2H), 3.78 (s, 2H)

¹³C NMR (75 MHz, CDCl₃) δ 147.0, 139.7, 136.1, 128.8, 127.3, 125.2, 120.5, 115.9

HRMS (ESI-TOF): m/z calcd. for C₁₂H₁₁NS ([M]⁺) 202.0690, found 202.0691.

(4-Methoxyphenyl)(o-tolyl)sulfane (4d)¹¹

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-iodo-2-methylbenzene (43.6 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 20 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (X = I, 25 mg, 54%).

Physical State: colorless oil;

 $R_f = 0.4$ (silica gel, hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.19 – 7.17 (m, 1H), 7.13 – 7.03 (m, 2H), 6.99 (dd, J = 6.6, 1.8 Hz, 1H), 6.91 – 6.87 (m, 2H), 3.82 (s, 3H), 2.39 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 159.5, 137.1, 134.5, 130.2, 129.1, 126.5, 126.1, 124.5, 115.0, 55.4, 20.3

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₄OS ([M]⁺) 230.0765, found 230.0772.

(4-Methoxyphenyl)(m-tolyl)sulfane (e)¹²

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-iodo-3-methylbenzene (43.6 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 20 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (X = I, 33 mg, 72%).

Physical State: colorless oil;

 $R_f = 0.4$ (silica gel, hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.45 – 7.42 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.05 (s, 1H), 7.01 –6.97 (m, 2H), 6.94 – 6.91 (m, 2H), 3.85 (s, 3H), 2.31 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 159.7, 138.8, 138.2, 135.1, 129.0, 128.7, 126.8, 125.5, 124.6, 114.9, 55.4, 21.3

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₄OS ([M]⁺) 230.0765, found 230.0769.

(4-Methoxyphenyl)(p-tolyl)sulfane (4f)¹³

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-iodo-4-methylbenzene (43.6 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 20 hours, the reaction mixture was washed with water, extracted with EtOA and concentrated in vacuum. The product was isolated by

flash chromatography (1:40 EtOAc:hexanes) as colorless oil (X = I, 35 mg, 76%).

Physical State: colorless oil;

 $R_f = 0.4$ (silica gel, hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 7.37 (dt, J = 9.0, 2.7 Hz, 2H), 7.16 – 7.13 (m, 2H), 7.09 – 7.05 (m, 2H), 6.91 – 6.83 (dt, J = 9.0, 2.7 Hz, 2H), 3.81 (s, 3H), 2.31 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 159.5, 136.1, 134.3, 129.8, 129.4, 125.7, 114.9, 55.4, 21.0

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₄OS ([M+H]⁺) 230.0765, found 230.0767.

1-(3-(p-Tolylthio)phenyl)ethan-1-one (4g)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 3'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = I, 43 mg, 89%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:6 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl**₃) δ 7.83 (td, *J* = 1.8, 0.6 Hz, 1H), 7.75 (dt, *J* = 7.2, 1.6 Hz, 1H), 7.41 – 7.31 (m, 4H), 7.17 (d, *J* = 7.8 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 197.5, 138.8, 138.4, 137.8, 133.5, 132.9, 130.3, 130.0, 129.2, 128.8, 126.0, 26.6, 21.2

HRMS (ESI-TOF): m/z calcd. for $C_{15}H_{14}OS$ ($[M+H]^+$) 243.0844, found 243.0844.

1-(2-(p-Tolylthio)phenyl)ethan-1-one (4h)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 3'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour (X = I) or 12 hours (X = Cl), the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Cl, 40 mg, 82%; X = I, 37 mg, 76%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:6 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.82 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.45 – 7.41 (m, 2H), 7.25 – 7.20 (m, 3H), 7.14 (td, *J* = 7.8, 1.5 Hz, 1H), 6.87 (dd, *J* = 8.1, 0.9 Hz, 1H), 2.66 (s, 3H), 2.40 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 199.1, 142.9, 139.2, 135.4, 134.2, 132.0, 130.6, 130.5, 129.4, 127.8, 124.1, 28.2, 21.3

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₄OS ([M+H]⁺) 243.0844, found 243.0847.

4-(p-Tolylthio)benzaldehyde (4i)¹⁴

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4-iodobenzaldehyde (46.4 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was

then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 12 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Cl, 36 mg, 78%; X = I, 40 mg, 87%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:6 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 9.92 (s, 1H), 7.74 – 7.70 (m, 2H), 7.45 (dt, J = 8.1, 2.1 Hz, 2H), 7.29 – 7.19 (m, 4H), 2.43 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 191.2, 148.2, 139.7, 134.8, 133.5, 130.7, 130.1, 127.3, 126.6, 21.3

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₂OS ([M+H]⁺) 229.0687, found 229.0687.

Methyl 4-(p-Tolylthio)benzoate (4j)¹⁵

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), methyl 4-iodobenzoate (52.4 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 4 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:20 EtOAc:hexanes) as white solid (X = I, 47 mg, 90%, X = Br, 45 mg, 87%, X = Cl, 48 mg, 92%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:20 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.86 (dt, *J* = 9.0, 1.8 Hz, 2H), 7.40 (dt, *J* = 8.1, 1.8 Hz, 2H), 7.23 – 7.20 (m, 2H), 7.17 – 7.13 (m, 2H), 3.88 (s, 3H), 2.39 (s, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 166.7, 145.4, 139.2, 134.3, 130.5, 130.0, 128.2, 127.1,

HRMS (ESI-TOF): m/z calcd. for $C_{15}H_{14}O_2S$ ($[M+H]^+$) 259.0793, found 259.0796.

(3-Nitrophenyl)(p-tolyl)sulfane (4k)¹⁶

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-iodo-3-nitrobenzene (49.8 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 4 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:10 EtOAc:hexanes) as yellow solid (X = I, 41 mg, 83%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, 1:20 EtOAc:hexanes)

¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.94 (m, 2H), 7.46 – 7.35 (m, 4H), 7.25 – 7.22 (m, 2H), 2.40 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 148.7, 141.6, 139.6, 134.2, 133.3, 130.7, 129.5, 127.9, 122.2, 120.4, 21.3

HRMS (ESI-TOF): m/z calcd. for C₁₃H₁₁NO₂S ([M+H]⁺) 246.0589, found 246.0588.

