
Biometrics –, 1–18 DOI: 000

– 2016

Web-based Supplementary Materials for Estimation of eQTL Effect Sizes Using

a Log of Linear Model by J. Palowitch, A. Shabalin, Y.H. Zhou, and A.B.

Nobel, F.A. Wright

This paper has been submitted for consideration for publication in Biometrics



Supplemental: eQTL Effect Sizes Using Log of Linear Model 1

A. QN-linear fit vs. ACME fit

An illustration of the information loss incurred by the QN-linear model approach to eQTL

analysis can be made by considering two gene-SNP pairs, each with eQTL evidence that is

similar under QN transformation, but disparate on the log scale. We chose one such pair from

real data, displayed in main Figure 1. While the estimated ACME effect size of pair 2 is ten

times greater than that of pair 1, the effect sizes from linear regression with QN-transformed

expression are nearly the same. Furthermore, the baseline expression of pair 1 is far greater

than that of pair 2, a feature that is obscured by the QN transformation.

[Figure 1 about here.]

B. Pre-processing gene read counts

Let xij denote elements of the original count matrix, where i = 1, . . . , n indexes samples and

j = 1, . . . , T indexes genes. Let li =
∑

j xij be the library size for sample i. The overall entry-

wise mean is x̄ =
∑
i

∑
j xij

Tn
. The final normalized count matrix elements are cij =

xij
li
T x̄. This

process results in a standardized matrix with constant column sums. Similar normalization

is performed by software such as DESeq2 (Love et al., 2014), but with additional attention

to nonlinear scaling relationships.

C. The pathological nature of residuals from raw expression

In this brief section we present a small simulation to show that the non-Normality observed in

residuals from simple linear regression applied to un-transformed, normalized gene expression

can be detrimental to the Type-I error rate in large-scale eQTL analyses. The simulation

involves taking complete estimated residual vectors from real-data analyses, adding them to

a simulation model of eQTL action with no signal, and re-applying simple linear regression

to obtain a p-value. We did this using the test data from the analysis described in Section
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2.3 of the main text. For each of one million simulation repetition, we (1) chose a real SNP

vector from 40,000 sample vectors associated with Thyroid tissue, (2) chose an estimated

residual vector resulting from one of the 40,000 regressions using un-transformed expression,

(3) added the residual vector to an arbitrary β0 coefficient to obtain simulated expression

data, and (4) performed simple linear regression on the simulated expression data vs. the

(randomly chosen) SNP vector, obtaining an F -test p-value. As shown in Figure 2, the p-

value distribution is highly non-uniform. This supports the idea that indeed, a minimum

condition to proceed with a reasonable eQTL analysis is to transform raw gene expression

in a way that reduces non-Normality.

[Figure 2 about here.]

D. Tests of normality and homoskedasticity

This section contains the results from tests for normality and homoskedasticity of residuals,

for each cis-QTL group, and for all single-pair eQTL models considered in this paper. For each

of the 10,000 gene-SNP pairs in each eQTL group (see in Section G above), we calculated the

p-value for the canonical Shapiro-Wilk test for normality, and the p-value for the canonical

Bartlett test for homoskedasticity. Figure 3 displays boxplots of these p-values on the − log10

scale. We see that residuals for the linear model with raw gene expression (“RAW”) are less

normal and less homoskedastic than the residuals for the log-based models (ACME, log-

linear (“LL”), and log-ANCOVA (“ANCOVA”)). This is particularly true for weak eQTLs,

for which error assumptions are most important for Type I error control. The dark-red lines

in the figure represent the typical FDR cut-off applied to each bin of the data. Results from

other GTEx tissues are given in Figures 11-12, and follow the same pattern.

[Figure 3 about here.]
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E. ACME fitting algorithm

Here we describe the iterative algorithm used to identify parameters β0 and β1 that ap-

proximately maximize the likelihood of the ACME model. For a particular gene-SNP pair,

maximizing the likelihood is equivalent to minimizing the sum of squares

∑
i

(yi − log(β0 + β1si)− 〈Zi, γ〉)2 (1)

over the parameters β0, β1 and γ. The iterative algorithm operates by carrying out least-

squares regression on an approximating linear model. Denoting the natural effect size β1/β0

by η, under the ACME model the conditional mean of yi given Zi and si is given by

E[yi|Zi, si] = log(β0) + log(1 + siη) + ZT
i γ (2)

