Combination Therapy for Acute Myeloid Leukaemia – Simulating Optimal Dosage of Inhibitors against FLT3 and CDK6.

Antoine Buetti-Dinh ^{1,2,3,4,5,*} and Ran Friedman ^{1,2,*}

¹Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden antoine.buetti@lnu.se
²Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden ran.friedman@lnu.se
³Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Sweden
⁴Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
⁵Swiss Institute of Bioinformatics, Lausanne, Switzerland
*Corresponding author

SUPPLEMENTARY MATERIAL

Additional file 1

Supplementary Figure 2: Coarse-grained simulations of the network with inhibited FLT3. The signal flow graphs, central sensitivity profile plot and flanking barplots are displayed in the same way as in Figure 1

profile plot and flanking barplots are displayed in the same way as in Figure 1

Supplementary Figure 5: **Proliferation heat maps.** 1st row: Steady-state (Proliferation). 2nd row: Sensitivity (Proliferation, FLT3). 3rd row: Sensitivity (Proliferation, CDK6). The red star indicates the point where sufficient inhibition of FLT3 (10-fold inhibition from the maximum) and CDK6 (15-fold inhibition from the maximum) can drive the system to a controllable region of intermediate steady-state levels of both proliferation and apoptosis.

Supplementary Figure 6: **Apoptosis heat maps.** 1st row: Steady-state (Apoptosis). 2nd row: Sensitivity (Apoptosis, FLT3). 3rd row: Sensitivity (Apoptosis, CDK6). The red star indicates the point where sufficient inhibition of FLT3 (10-fold inhibition from the maximum) and CDK6 (15-fold inhibition from the maximum) can drive the system to a controllable region of intermediate steady-state levels of both proliferation and apoptosis.

Supplementary Figure 7: **PCA at low levels of PI3K.** Steady-state (left) and sensitivity (right) PCA of the fine-grained simulation dataset at low PI3K ($\beta(PI3K) = 0.001$) corresponding to the red sensitivity surfaces in Figure 2. Hierarchical clustering dendrograms (bottom panels) on the PCA loadings (upper panels).

Supplementary Figure 8: **PCA at intermediate levels of PI3K.** Steady-state (left) and sensitivity (right) PCA of the fine-grained simulation dataset at intermediate PI3K ($\beta(PI3K) = 0.1$) corresponding to the green sensitivity surfaces in Figure 2. Hierarchical clustering dendrograms (bottom panels) on the PCA loadings (upper panels).

Supplementary Figure 9: **PCA at high levels of PI3K.** Steady-state (left) and sensitivity (right) PCA of the fine-grained simulation dataset at high PI3K ($\beta(PI3K) = 10$) corresponding to the blue sensitivity surfaces in Figure 2. Hierarchical clustering dendrograms (bottom panels) on the PCA loadings (upper panels).

Parameter Name	Coarse-grained Simulations *	Fine-grained Simulations*
$\beta(FLT3)$	$10^{-3} - 10^{-1}(100)$	$10^{-3} - 10^{+1}(1.2)$
$\beta(FLT3L)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
β (<i>SHC_assembly</i>)	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(AXL)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(HCK)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(RUNX1)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(CDK6)$	$10^{-3} - 10^{-1}(100)$	$10^{-3} - 10^{+1}(1.2)$
$\beta(PI3K)$	$10^{-3} - 10^{-1}(100)$	$10^{-3} - 10^{+1}(100)$
$\beta(PDK1)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(AKT)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(mTOR)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(BCL2BAD)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(S6K)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(4EBP1)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(RAS)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(RAF)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(MEK_ERK)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(P38)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(RSK)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(ELK)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(STAT)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
$\beta(CREB)$	$10^{-3} - 10^{-1}(100)$	10^{-3}
β (<i>Proliferation</i>)	$10^{-3} - 10^{-3}(1)$	10^{-3}
$\beta(A poptosis)$	$10^{-1} - 10^{-1}(1)$	10 ⁻¹

* Range of Variation (Fold-Variation Step)

Supplementary Table 1: Model parametrisation. Activity units are arbitrary and in the context of signalling proteins roughly translate to the order of $1\mu M^2$. Values for the network end-points can only be appreciated by comparison.

References

 R. Milo, P. Jorgensen, U. Moran, G. Weber, and M. Springer. BioNumbers-the database of key numbers in molecular and cell biology. *Nucleic Acids Res.*, 38(Database issue):D750–753, Jan 2010. [PubMed Central:PMC2808940] [DOI:10.1093/nar/gkp889] [PubMed:19854939].