Phenyl-(4-(*p*-tolylthio)phenyl)methanone (4l)²

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), (4-bromophenyl)(phenyl)methanone (52.2 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The

reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6 EtOAc:hexanes) as white solid (X = Br, 55 mg, 90%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 1:5 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.77 – 7.74 (m, 2H), 7.70 – 7.66 (m, 2H), 7.60 – 7.54 (m, 1H), 7.50 – 7.42 (m, 4H), 7.25 – 7.17 (m, 4H), 2.40 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 195.7, 145.3, 139.3, 137.7, 134.5, 134.4, 132.2, 130.7, 130.5, 129.8, 128.2, 128.0, 126.5, 21.3

HRMS (ESI-TOF): m/z calcd. for C₂₀H₁₆OS ([M+H]⁺) 305.1000, found 305.0998.

4-(p-Tolylthio)benzonitrile (4m)²

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4-bromobenzonitrile (36.4 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hour, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:10 EtOAc:hexanes) as white solid (X = Br, 32 mg, 71%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:10 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.47 – 7.39 (m, 4H), 7.28 – 7.23 (m, 2H), 7.14 – 7.10 (m, 2H), 2.41 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 146.6, 139.9, 134.9, 132.3, 130.7, 126.8 126.7, 118.9, 108.3, 21.3

2-(p-Tolylthio)benzonitrile (4n)¹⁷

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 2-chlorobenzonitrile (27.4 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 4 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:7 EtOAc:hexanes) as colorless oil (X = Cl, 40 mg, 88%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:7 EtOAc:hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 7.61 (ddd, J = 7.7, 1.5, 0.5 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.38 – 7.34 (m, 1H), 7.23 – 7.18 (m, 2H), 7.04 (ddd, J = 8.1, 1.1, 0.5 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.5, 139.5, 134.3, 133.5, 132.8, 130.6, 128.9, 127.6, 125.9, 117.0, 111.9, 21.3

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₁NS ([M+H]⁺) 226.0690, found 226.0694.

(3,5-Bis(trifluoromethyl)phenyl)(p-tolyl)sulfane (40)¹⁸

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-bromo-3,5-bis(trifluoromethyl)benzene (58.6 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The
reaction mixture was evacuated and purged with inert gas (N_2) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 16 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (X = Br, 34 mg, 50%)..

Physical State: colorless oil;

 $R_f = 0.4$ (silica gel, hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 7.59 (dd, J = 1.5, 0.9 Hz, 1H), 7.52 – 7.51 (m, 2H), 7.43 – 7.39 (m, 2H), 7.27 – 7.24 (m, 2H), 2.41 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 142.6, 140.0, 134.3, 132.3 (q, J = 33.1 Hz), 130.9, 128.9, 127.0 (m), 123.0 (q J = 270.0 Hz), 119.1(m), 21.3.

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₀F₆S ([M]⁺) 336.0407, found 336.0403.

Naphthalen-1-yl(p-tolyl)sulfane (4p)¹⁹

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-bromonaphthalene (41.4 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 16 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (X = Br, 42 mg, 84%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 8.43 – 8.39 (m, 1H), 7.90 – 7.80 (m, 2H), 7.58 – 7.50 (m, 3H), 7.43 – 7.38(m, 1H), 7.22 – 7.17 (m, 2H), 7.11 – 7.07 (m, 2H), 2.32 (s, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 136.6, 134.1, 133.1, 132.7, 132.5, 131.0, 130.3, 130.0,

128.5, 128.4, 126.7, 126.4, 125.8, 125.4, 21.1

HRMS (ESI-TOF): m/z calcd. for C₁₇H₁₄S ([M]⁺) 250.0816, found 250.0818.

Naphthalen-2-yl(p-tolyl)sulfane (4q)²⁰

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 2-bromonaphthalene (41.4 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 13 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (X = Br, 28 mg, 56%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, hexanes).

¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.71 (m, 4H), 7.50 – 7.43 (m, 2H), 7.40 – 7.34 (m, 3H), 7.19 – 7.15 (m, 2H), 2.38 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 137.6, 134.4, 133.8, 132.1, 132.0, 131.4, 130.1, 128.7, 128.4, 127.9, 127.7, 127.3, 126.5, 125.9, 21.2

HRMS (ESI-TOF): m/z calcd. for C₁₇H₁₄S ([M]⁺) 250.0816, found 250.0817.

(4-Methoxyphenyl)(naphthalen-2-yl)sulfane (4r)²¹

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-bromonaphthalene (41.4 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The

reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 13 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (X = Br, 44 mg, 81%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 7.79 – 7.62 (m, 4H), 7.49 – 7.39 (m, 4H), 7.31 (dd, *J* = 8.7, 1.8 Hz, 1H), 6.95 – 6.90 (m, 2H), 3.84 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 159.9, 135.9, 135.2, 133.8, 131.7, 128.5, 127.7, 127.2, 126.7, 126.5, 126.4, 125.6, 124.4, 115.1, 55.4

HRMS (ESI-TOF): m/z calcd. for C₁₇H₁₄OS ([M]⁺) 266.0765, found 266.0769.

(4-Methoxyphenyl)(pyren-1-yl)sulfane (4s)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 1-bromopyrene (56.2 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 13 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as yellow solid (X = Br, 57 mg, 83%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 8.68 (d, *J* = 9.3 Hz, 1H), 8.23 – 8.20 (m, 2H), 8.16 (d, *J* = 9.3 Hz, 1H), 8.10 – 8.01 (m, 4H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.39 – 7.36 (m, 2H), 6.90 – 6.87 (m, 2H), 3.81 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ 159.2, 133.3, 132.7, 131.5, 131.4, 131.0, 130.5, 130.4, 129.4, 128.1, 127.5, 127.3, 126.4, 126.2, 125.3, 125.1, 124.5, 124.3, 115.0, 114.6, 55.4

HRMS (ESI-TOF): m/z calcd. for C₂₃H₁₆OS ([M]⁺⁺) 340.0922, found 340.0926.

