Supplemental information

In planta processing of the SpCas9/gRNA complex

Masafumi Mikami^{1,2}, Seiichi Toki^{1,2,3} Masaki Endo^{2*}

¹ Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama, Kanagawa 236-0027, Japan.

² Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.

³ Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, Kanagawa, 244-0813, Japan.

*Corresponding author, E-mail, mendo@affrc.go.jp;

Tel, +81 29 838 8450; Fax, +81 29 838 8450

Supplemental Figure Legends

Figure S1.

Targeted mutagenesis using SpCas9-rz-gRNA or SpCas9-gRNA systems at different target loci in rice calli.

(A) Mutation variations on *DL* gene locus (gDL-1) in the SpCas9-rz-gRNA vector transformed callus line #4. The wild type sequence is shown at the top with the PAM sequence in green, and the 20-nt target sequence in red. The blue arrowhead indicates the expected cleavage site. Dashes: deleted bases. The net changes in length are shown to the right of each sequence (+, insertion; -, deletion). The number of clones representing each mutant allele is shown in brackets. (B) CAPS analysis of three genes in each of SpCas9-rz-gRNA vector transformed calli and SpCas9-gRNA vector transformed calli. Mutation frequency of calli shown by red was calculated from ratio of sequenced clones with mutation. -: Non-digested PCR products, +: *Pst* I-digested PCR products. Blue arrowhead indicates mutations in the target loci.

Figure S2.

Targeted mutagenesis using SpCas9-rz-gRNA or SpCas9-gRNA systems in *Arabidopsis.* (A) Schematic representation of the constructs used in this study. The *SpCas9* gene was optimized for *Arabidopsis* codon usage, and controlled by ubiquitin 4-2 promoter from *Petroselinum crispum* (PcUbi; Fauser et al. 2012). (B) CAPS analysis of *BRI1* gene in each of SpCas9-rz-gRNA vector transformed T1 plants and SpCas9-gRNA vector transformed T1 plants. Mutation frequency of calli shown by red was calculated from ratio of sequenced clones with mutation. –: Non-digested PCR products, +: *Pst* I-digested PCR products. Blue arrowhead indicated the position of undigested PCR products. An undigested band indicates mutations in the target loci. (C) Mutation variations on *BRI1* gene locus in the SpCas9-rz-gRNA vector transformed T1 plant line #6. The wild type sequence is shown at the top with the PAM sequence in green, and the 20-nt target sequence in red. The blue arrowhead indicates the expected cleavage site. Dashes: deleted bases. The net changes in length are shown to the right of each sequence (+, insertion; -, deletion).

Figure S3.

Schematics of expected gRNA sequences by northern blot analysis.

(A) Schematics of gRNA sequence driven by OsU6 (pol III) or 2x35S (pol II) promoters. (B) Schematics of gRNA sequence connected to *HPT* gene. (C) Schematics of sequence of SpCas9-rz-gRNA. Blue character; target sequence, red character: gRNA scaffold sequence, orange character: poly (T) sequence, green character: 35S terminator sequence, purple character: pea3A terminator sequence gray character: poly (A) addition signal sequence, pink character: hammerhead ribozyme sequence, 'G' italic character: predicted transcription start site, under lined character: *HPT* or *SpCas9* gene sequence .

Supplemental Figure Legends

Figure S4.

Northern blot analysis of gRNA expression by prolonged exposure.

This figure shown prolonged exposure of Fig. 3B.

Figure S5.

Comparison of mutation frequency among three promoters using SpCas9-rz-gRNA vector in rice calli.

Mutation frequency of calli shown by red was calculated from ratio of sequenced clones with mutation. -: Non-digested PCR products, +: *Pst* I-digested PCR products. Blue arrowhead indicated the position of undigested PCR products. An undigested band indicates mutations in the target loci.

Figure S6.

Structure of in-vitro-transcribed gRNAs

Schematic representation of the expected size (nt) of in-vitro-transcribed gRNAs in this study. *: OsU6gRNA_T7 was synthesized using Guide-it sgRNA *In Vitro* Transcription Kit (TAKARA).

Figure S7.

Analysis of five in-vitro-transcribed gRNAs in a SpCas9 protein dependent manner.

