Supplemental Materials

Molecular Biology of the Cell

Cestari et al.

Supporting Information

Inositol polyphosphate multikinase regulation of *Trypanosoma brucei* **life stage development**

Igor Cestari¹⁺, Atashi Anupama¹ and Kenneth Stuart^{1, 2, *}

¹Center for Infectious Disease Research, Seattle, WA 98109, USA

2Department of Global Health, University of Washington, Seattle, WA 98195, USA,

* To whom correspondence should be addressed: ken.stuart@cidresearch.org

Phone: (206) 256-7316, Fax: (206) 256-7229

This file includes:

- 1. Supporting Figures and Figure Legends S1-S7
- 2. Supporting Tables and Table legends S1-S3
- 3. Supporting Material and Methods
- 4. Supporting References

Figure S1. Growth curve, viability, EP procyclin and PAD1 expression after IPMK knockdown in *T. brucei* **BFs.** A) Growth curve analysis of *T. brucei* IPMK CN in BFs. The *IPMK* gene was reexpressed after 24h, 36h, 48h or 72h knockdown by adding tet to the culture (tet-/+). Growth of cells that did not receive tet (tet -) or that were always maintained in tet (tet +) are shown. Gray shading indicates 36h, the time point used for most experiments. B) IPMK mRNA knockdown after 24h. Telomerase reverse transcriptase (TERT) and β-tubulin were used as endogenous controls. Values were normalized to IPMK mRNA expression in the parental SM427 cell line. C) Viability analysis of *T. brucei* BFs IPMK CN after 36h growth in tet - (knockdown) or tet + (non-knockdown). Cells were cultured in HMI-9 at 37°C. Salicylhydroxamic acid (SHAM, 2 mM) or sodium azide (SA, 40 μM) were used to affect cell viability. "None" refers to cells not treated with any inhibitor. Viability was measured using the alamarBlue assay (1). D) Flow cytometry quantification of *T. brucei* BFs expressing PAD1 after 24h or 36h of IPMK knockdown in HMI-9 at 37°C. Cells were collected at late log phase (~1.6x10⁶) parasites/ml). E) Flow cytometry quantification of cells expressing EP procyclin after tet-induced overexpression of IPMK in *T. brucei* BFs after 3 days in SDM-79 at 27°C in the absence or presence of CCA (0.5 – 6 mM). IMPK fused to a C-terminal V5 epitope tag was overexpressed using pLEW100 in SM427 strain. F) *Left*, scheme shows *T. brucei* IPMK CN that exclusively express *T. brucei* (TbIPMK), *T. cruzi* (TcIPMK) or *L.major* (LmIPMK) IPMK genes. A TbIPMK copy introduced in the rRNA spacer is regulated by tet and a copy of TcIPMK or LmIPMK is constitutively expressed from one of the tubulin loci in a derivative cell line. For details on cell line generation see (2). *Right*, flow cytometry quantification of EP procyclin expression in *T. brucei* cells that express *T. brucei* IPMK (TbIPMK, tet +), cells in which the IPMK gene was knocked down (tet -), or cells exclusively expressing either *L. major* or *T. cruzi* IPMK. *T. brucei* IPMK was knocked down in BFs growing in HMI-9 at 37°C, after which cells were transferred to SDM-79 at 27 °C and EP procyclin expression was analyzed after 3 days. Data are represented as means ± SEMs. *p*-values indicate statistical significance by the t-test; ns, not significant. For IPMK CNs, tet was used at 0.5 μg/ml, whereas for IPMK overexpression it was used at 1 μg/ml.