Anthracen-9-yl(4-methoxyphenyl)sulfane (4t)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 9-bromoanthracene (51.4 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 13 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as yellow solid (X = Br, 53 mg, 84%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 8.91– 8.87 (m, 1H), 8.57 (s, 1H), 8.06 – 8.03 (m, 2H), 7.59 – 7.48 (m, 4H), 6.99 – 6.96 (m, 2H), 6.68 – 6.65 (m, 2H), 3.68 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 157.7, 134.8, 132.0, 130.0, 129.4, 128.9, 128.5, 127.1, 127.0, 126.9, 125.5, 114.6, 55.2

HRMS (ESI-TOF): m/z calcd. for C₂₁H₁₆OS ([M]⁺⁺) 316.0922, found 316.0926.

[1,1'-Biphenyl]-4-yl(4-methoxyphenyl)sulfane (4u)²²

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4-bromo-1,1'-biphenyl (46.6 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 13 hours, the reaction mixture was washed with water, extracted with EtOA and concentrated in vacuum. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (X = Br, 42 mg, 70%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 7.57 – 7.54 (m, 2H), 7.50 – 7.40 (m, 6H), 7.36 – 7.31 (m, 1H), 7.27 – 7.23 (m, 2H), 6.96 – 6.92 (m, 2H), 3.84 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 159.9, 140.5, 138.8, 137.8, 135.4, 128.8, 128.5, 127.6, 127.3, 126.9, 124.2, 115.1, 55.4

HRMS (ESI-TOF): m/z calcd. for C19H16OS ([M+H]+) 293.1000, found. 293.0995

4-((4-Methoxyphenyl)thio)benzamide (4v)²³

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (195.4 mg, 0.6 mmol, 1.5 eq.), 4-bromobenzamide (80.4.2 mg, 0.4 mmol, 1.00 eq.), 4-methoxybenzenethiol (84.0 mg, 0.6 mmol, 1.5 eq.) and 3.0 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 16 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (4:1 EtOAc:hexanes) as white solid (X = Br, 83 mg, 80%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 4:1 EtOAc:hexanes)

¹**H NMR (300 MHz,** d_6 **-DMSO**) δ 7.91 (s, 1H), 7.77 (d, J = 8.7 Hz, 2H), 7.48 (d, J =

8.9 Hz, 2H), 7.33 (s, 1H), 7.12 – 7.01 (m, 4H), 3.81 (s, 3H).

¹³C NMR (**75** MHz, *d*₆-DMSO) δ 167.7, 160.6, 143.0, 136.7, 131.8, 128.7, 126.4, 121.8, 116.1, 55.8

HRMS (ESI-TOF): m/z calcd. for C14H13NO2S ([M+H]⁺) 260.0745, found 260.0748.

4-((4-Aminophenyl)thio)-N,N-dimethylbenzamide (4w)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), 4-Iodo-*N*,*N*-dimethylbenzamide (55.0 mg, 0.2 mmol, 1.00 eq.), 4-aminobenzenethiol (37.5 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 16 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (6:1 EtOAc:hexanes) as white solid (X = I, 27 mg, 49%).

Physical State: white solid;

 $R_f = 0.4$ (silica gel, 6:1 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.33 – 7.26 (m, 4H), 7.10 – 7.07 (m, 2H), 6.69 – 6.66 (m, 2H), 3.94 (s, 2H), 3.07 (s, 3H), 2.99 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 171.3, 147.7, 142.5, 136.6, 132.7, 127.7, 126.1, 118.7, 115.9, 39.6, 35.4

HRMS (ESI-TOF): m/z calcd. for $C_{15}H_{16}N_2OS$ ($[M+H]^+$) 273.1062, found 273.1054.

1-(3-Amino-4-((4-methoxyphenyl)thio)phenyl)ethan-1-one (4x)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), 3'-Amino-4'-bromoacetophenone (42.8 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 2 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:2 EtOAc:hexanes) as pale yellow oil (X = Br, 36 mg, 66%).

Physical State: pale yellow oil;

 $R_f = 0.3$ (silica gel, 1:2 EtOAc:hexanes)

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, J = 1.6 Hz, 1H), 7.26 – 7.19 (m, 4H), 6.88 – 6.77 (m, 2H), 4.27 (s, 2H), 3.77 (s, 3H), 2.52 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ 197.9, 159.3, 146.4, 137.6, 133.5, 132.2, 124.9, 124.2, 118.7, 115.1, 114.3, 55.4), 26.6

HRMS (ESI-TOF): m/z calcd. for C15H15NO2S ([M+H]⁺) 274.0902, found 274.0904.

Methyl 2-amino-5-((4-methoxyphenyl)thio)benzoate (4y)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), methyl 2-amino-5-iodobenzoate (55.4 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 4 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:2 EtOAc:hexanes) as pale yellow oil (X = I, 34 mg, 52%).

Physical State: pale yellow oil;

 $R_f = 0.3$ (silica gel, 1:2 EtOAc:hexanes)

¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 0.3, 2.1 Hz, 1H), 7.32 (dd, J = 8.4, 2.3

Hz, 1H), 7.25 – 7.20 (m, 2H), 6.86 – 6.81 (m, 2H), 6.69 – 6.61 (dd, *J* = 0.3, 8.4 Hz, 1H), 5.86 (s, 2H), 3.87 (s, 3H), 3.79 (s, 3H)..

¹³C NMR (**75** MHz, CDCl₃) δ 168.0, 158.6, 150.1, 139.0, 136.2, 131.2), 128.7, 121.1, 117.8, 114.7, 111.2, 55.4, 51.7

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₅NO₂S ([M]⁺) 289.0773, found 289.0772.

1-(4-(Pyridin-4-ylthio)phenyl)ethan-1-one (5a)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), pyridine-4-thiol (33.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 14 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (3:1 EtOAc:hexanes) as yellow solid (X = Br, 38 mg, 82%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, 3:1 EtOAc:hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 8.42 (dd, J = 4.5, 1.6 Hz, 2H), 8.00 – 7.95 (m, 2H), 7.59 – 7.55 (m, 2H), 7.06 (dd, J = 4.5, 1.5 Hz, 2H), 2.62 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 149.9, 147.7, 137.1, 137.0, 133.4, 129.4, 122.4, 26.6

HRMS (ESI-TOF): m/z calcd. for C₁₃H₁₁NOS ([M+H]⁺) 230.0640, found 230.0645.

1-(4-(Pyridin-2-ylthio)phenyl)ethan-1-one (5b)²⁴

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), pyridine-2-thiol (33.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (3:1 EtOAc:hexanes) as yellow solid (X = Br, 32 mg, 70%).