(A) Northern blot analysis of five in-vitro-transcribed gRNAs in the presence or absence of the SpCas9 protein. Target gene was *DL* gene (gDL-1 locus). In-vitro-transcribed gRNAs No. 1: OsU6gRNA_T7, No. 2: 2x35SgRNA_T7, No. 3: SpCas9:fra-rz-gRNA, No. 4: SpCas9:fra-gRNA, No. 5: HPT-rz-gRNA_T7. *h* band: gRNA processed by the hammerhead ribozyme sequence from SpCas9:fra-gRNA. *i* band: gRNA processed by the hammerhead ribozyme sequence from HPT-rz-gRNA. (B) Cleavage efficiency of target DNA using five in-vitro-transcribed gRNAs in a SpCas9 protein dependent manner. The reaction solutions did not add RNase A after in vitro cleavage reaction. Target gene was *DL* gene (gDL-1 locus). Arrowheads indicated the position of cleaved PCR products. Cleavage efficiency was determined by the formula, 100*(1-sqrt(1-(b+c)/(a+b+c))), where a is the integrated intensity of the PCR product digested only with gRNA, and b and c are the integrated intensities of each cleavage product.

Supplemental Figure Legends

Figure S8.

SpCas9 protein- and RNases-mediated other target DNA cleavage in vitro.

Cleavage of the liner target DNA of the gDL-2 locus in a SpCas9 protein- and RNase III- or RNase T1-dependent manners. Yellow arrowheads indicated the position of cleaved PCR products. Cleavage efficiency was determined by the formula, 100*(1-sqrt(1-(b+c)/(a+b+c))), where a is the integrated intensity of the PCR product digested only with gRNA, and b and c are the integrated intensities of each cleavage product. +* means that the SpCas9 protein, RNase III or RNase T1 are added after 20 min of the in vitro cleavage reaction.

Figure S9.

Multiplex targeted mutagenesis with or without different positions of ribozyme sequence and gRNA in rice calli.

(A) Schematic representation of the SpCas9-gRNAs vectors and CAPS analysis of each of DL-1 and DL-2 locus on *DL* gene. –: Non-digested PCR products, +: *Pst* I-digested PCR products. (B) Schematic representation of the 1145 bp region with two gRNA-targeted sites. F1, F2, R1 and R2: PCR primers. Blue arrowheads : target loci (gDL-1 and gDL-2 loci). (C) Deletion and sequence of 1145 bp induced by using each of SpCas9-gRNA vectors in rice calli. Blue arrowhead indicated the position of 1145 bp deleted PCR products. WT band: 1937 bp, expected deletion band: 792 bp. (D) Mutation variations of large deleted PCR products on *DL* gene locus in line #2. The wild type sequence is shown at the top with the PAM sequence in green, and the 20-nt target sequence in red. The blue arrowhead indicates the expected cleavage site. Dashes: deleted bases.

(A) Target gene : *DL* (gDL-1 locus)

SpCas9-rz-gRNA transformed callus : line #4

TTTTTCGTCTTTTGGGTAGCTGCAGGTTGGAGTCCCATG	WT	(x0)
TTTTTCGTCTTTTGGGTAGCTGC-GGTTGGAGTCCCATG	-1	(x2)
TTTTTCGTCTTTTGGGTAGCAGGTTGGAGTCCCATG	-3	(x2)
TTTTTCGTCTTTTGGGTAGCGGTTGGAGTCCCATG	-4	(x1)
TTTTTCGTCTTTTGGGTAGGAGTCCCATG	-10	(x1)
TTTTTCGTCTTTTGGTTGGAGTCCCATG	-11	(x1)
TTTTTCGTCTTTTGGGTAGCTGCAACAACCTCTC	-22+10	(x1)
TTTTTCGTCTTTTGGGTAGCTGCACGGTTGGAGTCCCATG	+1(C)	(x2)
TTTTTCGTCTTTTGGGTAGCTGCAAGGTTGGAGTCCCATG	+1(A)	(x11)
TTTTTCGTCTTTTGGGTAGCTGCATGGTTGGAGTCCCATG	+1(T)	(x2)
TTTTTCGTCTTTTGGGTAGCTGCAGGGTTGGAGTCCCATG	+1(G)	(x1)

(C)

SpCas9-rz-gRNA transformed plant : line #6

TTCTCAATTTGGGTCATAACGATATCTCTGGTTCGATTCC	T WT	(x21)
TTCTCAATTTGGGTCATAACGATA-CTCTGGTTCGATTCC	т -1	(x2)
TTCTCAATTTGGGTCATAATCTCTGGTTCGATTCC	т -5	(x1)