Figure S2. VSGs differentially expressed after IPMK knockdown. Analysis of VSGs differentially regulated after 24h and 36h IPMK knockdown analyzed by RNAseq. Note that at 24h and 36h there are an increase in VSG11 expression. Other telomeric and non-telomeric VSGs are also upregulated at 36h, whereas VSG2 (expressed by *T. brucei* BF IPMK CN in tet + conditions) is downregulated after knockdowns. Gray lines indicate 2-fold change (up or down); asterisks (*) indicate VSGs with *p-*value lower than 0.05. VSGs known to be in the telomeric expression sites (ES) on the parental cell line (427) (1) are indicated by their abbreviation according to GeneDB, whereas other VSGs not previously shown

Figure S3. Western blot confirmation of IP-interacting proteins. (A-B) Western analysis of *T. brucei* proteins after affinity enrichment with (A) biotin-Ins(1,3,4,5)P4 in absence or presence of competing concentrations of free Ins(1,3,4,5)P4; or (B) biotin-Ins(1,4,5)P3 in absence or presence of competing concentrations of free Ins(1,3,4,5)P3. C) Western analysis of *T. brucei* proteins after affinity enrichment with biotin conjugated Ins(1,4,5)P3, Ins(1,3,4,5)P4, PI(4,5)P2 and PI(3,4,5)P3. Streptavidin-magnetic beads were used to capture biotin conjugated IPs/PIs. MAb α-V5 antibodies were used to detect V5 tagged CysRS, V5-tagged IFT55/57 and IFT74, mAb α-78 to detect mitochondrial HSP70, and pAb α-PGK, α-PEX14 and UMSBP to detected PGKC, PEX14 and UMSBP1 proteins, respectively. Note that IFT74-V5 is detected likely due to co-interaction with IFT55/57 (Subota, et al., 2014), and UMSBP1 is preferentially affinity enriched by both Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Note that HSP70 and UMSBP1 were detected by mass spectrometry using PI(3,4,5)P3-agarose but their enrichment values did not pass the statistical cutoff and they were also not verified by Western (C). * Antibody unspecific reaction.

Figure S4. Genotyping and growth curves of IP1Pase and SYJ2 CNs. A) Top, diagram indicates gene target loci (SYJ2 or IP1Pase genes) with 5'-UTR and 3'-UTR. Primers (arrows) were designed to amplify a fragment of the 5-UTR or 3'-UTR with part of the gene sequences. Bottom, real-time PCR genotyping of SYJ2 or IP1Pase CNs using 5' and 3'-UTRs primers as indicated above. Note that PCR products are only amplified in the parental cell line because both alleles of the target gene were removed by homologous recombination. The resultant IP1Pase and SYJ2 CNs also express a copy of the target gene under control of tetracycline in the rDNA spacer (not indicated in the diagram). For method details see (2). B-C) Growth curve analysis of IP5Pase (B) and SYJ2 (C) in presence (expressed) or absence (knockdown) of tet (0.5 μg/ml). Data are represented as mean ± SEM.

Figure S5. Real-time PCR analysis of PGK after IPMK knockdown. IPMK was knockdown for 36h in *T. brucei* BF and the expression levels of PGK A, B or C were quantified. Telomerase reverse transcriptase (TERT), β-tubulin and 18S were used as endogenous controls. Real-time PCR was used to compare relative changes of PGK genes using primers that are specific to each PGK because of the high sequence similarity between PGK genes (especially PGKB and C) which may affect differential expression analysis by RNAseq. Similarities between PGK genes, PGKA vs PGKB, 80% nucleotide (nt) identity; PGKA vs PGKC 78% nt identity; and PGKB vs PGKC 95% identity. Data are represented as mean ± SEM.

Figure S6. Viability assay of *T. brucei* **IPMK CN in presence of oxidative phosphorylation inhibitors.** A-F) *T. brucei* IPMK CN was growth in presence or absence of tet (0.5 μg/ml) for 36h in presence of various concentration of A) Salicylhydroxamic acid (SHAM, 2 mM – 0.04 mM); B) Oligomycin (10 – 0.02 μg/ml); C) Sodium Azide (SA, 40 – 0.08 μM); D) Antimycin (40 – 0.08 μM); E) Rotenone (100 – 0.2 μ M); and F) potassium cyanide (KCN, 100 – 0.2 μ M). Viability was measured with AlamarBlue. Data are represented as mean ± SEM.