Physical State: yellow solid;

 $R_f = 0.4$ (silica gel, 3:1 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 8.48 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.96 – 7.92 (m, 2H), 7.61 – 7.57 (m, 2H), 7.56 – 7.52 (m, 1H), 7.15 – 7.07 (m, 2H), 2.60 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.2, 158.7, 150.1, 138.7, 137.0, 136.5, 132.8, 129.1, 123.5, 121.1, 26.6

HRMS (ESI-TOF): m/z calcd. for C₁₃H₁₁NOS ([M+H]⁺) 230.0640, found 230.0645.

1-(4-(Pyrimidin-2-ylthio)phenyl)ethan-1-one (5c)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), pyrimidine-2-thiol (33.6 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 14 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:1 EtOAc:hexanes) as white solid (X = Br, 35 mg, 76%).

Physical State: white solid;

 $R_f = 0.1$ (silica gel, 1:4 EtOAc:hexanes)

¹H NMR (300 MHz, CDCl₃) δ 8.50 (d, J = 4.8 Hz, 2H), 8.02 – 7.97 (m, 2H), 7.75 –

7.71 (m, 2H), 7.02 (t, *J* = 4.8 Hz, 1H), 2.62 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 197.3, 171.7, 157.7, 137.1, 135.7, 134.6, 128.8, 117.5, 26.7

HRMS (ESI-TOF): m/z calcd. for C₁₂H₁₀N₂OS ([M+H]⁺) 231.0592, found 231.0594.

1-(4-((4-Aminopyrimidin-2-yl)thio)phenyl)ethan-1-one (5d)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-aminopyrimidine-2-thiol (38.1 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 12 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (3:1 EtOAc:hexanes) as white solid (X = Br, 41 mg, 83%).

Physical State: white solid;

 $R_f = 0.1$ (silica gel, 1:1 EtOAc:hexanes)

¹**H NMR (300 MHz,** *d***₆-DMSO**) δ 7.98 – 7.94 (m, 2H), 7.86 (d, *J* = 6.0 Hz, 1H), 7.73 – 7.69 (m, 2H), 7.03 (s, 2H), 6.20 (d, *J* = 6.7 Hz, 1H), 2.60 (s, 3H)

¹³C NMR (**75 MHz**, *d*₆-DMSO) δ 197.8, 169.1, 163.8, 155.5, 137.1, 136.6, 134.3, 128.9, 102.8, 27.2

HRMS (ESI-TOF): m/z calcd. for $C_{12}H_{11}N_3OS$ ([M+H]⁺) 246.0701, found 246.0709.

1-(4-((4-(Trifluoromethyl)pyrimidin-2-yl)thio)phenyl)ethan-1-one (5e)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and

back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 4-(trifluoromethyl)pyrimidine-2-thiol (54.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 22 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:2 EtOAc:hexanes) as yellow solid (X = Br, 45 mg, 79%).

Physical State: yellow solid;

 $R_f = 0.2$ (silica gel, 1:4 EtOAc:hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 8.72 (dd, J = 4.8, 0.5 Hz, 1H), 8.03 – 7.99 (m, 2H), 7.76 – 7.71 (m, 2H), 7.32 (d, J = 5.1 Hz, 1H), 2.64 (s, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 197.3, 173.2, 159.8, 156.1 (q, *J* = 36.7 Hz), 137.5, 134.7, 134.4, 128.9, 120.0 (q, *J* = 273.7 Hz), 112.8 (q, *J* = 2.6 Hz), 26.7.

HRMS (ESI-TOF): m/z calcd. for $C_{13}H_9F_3N_2OS$ ([M+H]⁺) 299.0466, found 299.0458.

1-(4-(Benzo[d]thiazol-2-ylthio)phenyl)ethan-1-one (5f)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), benzo[*d*]thiazole-2-thiol (40.1 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 21 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:3 EtOAc:hexanes) as white solid (X = Br, 50 mg, 87%).

Physical State: white solid;

 $R_f = 0.3$ (silica gel, 1:4 EtOAc:hexanes)

¹H NMR (300 MHz, CDCl₃) δ 8.02 (dd, J = 8.7, 2.1 Hz, 2H), 7.96 – 7.93 (m, 1H),

7.79 (dd, *J* = 8.7, 2.1 Hz, 2H), 7.75 – 7.72 (m, 1H), 7.49 – 7.43 (m, 1H), 7.37 – 7.28 (m, 1H), 2.65 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 165.7, 153.6, 137.6, 136.6, 135.9, 133.6, 129.4, 126.4, 124.9, 122.4, 120.9, 26.7

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₁NOS₂ ([M+H]⁺) 286.0360, found 286.0363.

1-(4-((1*H*-benzo[*d*]imidazol-2-yl)thio)phenyl)ethan-1-one (5g)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 1*H*-benzo[*d*]imidazole-2-thiol (45.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 12 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:1 EtOAc:hexanes) as white solid (X = Br, 42 mg, 78%).

Physical State: white solid;

 $R_f = 0.3$ (silica gel, 1:1 EtOAc:hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 7.69 – 7.65 (m, 2H), 7.50 (dd, J = 6.0, 3.0 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.24 (dd, J = 6.0, 3.0 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 197.1, 145.7, 138.2, 136.0, 130.3, 130.1, 129.1, 128.8, 123.2, 26.5

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₂N₂OS ([M+H]⁺) 269.0749, found 269.0746.

7-((4-Acetylphenyl)thio)-4-methyl-2H-chromen-2-one (5h)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 7-mercapto-4-methylcoumarin (57.6 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 12 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:1 EtOAc:hexanes) as white solid (X = Br, 46 mg, 74%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:1 EtOAc:hexanes)

¹**H NMR** (**300 MHz**, **CDCl**₃) δ 7.91 (dt, *J* = 8.7, 2.1 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.44 (dt, *J* = 8.7, 2.1 Hz, 2H), 7.23 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.20 (dd, *J* = 1.8, 0.6 Hz, 1H), 6.25 (q, *J* = 1.2 Hz, 1H), 2.60 (s, 3H), 2.41 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 197.0, 160.2, 153.9, 151.8, 140.2, 140.1, 136.3, 131.2, 129.3, 125.9, 125.2, 118.9, 118.1, 115.0, 26.6, 18.6

HRMS (ESI-TOF): m/z calcd. for C₁₈H₁₄O₃S ([M+H]⁺) 311.0742, found 311.0735.