A first-order Taylor approximation of log(1 + siη) around η at an estimate η̂j gives

E[yi|Zi, si] ≈ log(β0) + log(1 + si η̂
j) +

si
1 + s η̂j

(η − η̂j) + ZT
i γ (3)

We use this approximation to motivate a linear model, in which the response variable is

di := yi− log(1 + si η̂
j). Define θ0 := log(β0) and θ1 := η− η̂j. Then subtracting log(1 + si η̂

j)

from each side of Equation 3 yields the following linear model in the parameters θ0, θ1, and

γ:

di = θ0 +
si

1 + si η̂j
θ1 + ZT

i γ + εi (4)

After fitting this model at the jth iteration, we set η̂j+1 to θ̂1 + η̂j, and repeat the procedure.

This is repeated until |η̂j− η̂j+1| is close to machine precision. As the likelihood (1) is convex,

we can expect convergence, since the algorithm is similar to a Gauss-Newton procedure. The

last estimates of θ0 and θ1 are then used to obtain estimates of β0 and β1 via the equations

β̂0 = exp{θ̂0} and β̂1 = β̂0η̂.

We set the initial estimate of η to 0. If for any j, 1 + siη̂
j is negative for any index i, we

divide η̂j by 2 and restart the j-th iteration.
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F. Derivation of effect size standard error

Defining θ0 := log(β0) and η := β1/β0, the ACME model may be expressed

yi = θ0 + log(1 + ηsi) + ZT
i γ + εi (5)

for samples i = 1, . . . , n. As discussed in Section 2.2, we use “effect size” to refer to η. Let

ε̂i be the estimated residual for patient i from (5). Let C be an orthonormalization of the

matrix (1n,Z
T ), and define P := (In−CCT ). Letting y, log(1 + ηs), and ε̂ be n× 1 vectors

corresponding to the full set of sample data, we have

ε̂ = P [y − log(1 + ηs)] , (6)

as the matrix P residualizes the effect of θ0 and γ. Thus, the log-likelihood for the full model

may be expressed in terms of η, P , σ2 only:

− logL(y; s, η, P, σ2) =
n

2
log(2πσ2) +

σ−2[y − log(1 + ηs)]TP TP [yi − log(1 + ηs)] (7)

We now derive an approximate observed Fisher information for η, using (6). Note that

d
dη
ε̂ = −P s

1+ηs
and d2

(dη)2
ε̂ = P s2

(1+ηs)2
(where all operations to vectors are component-wise).

Define d := y − log(1 + ηs). Then

−I(η) =
d2

(dη)2

[
1

2
log
(
2πσ2

)
+

1

2σ2
ε̂T ε̂

]

=
1

2σ2
2
[
ε̂′′T ε̂+ ε̂′T ε̂′

]
=

1

σ2

[(
s2

(1 + ηs)2

)T
Pd+

(
s

1 + ηs

)T
P

s

1 + ηs

]
,

since P is idempotent. The asymptotic standard error for the model can then be estimated

by
√
−I(η̂)−1 with σ2 replaced by σ̂2. Uncertainty in the remaining parameters and their

effect on η is propagated through P . To check the accuracy of the standard error, we

computed a purely numerical Hessian matrix for the log-likelihood and the full Fisher

observed information matrix, verifying a close numerical match to the derivation above.
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G. Sampling scheme for residual and goodness-of-fit tests

We created a sub-sampled eQTL data set comprised of equally-sized groups of null, weak,

medium, and strong eQTLs. To determine the groups, we used the detection p-value associ-

ated with the QN-linear model (described in Section 1.1) as an a priori measure of eQTL

association strength within a fixed dataset. Although our intention is to provide a new effect

size measure, this prior stratification provides a refined view of ACME model behavior at

various levels of association evidence. The four groups of cis-eQTL pairs were defined as

follows: “null” eQTLs with − log10 p-value in [0, 5); “weak” eQTLs with − log10 p-value in

[5, 10); “medium” eQTLs with − log10 p-value in [10, 15); and “strong” eQTLs with − log10

p-value in [15,∞). The sub-sampled data were obtained by sampling 10,000 pairs from each

group, uniformly-at-random.