(A) SpCas9/OsU6gRNA and SpCas9/2x35SgRNA

OsU6-pro::gRNA::polyT-ter

2x35S-pro::gRNA::35S-ter

(B) SpCas9-rz-gRNA and SpCas9-gRNA

SpCas9-hammerhead ribozyme::gRNA::pea3A-ter

GAATAGATCTTAGCCAGCTCGGCGGTGATTGAAAGCCATGGGATATCNNNNNNCTGATGAGTCCGTGAGGACG AAACGAGTAAGCTCGTCNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC TAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTACTAGTCGCAGGCCTCCCAGCTTTCGTC CGTATCATCGGTTTCGACAACGTTCGTCAAGTTCAATGCATCAGTTTCATTGCCCACACACCAGAATCCTACTAAG TTTGAGTATTATGGCATTGGAAAAGCTGTTTTCTTCTATCATTTGTTCTGCTTGTAATTTACTGTGTTCTTTCAGTTT TTGTTTTCGGACATCAAAATGCAAATGGATGGATAAGAGTTAATAAA

SpCas9::gRNA::pea3A-ter

(C) SpCas9 or GFP/HPT-rz-gRNA

2x35S-pro::HPT::hammerhead ribozyme::gRNA::35S-ter

(B)

(A)

(B)

(C)

(D)

3. gDL-1-gDL-2 vector transformed callus : line #2

1145 bp	
1117 bp	
TTCGTCTTTTGGGTAGCTGCAGGTTGG//TTAGGGACCTTGCACTGACTGCAGGAGGAACC	WT
TTCGTCTTTTGGGTAGCTGCA//AGGAGGAACC	-1145
TTCGTCTTTTGGGTAGCTGCA//GGAGGAACC	-1146
TTTCGTGGAGGAACC	-1162

Table. S1

Mutation variations of transgenic plants regenerated from SpCas9-gRNAs vetor transformed calli.

						1.	. rz-;	gDL·	-1-r:	z-gD)L-2	vec	tor	tran	sfor	me	d re	gene	erat	ed p	blan	ts					
callus No.			#	2			#4										-	#6		-	#8						
Regenerated plants	1	2	3	4	5	6	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	1	2	3	4	5	6
gDL-1 locus	М	В	В	В	В	М	В	М	Μ	М	М	WΤ	В	WΤ	WΤ	WT	Μ	М	В	М	М	М	WΤ	WT	WΤ	WT	М
gDL-2 locus	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	М	Μ	Μ	М	Μ
gDL-1+2 loci	×	×	×	×	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	×	×
phenotype	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	WT	WT	Dr	WT	Dr						

		2. rz-gDL-2-z-rgDL-1 vector transformed regenerated plants																				
callus No.				#1						#2			#4									
Regenerated plants	1	2	3	4	5	6	7	1	2	3	4	5	1	2	3	4	5	6	7	8	9	
gDL-1 locus	В	В	В	В	Μ	Μ	В	М	WT	Μ	В	WΤ	В	В	В	В	В	В	В	В	В	
gDL-2 locus	В	В	В	В	В	В	В	В	М	В	М	В	В	В	В	В	В	В	В	В	В	
gDL-1+2 loci	×	×	×	×	×	×	×	×	0	×	×	×	×	×	×	×	×	×	×	×	×	
phenotype	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	

		3. gDL-1-gDL-2 vector transformed regenerated plants																					
callus No.			_	#	1				#2									#5					
Regenerated plants	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	З	4	5		
gDL-1 locus	WT	М	В	М	В	В	В	В	В	В	В	В	В	В	В	В	Μ	WT	WΤ	М	WΤ		
gDL-2 locus	М	В	В	В	В	В	М	В	В	В	В	В	В	В	В	В	Μ	Μ	М	М	В		
gDL-1+2 loci	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	×	×	×	×		
phenotype	WT	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	WΤ	WT	Dr		

							4.	gDL	-2-g	DL-:	1 ve	ctor	tra	nsfo	orme	ed r	egei	nera	ted	pla	nts						
callus No.			#	1			#2							#3								#4					
Regenerated plants	1	2	3	4	5	6	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	З	4	5
gDL-1 locus	WΤ	WT	WT	WΤ	WT	WΤ	В	В	В	В	В	В	В	В	WΤ	М	В	В	В	WΤ	В	WT	WT	WT	WT	Μ	Ν
gDL-2 locus	WΤ	WT	WT	WΤ	WΤ	WΤ	В	В	В	В	В	В	В	В	В	В	В	В	В	WΤ	В	WT	В	В	В	В	В
gDL-1+2 loci	0	0	0	0	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	0	×	0	×	×	×	x	×
phenotype	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr							