3-(*p*-Tolylthio)pyridine (5i)²⁵

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 3-iodopyridine (40.8 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 23 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:2 EtOAc:hexanes) as yellow oil (X = Br, 28 mg, 70%, X = I, 38 mg, 92%, X = Cl, 36 mg, 90%).

Physical State: yellow oil;

 $R_f = 0.4$ (silica gel, 1:2=EtOAc:hexanes).

¹**H** NMR (300 MHz, CDCl₃) δ 8.50 (d, J = 1.8 Hz, 1H), 8.41 (dd, J = 4.8, 1.2 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.34 – 7.30 (m, 2H), 7.19 – 7.14 (m, 3H), 2.35 (s, 3H)

¹³C NMR (**75 MHz, CDCl**₃) δ 150.1, 147.3, 138.4, 136.8, 132.8, 130.3, 129.6, 123.8, 21.2

HRMS (ESI-TOF): m/z calcd. for C₁₂H₁₁NS ([M+H]⁺) 202.0690, found 202.0696.

5-(p-Tolylthio)pyrimidine (5j)²⁶

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 5-bromopyrimidine (31.6 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 12 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:1 EtOAc:hexanes) as yellow solid (X = Br, 33 mg, 81%).

Physical State: yellow solid;

 $R_f = 0.7$ (silica gel, 2:1 EtOAc:hexanes).

¹**H NMR (300 MHz, CDCl₃)** δ 8.98 (s, 1H), 8.52 (s, 2H), 7.39 – 7.35 (m, 2H), 7.22 – 7.19 (m, 2H), 2.37 (s, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 156.1, 155.8, 139.4, 133.5, 130.7, 127.4, 21.2

HRMS (ESI-TOF): m/z calcd. for $C_{11}H_{10}N_2S$ ($[M+H]^+$) 203.0643, found 203.0646.

3-(p-Tolylthio)quinolone (5k)²⁷

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 6-bromoquinoline (41.6 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 13 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:5 EtOAc:hexanes) as colorless oil (X = Br, 52 mg, 92%).

Physical State: yellow oil;

 $R_f = 0.3$ (silica gel, 1:5 EtOAc:hexanes)

¹**H** NMR (300 MHz, CDCl₃) δ 8.80 (d, J = 2.4 Hz, 1H), 8.10 – 8.06 (m, 1H), 7.99 (dd, J = 2.1, 0.6 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.57 – 7.51 (m, 1H), 7.39 – 7.35 (m, 2H), 7.21 – 7.17 (m, 2H), 2.39 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 151.5, 146.5, 138.3, 135.6, 132.4, 131.3, 130.4, 129.9, 129.3, 129.2, 128.2, 127.2, 127.1, 21.2

HRMS (ESI-TOF): m/z calcd. for C₁₆H₁₃NS ([M+H]⁺) 252.0847, found 252.0849.

6-(p-Tolylthio)quinolone (5l)²⁸

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 3-bromoquinoline (41.6 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 12 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:5 EtOAc:hexanes) as yellow oil (X = Br, 46 mg, 91%).

Physical State: yellow oil;

 $R_f = 0.3$ (silica gel, 1:5 EtOAc:hexanes).

¹H NMR (300 MHz, CDCl₃) δ 8.84 (dd, J = 4.2, 1.5 Hz, 1H), 8.00 – 7.96 (m, 1H),

7.60 (d, *J* = 2.1 Hz, 1H), 7.54 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.37 – 7.32 (m, 1H), 7.21 – 7.17 (m, 2H), 2.38 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 150.1, 147.0, 138.4, 136.5, 135.1, 133.1, 130.6, 130.3, 130.1, 130.0, 128.7, 126.5, 121.6, 21.2

HRMS (ESI-TOF): m/z calcd. for C₁₆H₁₃NS ([M+H]⁺) 252.0847, found 252.0851.

1-(4-((2-Bromophenyl)thio)phenyl)ethan-1-one (6)²⁹

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 2-bromobenzenethiol (37.8 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1.5 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:5 EtOAc:hexanes) as white solid (X = Br, 52 mg, 84%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:4 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.92 – 7.87 (m, 2H), 7.71 – 7.68 (m, 1H), 7.42 – 7.38 (m, 1H), 7.34 – 7.28 (m, 3H), 7.26 – 7.12 (m, 1H), 2.59 (s, 3H)

¹³C NMR (**75 MHz, CDCl**₃) δ 197.1, 142.0 135.3, 134.5, 134.3, 133.7, 129.7, 129.1 129.0, 128.3, 127.4, 26.5

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₁BrOS ([M+H]⁺) 308.9772, found 308.9766.

1-(4-((2-Chlorophenyl)thio)phenyl)ethan-1-one (7)²⁹

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 eq.), 4'-Bromoacetophenone (39.8 mg, 0.2 mmol, 1.00 eq.), 2-bromobenzenethiol (37.8 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 1.5 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:5 EtOAc:hexanes) as white solid (X = Br, 49 mg, 93%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:4 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.89 – 7.84 (m, 2H), 7.51 – 7.48 (m, 1H), 7.42 – 7.39 (m, 1H), 7.34 – 7.29(m, 1H), 7.29 – 7.22 (m, 3H), 2.57 (s, 3H)

¹³C NMR (**75** MHz, CDCl₃) δ 197.1, 142.0, 137.0, 135.2, 134.6, 132.2, 130.4, 129.7, 129.1, 128.8, 127.6, 26.5

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₁ClOS ([M+H]⁺) 263.0297, found 263.0299.

2-(5-Methoxy-1-(4-((4-methoxyphenyl)thio)benzoyl)-2-methyl-1H-indol-3-yl)aceti c acid (8)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), Indometacin (71.6 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 20 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (10:1 DCM:MeOH) as yellow solid (X = Cl, 70 mg, 76%).

Physical State: yellow solid;

 $R_f = 0.5$ (silica gel, 10:1 DCM:MeOH)

¹**H NMR (300 MHz, CDCl₃)** δ 7.56 – 7.48 (m, 4H), 7.11 (dd, *J* = 6.6 Hz, 1.8 Hz, 2H), 6.98 – 6.90 (m, 4H), 6.67 (dd, *J* = 9.0, 2.7 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.68 (s, 2H), 2.37 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 177.0, 168.8, 160.8, 155.9, 147.1, 136.9, 136.3 131.6, 131.0, 130.5, 130.3, 125.8, 121.0, 115.5, 115.0, 111.6, 111.2, 101.0, 55.7, 55.4, 30.1, 13.2

HRMS (ESI-TOF): m/z calcd. for C₂₆H₂₃NO₅S ([M+H]⁺) 462.1375, found 462.1365.