H. Framework for direct null simulation

The preliminary data set used in Section 2.3 contained data from 40,000 unique gene-SNP

pairs. When calculating the residual diagnostics presented in that section, we saved the

estimated residual vectors (computed by the ACME fit) from each gene-SNP pair. We used

these to create 25 null-data replications of each of the 40,000 pairs from the preliminary

data. For a fixed gene-SNP pair, we went through the following steps:

(1) Recalled s the real allele count vector, β̂0 the ACME-estimated value of β0 from the

preliminary data, and σ̂ the ACME-estimated value of σ from the preliminary data

(2) For r = 1, . . . , 25, constructed a vector of realistic errors εr by

εr = σ̂ε∗r +Nr(0, σ̂/10)

where ε∗r is a randomly selected stored residual vector from one of the 40,000 gene-SNP

pairs, scaled to have variance 1. The addition of Nr(0, σ̂/10) is a “jitter” (indepenent
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within r and between all 40,000 pairs) to ensure that no two chosen mock-residual vectors

are equivalent, while allowing them to retain any inherent non-Normality.

(3) Constructed the j-th replication of null gene expression data

gr = exp
{

log(β̂0) + Zγr + εr
}

where γr is Np(0p, Ip) and independent within r and between all 40,000 pairs.

I. Framework for importance sampling

The basic ACME model is

y = log(β0 + β1x) + ε (1)

and ε ∼ N(0, σ2). The likelihood ratio and F -statistics both use maximum likelhood esti-

mation of the parameters. For a target type I error α for a single test, we wish to estimate

αtrue, the true probability of rejection under the null. The skew normal density for ε pro-

vides a simple distribution family to investigate the effect of skew on p-value accuracy. For

random variable Z, we have density g(z) = 2φ(z)Φ(γz), and define δ = γ/
√

(1 + γ2) and

ε = (Z − ξ)/ω, where µ and σ2 are chosen so that E(ε) = 0 and var(ε) = σ2. The skewness

of ε, determined by δ, is 4−π
2

(
δ
√

2/π
)3

(1−2δ2/π)3/2
.

With importance sampling, it is feasible to estimate αtrue, even for very small α. Let

Fη(x, y) be the true joint distribution function for the vectors x and y and f its density,

where η = {β0, β1, σ2, δ} and σ2 is the variance of ε and δ is its scaled skew parameter. If

δ = 0 then ε is normal, and if δ > 0 then ε is skewed right. Let p(x, y) be the p-value obtained

from the F -statistic for x and y. We will use η0 to refer to the null model {β0, 0, σ2, δ}. We

have

αtrue = Pη0(reject) =

∫
x

∫
y

fη0(x, y)I[p(x, y) < α]dxdy . (2)

and I is the indicator function. Simple rejection sampling estimates αtrue by independently

simulating from Fη0 K times. For the kth simulation, we compute ak = I[p(xk, yk) < α], and
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α̂true =
∑K

k=1 ak/K. It is easy to show that α̂true is unbiased for αtrue. However, it is not

very accurate unless K is extremely large.

To implement importance sampling for a fixed significance threshold α, we sample data

from some alternative distribution Fη† which has the same support as Fη0 . When sampling

from Fη† , let bk = I[p(xk, yk) < α]
fη0 (xk,yk)

f
η† (xk,yk)

. Then

Eη†(bk) =

∫
x

∫
y

fη†(x, y)I[p(x, y) < α]
fη0(x, y)

fη†(x, y)
dxdy = αtrue, (3)

so the importance sampling estimate α̂†true =
∑K

k=1 bk/K is also unbiased. Through a good

choice of η′, α̂†true can have a much smaller variance than α̂true for a given number of samples

K.

Before going further we note that in eQTL applications x corresponds to genotype, and the

outer integral in the above equations can be replaced by a sum over possible genotypes. Also,

x is assumed to be unaffected by the parameter η in the eQTL model, so fη0(x, y)/fη†(x, y) =

fη0(y|x)/fη†(y|x) and likelihood ratios are also computed conditional on x.

Choosing η†

To choose η†, we use the heuristic approach that when sampling from Fη† we wish the F -

statistic to reject with probability about 0.5. Determining an appropriate η† could be done

by trial and error, but a faster approach is to use an approximate correspondence between

model (1) and linear regression of y on x, with normal errors. Although the difference between

a linear model and the ACME model is of key importance for this paper, for the purpose

of importance sampling only a crude correspondence needs to hold. We consider the (rare)

scenario under the null hypothesis that our linear regression p-value is approximately α.