B, bi-allelic mutation

M, mono-allelic mutation

O, deletion between gDL-1+2 loci on mono-allelic

◎, deletion between gDL-1+2 loci on bi-allelic

Dr, drooping leaves phenotype

WT, wild type

Usage	Primer name	Sequence $(5' \rightarrow 3')$
gRNA-oligo for rice	rz-gDL-1-F	TATCAAAAGACTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCTCTTTTGGGTAGCTGCAGGT
	rz-gDL-1-R	AAACACCTGCAGCTACCCAAAAGAGACGAGCTTACTCGTTTCGTCCTCACGGACTCATCAGTCTTTT
	rz-gDL-2-F	TATCAAGGTCCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCGACCTTGCACTGACTG
	rz-gDL-2-R	AAACCCTGCAGTCAGTGCAAGGTCGACGAGCTTACTCGTTTCGTCCTCACGGACTCATCAGGACCTT
	rz-gYSA-F	TATCGCGCGCCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCGCGCGCCACCTCGGCCGAAG
	rz-gYSA-R	AAACCTTCGGCCGAGGTGGCGCGCGACGAGCTTACTCGTTTCGTCCTCACGGACTCATCAGGCGCGC
	rz-gPDS-F	TATCTGGACGCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCCGTC
	rz-gPDS-R	AAACGCAGAGGAATGGGTTGGACGGACGAGCTTACTCGTTTCGTCCTCACGGACTCATCAGCGTCCA
	gDL-1-F	TATCTCTTTTGGGTAGCTGCAGGT
	gDL-1-F for 2x35S	GAGGTCTTTTGGGTAGCTGCAGGT
	gDL-1-R	AAACACCTGCAGCTACCCAAAAGA
	gDL-2-F	TATCGACCTTGCACTGCAGG
	gDL-2-R	AAACCCTGCAGTCAGGGCCAAGGTC
	gYSA-F	TATCGCGCGCCACCTCGGCCGAAG
	gYSA-R	AAACCTTCGGCCGAGGTGGCGCGC
	gPDS-F	TATCCGTCCAACCCATTCCTCTGC
	gPDS-R	AAACGCAGAGGAATGGGTTGGACG
	gDMC1A-F for 2x35S	GAGGTGGAGATGTGAAGAAGCTGC
	gDMC1A-R	AAACGCAGCTTCTTCACATCTCCA
gRNA-oligo for	rz-gBRI1-F	TATCACCCAACTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCTTGGGTCATAACGATATCTC
Arabidopsis	rz-gBRI1-R	AAACGAGATATCGTTATGACCCAAGACGAGCTTACTCGTTTCGTCCTCACGGACTCATCAGTTGGGT
	gBRI1-F	TATCTTGGGTCATAACGATATCTC
	gBRI1-R	AAACGAGATATCGTTATGACCCAA
Primers for Guide-it	In vitro_T7-gDL-1	GCGGCCTCTAATACGACTCACTATAGGGTCTTTTGGGTAGCTGCAGGTGTTTTAGAGCTAGAAATAGCA
sgRNA <i>In Vitro</i> Transcription Kit	In vitro_T7-gDL-2	GCGGCCTCTAATACGACTCACTATAGGGGACCTTGCACTGACTG
Primers for in Vitro	T7-gDL-1-F	AATACGACTCACTATAGGTCTTTTGGGTAGCTGCAGGTGTTTTAGAGC
Transcription T7 Kit	T7-gDL-2-F	AATACGACTCACTATAGGGACCTTGCACTGACTGCAGGGTTTTAGAGC
	T7-SpCas9-F	AATACGACTCACTATAGGACGGGAGAAAGCGTATGCTGGCGTCGGCGG
	T7-HPT-F	AATACGACTCACTATAGGATGAAAAAGCCTGAACTCACCGCGACGTCT
	PolyT-gRNA-Scaffold-R	AAAAAAGCACCGACTCGGTGCCACTTTTT
	pea3A-polyA-signal-R	TTTATTAACTCTTATCCATCCATTTGCATTTTGATGTCCG
PCR	OsDL-1F	CAGTGTCATGTTCCATCTTCCGCTTCCATT
	OsDL-1R	ATGGGCAAGAGAGAAATCTTTTGCAATCCA
	OsDL-2F	TGCAAAAGATTTCTCTCTTGCCCATCTGTG
	OsDL-2R	TTTCTCACCTCATGAAGCGGTTGTAAGCAG
	OsYSA-F	CATGCGCTCTCTCCCCACCTGTACTTTAC
	OsYSA-R	CCCTAGCACCCATCTCCGAGTACACTGATT
	OsPDS-F	TGCAAGGTACTAAGTAGGAGACATTA
	OsPDS-R	TTGTAAACAGATCTGTAACAGTGA
	AtBRI1-F	GATGGGATGAAGAAGAGTG
	AtBRI1-R	CTCATCTCTCTACCAACAAG

Table S2. List of primers used in this study.