Isopropyl 2-(4-(4-((4-methoxyphenyl)thio)benzoyl)phenoxy)-2-methylpropanoate (9)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), Fenofibrate (72.0 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 22 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:5 EtOAc:hexanes) as white solid (X = Cl, 74 mg, 79%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:5 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.71 (dt, *J* = 9.0, 2.4 Hz, 2H), 7.62 (dt, *J* = 8.7, 1.8 Hz, 2H), 7.49 (dt, *J* = 9.0, 2.4 Hz, 2H), 7.16 – 7.06 (m, 2H), 7.00 – 6.92 (m, 2H), 6.91 – 6.78 (m, 2H), 5.12 – 5.04 (m, 1H), 3.85 (s, 3H), 1.65 (s, 6H), 1.20 (s, 3H), 1.18 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 194.5, 173.1, 160.6, 159.4, 145.4, 136.7, 134.7, 131.8, 130.8, 130.4, 125.8, 121.7, 117.2, 115.3, 79.4, 69.3, 55.4, 25.4, 21.5

HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₈O₅S ([M+H]⁺) 465.1736, found 465.1722.

Isopropyl 2-(4-(4-((4-aminophenyl)thio)benzoyl)phenoxy)-2-methylpropanoate (10)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), Fenofibrate (72.0 mg, 0.2 mmol, 1.00 eq.), 4-aminobenzenethiol (37.5 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 22 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:3 EtOAc:hexanes) as yellow solid (X = Cl, 70 mg, 79%).

Physical State: yellow solid;

 $R_f = 0.5$ (silica gel, 1:2 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.73 – 7.68 (m, 2H), 7.62 – 7.58 (m, 2H), 7.37 – 7.32 (m, 2H), 7.12 – 7.08 (m, 2H), 6.85 – 6.82 (m, 2H), 6.73 – 6.69 (m, 2H), 5.12 – 5.03 (m, 1H), 3.92 (s, 2H), 1.64 (s, 6H), 1.20 (s, 3H), 1.18 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 194.6, 173.2, 159.3, 147.9, 146.5, 137.0, 134.3, 131.8, 130.9, 130.4, 125.2, 117.9, 117.2, 116.0, 79.4, 69.3, 25.4, 21.5

HRMS (ESI-TOF): m/z calcd. for C₂₆H₂₇NO₄S ([M+H]⁺) 450.1739, found 450.1750.

Isopropyl 2-methyl-2-(4-(4-(p-tolylthio)benzoyl)phenoxy)propanoate (11)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), Fenofibrate (72.0 mg, 0.2 mmol, 1.00 eq.), *p*-Toluenethiol (37.3 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 22 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (1:6

EtOAc:hexanes) as white solid (X = Cl, 57 mg, 60%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 1:6 EtOAc:hexanes)

¹**H NMR (300 MHz, CDCl₃)** δ 7.74 – 7.69 (m, 2H), 7.64 – 7.60 (m, 2H), 7.44 – 7.40 (m, 2H), 7.24 – 7.16 (m, 4H), 6.86 – 6.83 (m, 2H), 5.12 – 5.04 (m, 1H), 2.39 (s, 3H), 1.65 (s, 6H), 1.21 (s, 3H), 1.18 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 194.6, 173.1, 159.4, 144.4, 139.2, 135.0, 134.3, 131.8, 130.7, 130.5, 130.4, 128.3, 126.7, 117.2, 79.4, 69.3, 25.4, 21.5, 21.3

HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₈O₄S ([M+H]⁺) 449.1786, found 449.1775.

4-((4-Methoxyphenyl)thio)-N-(2-morpholinoethyl)benzamide (12)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 eq.), Moclobemide (53.7 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 26 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (10:1 DCM:MeOH) as white solid (X = Cl, 41 mg, 50%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, 10:1 DCM:MeOH)

¹**H** NMR (300 MHz, CDCl₃) δ 7.63 (dd, J = 6.9, 2.1 Hz, 2H), 7.48 (dd, J = 6.9, 2.1 Hz, 2H), 7.14 (dd, J = 6.9, 2.1 Hz, 2H), 6.96 (dd, J = 6.9, 2.1 Hz, 2H), 6.73 (s, 1H), 3.87 (s, 3H), 3.73 (t, J = 4.5 Hz, 4H), 3.55 (dd, J = 11.4, 5.4 Hz, 2H), 2.60 (t, J = 6.0 Hz, 2H), 2.51 (t, J = 4.5 Hz, 4H).

¹³C NMR (**75** MHz, CDCl₃) δ 166.8, 160.5, 144.1, 136.5, 131.3, 127.4, 126.5, 122.2, 115.3, 66.9, 56.9, 55.4, 53.3, 35.9

HRMS (ESI-TOF): m/z calcd. for C20H24N2O3S ([M+H]⁺) 373.1586, found

373.1578.

6-((4-Methoxyphenyl)thio)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-sulfona mide 1,1-dioxide (13)

A 25 mL storage flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 eq.), Hydrochlorothiazide (59.5 mg, 0.2 mmol, 1.00 eq.), 4-methoxybenzenethiol (42.0 mg, 0.3 mmol, 1.5 eq.) and 1.5 mL DMSO. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an LED-lined beaker and stirred with an air gas tube for cooling. After stirred for 22 hours, the reaction mixture was washed with water, extracted with EtOAc and concentrated in vacuum. The product was isolated by flash chromatography (10:1 EtOAc:hexane) as white solid (X = Cl, 48 mg, 65%).

Physical State: white solid;

 $R_f = 0.5$ (silica gel, EtOAc)

¹**H NMR (300 MHz,** *d***₆-DMSO)** δ 7.92 (s, 1H), 7.72 (t, *J* = 7.8 Hz, 2H), 7.50 (dd, *J* = 6.6, 2.1 Hz, 2H), 7.36 (s, 2H), 7.10 (dd, *J* = 6.6, 2.1 Hz, 2H), 6.12 (s, 1H), 4.56 (dd, *J* = 8.1, 2.4 Hz, 2H), 3.83 (s, 3H).