Under such a event, the squared correlation coefficient r2α between x and y can be easily

solved, such that the linear regression p-value equals α. Once r2α is obtained, we solve for β†0

and β†1 in the true ACME model such that the true correlation between random X and Y

is exactly r2α. We also note that even under this rare event that observed x and y appear to
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be correlated, the mean and variance of the vector y still tends to be near the true values of

log(β0) and σ2. Thus, finally, we solve for β†0 and β†1 such that

E(log(β†0 + β†1X)) = log(β0),
var(log(β†0 + β†1X))

σ2
= r2α. (4)

Equations (4) actually provide two solutions, {β†0−, β
†
1−}, {β

†
0+, β

†
1+},according to the sign of

rα, because the form of (1) is not symmetric for positive and negative β1. Thus we obtain

both solutions and our final importance sampler will sample from each solution with equal

probability.

To summarize our approach, using (4) we obtain η†− = {β†0−, β
†
1−, σ

2, δ}, η†+ = {β†0+, β
†
1+, σ

2, δ},

and draw importance samples from Fη† = 1
2
(Fη−† + Fη+†).

To illustrate our approach to choosing η†, we performed 105 simulations for the null model

with skewed errors with β0 = 100, n = 250, σ2 = 1, and skew normal errors with parameter

δ = 0.97 (which produces a skewness of 0.78). Supplementary Figure 7A shows the p-values

as a function of β̂1. The red overlay shows the β†1 values, using each corresponding p-value

as the significance level α/2 for each tail. The result shows that our approach to selecting

β†1 values appears to be reasonable. Supplementary Figure 7B shows the corresponding β̂0

values, as well as the β†0 values. Efficiency of the importance sampler requires that a non-

trivial fraction (we target the range of 10%-90%) of the sampled p-values be above and

below the target α value. For our setup and α = 10−20, we simulated 10,000 datasets from

the corresponding Fη† . The distribution of p-values (Supplementary Figure 7C) shows that

16% were below α, which is within our target range. Supplementary Figure 7D shows the

true rejection probabilities vs the target α values. For this setup, the p-values are highly

accurate to α = 10−12, but becomes somewhat conservative for smaller α.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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[Figure 7 about here.]
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J. Moment Corrected Correlation (MCC)

Although F -tests for the ACME model appear to perform well, a robust method is available

as an accompanying analysis. Permutation of covariate-corrected data (log-expression vs.

genotype) can in principle be used for tests of association. However, the number of per-

mutations necessary to achieve sufficiently small p-values to survive multiple testing can

be prohibitive. Moment Corrected Correlation (MCC) (Zhou and Wright, 2015) uses the

first four exact permutation moments to provide robust p-values, and to closely mimic

permutation even for exceptionally small p-values. We briefly describe the method and

its application to GTEx eQTL data here. Although the approach can be very fast when

applied genome-wide (Zhou and Wright, 2015), it is not optimized for cis-eQTL analysis

in which each gene has a different set of cis-SNPs, and thus is comparatively slower than

the ACME approach (although much faster than actual permutation). The MCC method is

most powerful on linear data, but is conservative in general under the null of no association

(linear or otherwise)

We show two sets of figures to portray the usefulness of MCC. For four different tissues,

and on 10,000 randomly chosen cis eQTLs within each tissue, we calculated MCC p-values,

direct (random) permutation p-values, and linear regression p-values. In each case, the p-value

corresponds to the association between log(1 + normalized read counts) and allele counts.

In Figure 8, we show compare MCC p-values to those obtained from permutation. We see

a very close fit, with deviation in the tails due to resolution loss for low permutation p-

values. In Figure 9, we compare the log-linear regression p-values to those same permutation

p-values. We see much more spread here, which verifies the success of MCC in matching the

direct-permutation p-values.

[Figure 8 about here.]

[Figure 9 about here.]
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[Figure 10 about here.]
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[Figure 11 about here.]
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[Figure 12 about here.]
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[Figure 13 about here.]
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[Figure 14 about here.]
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[Figure 15 about here.]
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[Figure 16 about here.]
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[Figure 17 about here.]
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[Figure 18 about here.]
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[Figure 19 about here.]

[Figure 20 about here.]
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Figure 1: eQTL data from two selected gene-SNP pairs from Adipose tissue. The fitted
lines correspond to the estimated parameters from each model.
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Figure 2: p-value distribution from standard linear regression applied to 1,000,000 null
eQTLs with un-transformed expression and estimated residuals from real data.
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Figure 3: Boxplots of − log10 Shapiro-Wilk and Bartlett p-values from all models. Above,
“AOV” denotes the log-ANCOVA model, “LL” the log-linear model, and “RAW” the
standard linear model with un-transformed gene expression. The dark red dashed line
indicates the FDR α = 0.1 significance cut-off for the particular bin.
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Figure 4: Importance sampling results for ACME F -test p-values. For sample sizes > 250,
results are highly accurate or in some cases modestly conservative.
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Figure 5: Importance sampling results for ACME F -test p-values. For sample sizes > 250,
results are highly accurate or in some cases modestly conservative.



26 Biometrics, – 2016

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=100  alpha=-2

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=100  alpha=0

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=100  alpha=2

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=250  alpha=-2

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=250  alpha=0

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=250  alpha=2

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=500  alpha=-2

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=500  alpha=0

0 5 10 15 20

0
5

1
0

1
5

2
0

-log10(thresh.vector)

-l
o
g
1
0
(t

h
re

s
h
h
a
t)

n=500  alpha=2

MAF=0.1

n=100, skew=-0.45

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

n=100, skew=0 n=100, skew=0.45

n=250, skew=-0.45 n=250, skew=0 n=250, skew=0.45

n=500, skew=-0.45 n=500, skew=0 n=500, skew=0.45

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0(

tr
u

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

-l
o

g1
0

(t
ru

e 
al

p
h

a)

-log10(target alpha)

Figure 6: Importance sampling results for ACME F -test p-values. For sample sizes > 250,
results are highly accurate or in some cases modestly conservative.
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Figure 7: The four panels illustrating importance sampling methods, as described in text
II.
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Figure 8: MCC p-values vs. real permutation p-values, each method applied to log-
transformed normalized read count vs. rounded allele counts (from Adipose, Artery, Heart,
and Muscle, clockwise from the top left).
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Figure 9: Permutation p-values vs. linear regression p-values, each method applied to log-
transformed normalized read count vs. rounded allele counts (from Adipose, Artery, Heart,
and Muscle, clockwise from the top left).
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Figure 10: For 10,000 randomly sample gene-SNP pairs from Adipose tissue, the sample
skewnesses of eQTL residuals against log10 of the average normalized read counts (across
patients) of the gene associated with each eQTL
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Figure 11: Additional normality test results
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Figure 12: Additional homoskedasticity test results
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Figure 13: Additional goodness-of-fit test results for ACME
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Figure 14: Additional goodness-of-fit test results for log-linear
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Figure 15: Additional goodness-of-fit test results for QN-linear
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Figure 16: This plot is introduced at the beginning of Section 2 of the main text. For each
tissue, we applied the Box-Cox transformation to the expression data of the 10,000 “Null”
eQTLs (as defined by Matrix-eQTL p-value, see Web Section Section G). To each tissue-
wise set of transformed expression vectors, we then computed the p-value resulting from the
Shapiro-Wilk test of normality. This effectively judges various Box-Cox transformations with
respect to the normality of the residual distribution (as judged by the un-extremity of the
p-value) of eQTLs from real data.
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Figure 17: Additional null simulations for ACME and LL. p-value distributions from null
simulated data with realistic errors and real covariate/genotype data. λ values are inflation
factors.
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Figure 18: Results of large-scale simulation experiment, with increasing σγ (results from
σγ = 1 in the main document. Left column: − log 10 F -test p-values as a function of η.
Middle and right columns: predicated raw expression with one and two reference alleles,
respectively.
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Figure 19: Results of genome-wide cis-eQTL ACME effect size estimations on (by row)
Adipose, Artery, Heart, and Muscle tissue, from GTEx Pilot data. Left column: Maximum
gene-wise estimated effect size vs. log average expression level. Middle column:− log10 ACME
p-value vs. distance from gene TSS to SNP position. These are known patterns of full-genome
cis-eQTLs (for instance, that effect sizes are stronger and more significant when SNP is close
to gene transcription start site), and serve as QC checks for ACME estimates.
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Figure 20: Results of genome-wide cis-eQTL effect size estimations on (by row) Adipose,
Artery, Heart, and Muscle tissue, from GTEx Pilot data. Left (and middle) column: ACME
effect size (under w transformation from Section 4 in main document) vs QN (and LL)
regression. Right column: QN vs ACME regression p-values.