¹³C NMR (**75 MHz**, *d*₆-DMSO) δ 161.1, 146.1, 144.6, 137.8, 127.7, 125.2, 121.1, 117.3, 116.33, 113.5, 55.9, 54.6

HRMS (ESI-TOF): m/z calcd. for C₁₄H₁₅N₃O₅S₃ ([M]⁻) 400.0096, found 400.0099.

References

- Ryan, M. D.; Pearson, R. M.; French, T. A.; Miyake, G. M. *Macromolecules* 2017, 50, 4616–4622.
- 2. Zhang, X.; Lu, G.-P.; Cai, C. Green Chem. 2016, 18, 5580–5585.
- 3. Prasad, D. J. C.; Naidu, A. B.; Sekar, G. Tetrahedron Lett. 2009, 50, 1411–1415.
- 4. Kovács, S.; Novák, Z. Org. Biomol. Chem. 2011, 9, 711–716.
- Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. J. Am. Chem. Soc. 2008, 130, 12214–12215
- Guan, P.; Cao, C.; Liu, Y.; Li, Y.; He, P.; Chen, Q.; Liu, G.; Shi, Y. Tetrahedron Lett. 2012, 53, 5987–5992.
- Gorczynski, M. J.; Leal, R. M.; Mooberry, S. L.; Bushweller, J. H.; Browna, M. L. Bioorg. Med. Chem. 2004, 12, 1029–1036.
- 8. Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760–1763.
- 9. Bates, C. G. Gujadhur, R. K. Venkataraman, D. Org. Lett. 2002, 4, 2803-2806.
- 10. Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613-5616.
- 11. Wu, J.-P.; Saha, A. K.; Haddad, N.; Busacca, C. A.; Lorenz, J. C.; Lee, H.; Senanayakea, C. H. *Adv. Synth. Catal.* **2016**, *358*, 1924 1928.
- 12. Fernandez-Rodriguez, M. A.; Shen, Q. L.; Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782–7796.
- 13. Qiao, Z.; Jiang, X. Org. Lett. 2016, 18, 1550-1553.
- 14. Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199-7202.
- Yoshida, S.; Sugimura, Y.; Hazama, Y.; Nishiyama, Y.; Yano, T.; Shimizub, S.; Hosoya, T. *Chem. Commun.* **2015**, *51*, 16613–16616
- 16. Savarin, C.; Srogl , J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309-4312
- 17. Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 1716-1719
- Huang, Yao-Bing.; Yang, Chu-Ting.; Yi, Jun.; Deng, Xiao-Jian.; Fu, Yao.; Liu, Lei. J. Org. Chem. 2011, 76, 800–810.
- 19. Deng, W.; Zou, Y.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. Synlett. 2004, 1254–1258.
- 20. Correa, A.; Carril, M.; Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 2880-2883.
- 21. Eichman, C. C.; Stambuli, J. P. J. Org. Chem. 2009, 74, 4005-4008.
- 22. Wang, T. T.; Yang, F. L.; Tian, S. K. Adv. Synth. Catal. 2015, 357, 928-932.
- 23. Gendre, F.; Yang, M.; Diaz, P. Org. Lett. 2005, 7, 2719-2722.
- 24. Bhadra, S.; Sreedhar, B.; Ranua, B. C. Adv. Synth. Catal. 2009, 351, 2369 2378
- 25. Thomas, A. M.; Asha, S.; Sindhu, K. S.; Anilkumar, G.; *Tetrahedron Lett.* **2015**, *56*, 6560–6564.
- Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874– 5877.
- Boateng, C. A.; Zhu, X. Y.; Jacob, M. R.; Khan, S. I.; Walker, L. A.; Ablordeppey, S. Y. *Eur. J. Med. Chem.* 2011, *46*, 1789–1797.
- 28. Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100 4105.

Yan, X.; Wang, Z.; Cardozo, M.; DeGraffenreid, M.; Di, Y.; Fan, P.; He, X.; Jaen, J. C.; Labelle, M.; Liu, J.; Ma, J.; McMinn, D.; Miao, S.; Sudom, A.; Sun, D.; Tang, L.; Tu, H.; Ursu, S.; Walker, N.; Ye, Q.; Powers, J. P. *Bioorg. Med. Chem. Lett.* 2010, *20*, 7071–7075.

¹H NMR and ¹³C NMR Spectra of New Compounds

1-(4-(Phenylthio)phenyl)ethan-1-one (3a), ¹H NMR (300 MHz, CDCl₃)

1-(4-(p-Tolylthio)phenyl)ethan-1-one (3b), ¹H NMR (300 MHz, CDCl₃)

1-(4-((2,6-Dimethylphenyl)thio)phenyl)ethan-1-one (3c), ¹H NMR (300 MHz, CDCl₃)

1-(4-((3,5-Dimethylphenyl)thio)phenyl)ethan-1-one (3d), ¹H NMR (300 MHz, CDCl₃)

1-(4-((4-Methoxyphenyl)thio)phenyl)ethan-1-one (3e), ¹H NMR (300 MHz, CDCl₃)

1-(4-((4-Fluorophenyl)thio)phenyl)ethan-1-one (3f), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

1-(4-((4-Chlorophenyl)thio)phenyl)ethan-1-one (3g), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

1-(4-((4-Hydroxyphenyl)thio)phenyl)ethan-1-one (3h), ¹H NMR (300 MHz, d_6 -DMSO)

¹³C NMR (75 MHz, *d*₆-DMSO)

1-(4-((4-Aminophenyl)thio)phenyl)ethan-1-one (3i), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

2-((4-Acetylphenyl)thio)benzoic acid (3j), ¹H NMR (300 MHz, *d*₆-DMSO)

¹³C NMR (75 MHz, *d*₆-DMSO)

1-(4-(Naphthalen-2-ylthio)phenyl)ethan-1-one (3k), ¹H NMR (300 MHz, CDCl₃)

1-(4-((4-Methoxybenzyl)thio)phenyl)ethan-1-one (3l), ¹H NMR (300 MHz, CDCl₃)

(4-Methoxyphenyl)(phenyl)sulfane (4a), ¹H NMR (300 MHz, CDCl₃)

4-(Phenylthio)phenol (4b), ¹H NMR (300 MHz, CDCl₃)

4-(Phenylthio)aniline (4c), ¹H NMR (300 MHz, CDCl₃)

(4-Methoxyphenyl)(o-tolyl)sulfane (4d), ¹H NMR (300 MHz, CDCl₃)

(4-Methoxyphenyl)(*m*-tolyl)sulfane (4e), ¹H NMR (300 MHz, CDCl₃)

(4-Methoxyphenyl)(p-tolyl)sulfane (4f), ¹H NMR (300 MHz, CDCl₃)

1-(3-(p-Tolylthio)phenyl)ethan-1-one (4g), ¹H NMR (300 MHz, CDCl₃)

1-(2-(p-Tolylthio)phenyl)ethan-1-one (4h), ¹H NMR (300 MHz, CDCl₃)

4-(p-Tolylthio)benzaldehyde (4i), ¹H NMR (300 MHz, CDCl₃)

Methyl 4-(p-Tolylthio)benzoate (4j), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

(3-Nitrophenyl)(p-tolyl)sulfane (4k), ¹H NMR (300 MHz, CDCl₃)

Phenyl-(4-(p-tolylthio)phenyl)methanone (4l), ¹H NMR (300 MHz, CDCl₃)

4-(p-Tolylthio)benzonitrile (4m), ¹H NMR (300 MHz, CDCl₃)

2-(p-Tolylthio)benzonitrile (4n), ¹H NMR (300 MHz, CDCl₃)

(3,5-Bis(trifluoromethyl)phenyl)(p-tolyl)sulfane (40), ¹H NMR (300 MHz, CDCl₃)

Naphthalen-1-yl(p-tolyl)sulfane (4p), ¹H NMR (300 MHz, CDCl₃)

Naphthalen-2-yl(p-tolyl)sulfane (4q), ¹H NMR (300 MHz, CDCl₃)

(4-Methoxyphenyl)(naphthalen-2-yl)sulfane (4r), ¹H NMR (300 MHz, CDCl₃)

(4-Methoxyphenyl)(pyren-1-yl)sulfane (4s), ¹H NMR (300 MHz, CDCl₃)

Anthracen-9-yl(4-methoxyphenyl)sulfane (4t), ¹H NMR (300 MHz, CDCl₃)

[1,1'-Biphenyl]-4-yl(4-methoxyphenyl)sulfane (4u), ¹H NMR (300 MHz, CDCl₃)

4-((4-Methoxyphenyl)thio)benzamide (4v), ¹H NMR (300 MHz, d₆-DMSO)

¹³C NMR (75 MHz, *d*₆-DMSO)

4-((4-Aminophenyl)thio)-*N*,*N*-dimethylbenzamide (4w), ¹H NMR (300 MHz, CDCl₃)

Methyl 2-amino-5-((4-methoxyphenyl)thio)benzoate (4y) , ¹H NMR (300 MHz, CDCl₃)

1-(4-(Pyridin-4-ylthio)phenyl)ethan-1-one (5a), ¹H NMR (300 MHz, CDCl₃)

1-(4-(Pyridin-2-ylthio)phenyl)ethan-1-one (5b), ¹H NMR (300 MHz, CDCl₃)

1-(4-(Pyrimidin-2-ylthio)phenyl)ethan-1-one (5c), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

1-(4-((4-Aminopyrimidin-2-yl)thio)phenyl)ethan-1-one (5d), ¹H NMR (300 MHz, *d*₆-DMSO)

¹³C NMR (75 MHz, *d*₆-DMSO)

1-(4-((4-(Trifluoromethyl)pyrimidin-2-yl)thio)phenyl)ethan-1-one (5e), ¹H NMR (300 MHz, CDCl₃)

1-(4-(Benzo[d]thiazol-2-ylthio)phenyl)ethan-1-one (5f), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

1-(4-((1*H*-benzo[*d*]imidazol-2-yl)thio)phenyl)ethan-1-one (5g), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

7-((4-Acetylphenyl)thio)-4-methyl-2H-chromen-2-one (5h), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

3-(p-Tolylthio)pyridine (5i), ¹H NMR (300 MHz, CDCl₃)

5-(p-Tolylthio)pyrimidine (5j), ¹H NMR (300 MHz, CDCl₃)

3-(p-Tolylthio)quinolone (5k), ¹H NMR (300 MHz, CDCl₃)

6-(p-Tolylthio)quinolone (5l), ¹H NMR (300 MHz, CDCl₃)

1-(4-((2-Bromophenyl)thio)phenyl)ethan-1-one (6), ¹H NMR (300 MHz, CDCl₃)

2569 -2E+05 -22+05 -22+05 -22+05 -22+05 -25+05 -12+05 -12+05 -12+05 -12+05 -12+05 -90000 -80000 1b-3-118 -70000 -60000 -50000 -40000 -30000 -20000 -10000 ю -10000 1010 3.00 7.5 10.5 10.0 9.5 9.0 8.5 8.0 7.0 5.5 5.0 4.5 4.0 3.5 fl(pps) 2.5 6.5 6.0 3.0 2.0 1.5 1.0 0.5 0.0

1-(4-((2-Chlorophenyl)thio)phenyl)ethan-1-one (7), ¹H NMR (300 MHz, CDCl₃)

2-(5-Methoxy-1-(4-((4-methoxyphenyl)thio)benzoyl)-2-methyl-1H-indol-3-yl)aceti c acid (8), ¹H NMR (300 MHz, CDCl₃)

Isopropyl 2-(4-(4-((4-methoxyphenyl)thio)benzoyl)phenoxy)-2-methylpropanoate (9), ¹H NMR (300 MHz, CDCl₃)

Isopropyl 2-(4-(4-((4-aminophenyl)thio)benzoyl)phenoxy)-2-methylpropanoate (10), ¹H NMR (300 MHz, CDCl₃)

Isopropyl 2-methyl-2-(4-(4-(p-tolylthio)benzoyl)phenoxy)propanoate (11), ¹H NMR (300 MHz, CDCl₃)

4-((4-Methoxyphenyl)thio)-N-(2-morpholinoethyl)benzamide (12), ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

6-((4-Methoxyphenyl)thio)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-sulfona mide 1,1-dioxide (13) ¹H NMR (300 MHz, *d*₆-DMSO)

¹³C NMR (75 MHz, *d*₆-DMSO)