Figure S7. *T. brucei* **EP procyclin expression in presence of TCA cycle intermediates and myoinositol.** A-B) Flow cytometry quantification of EP procyclin expression in *T. brucei* SM427 (A) or IPMK CNs (B) after 3 days culture in SDM-79 at 27°C in presence or absence of TCA cycle intermediates (10 mM, except CCA which was used at 6 mM) or myo-inositol (10 mM). IPMK was knocked down for 36h in HMI-9 at 37°C before transfer to SDM-79 at 27°C. Tet, 0.5 μg/ml. The red line in A indicates % of cells expressing EP procyclin without addition TCA or myo-inositol metabolites (None); whereas the gray shade in B indicates % of cells that express EP procyclins after IPMK knockdown in absence of TCA or myo-inositol metabolites (None). Data are represented as mean ± SEM.

Table S1. Antibodies used in this work.

Notes: pAb, polyclonal antibodies; mAb, monoclonal antibodies; NA, not applicable; IF, immunofluorescence; WB, Western blotting; FC, flow cytometry; CIDR, Center for Infectious Disease Research. For IF, antibodies were diluted in PBS 3% BSA; for FC in 5% FBS; and for WB in 5% low fat powdered milk.

Table S2. Primers used in this work.

GGCAACCTCTCTGAAGTCCC Gene ATGAAACTGACGGCGATGGT Gene GGCAACCTCTCTGAAGTCCC Gene ATGTCTGTCGCTGCAAGTCA Gene GGCAACCTCTCTGAAGTCCC Gene GGCGATGACAAGGTACACCA
GCGATGACAGGTACACCA GGCAACCTCTCTGAAGTCCC CATAAGCACCCTCAACCCGT Gene CGGCTTCCTGTATGTGGTGT
GERE AACACGTTGCCATGTGAAGC CAGTTGCCACACTTTCACCG
Gene CCGCCTGGAGGTAAAACAGT Gene CGGCTTCCTGTATGTGGTGT Gene CGTTATGCAACATCCGCCTG Gene CTGCCCGTATGGAATTTGCG Gene TAACCGCGACTTTGACGAGT Gene CACAGCTTTGTGGGAATCCC Gene GTCTAAGAAAAAGCACAGTT Gene CGCGCTCCATATTGTAGCG CGTGTTGCAACGGTTGTGAA Gene GTATAAGTCGAGACGGCCGG GTATAAGTCGAGACGGCCGG CGTCTGCTATTCGTGCTTGC
GTCTGCTATTCGTGCTTGC ATCGACGTCCCCTGCAATTT Gene CAATGTGGCGCCATTGAGAC Gene GT TGTACTTCTCAAACAACGTTCACA Gene AATATTACCATCATCCAGAG Gene AAAGAGAGCTCCACCGGTTA Gene AGGAACTGTCACGGAGTTTGC Gene TGGTAAAGTTCCCCGTGTTGA Gene TGACGCCGGACACAACAG Gene GTTAAAGGAACAGGGTATT Gene GTCATTCCACACGTATGATA GTCATTCCACACGTATGATA CTACAAAAAGTATACTTGTTCC Genotyping CCGTTCACTTCCATGAA Genotyping T
CGAAGCTGAATCAGATC
COMING Genotyping

expression expression

expression expression expression expression CCATACGTTCATATGACTAA Genotyping

CAACAGCC CCCGGATCCACCAGCGGCTCCG Cloning in pLEW100-V5

Table S3. RNA sequencing analysis of *T. brucei* **after 24h and 36h of IPMK knockdown.**

Notes: DE, differential expression (comparing tet – vs. tet +); Pearson's coefficient of correlation comparing log 2 fold-changes between replicates. * Note that for the purpose of analyzing correlation between replicates only, DE of each replicate was analyzed separately.

Supporting Material and Methods

1. RNAseq analysis and gene set enrichment analysis (GSEA)

RNAseq libraries of poly-A enriched RNAs was performed as previously described (8). Libraries were sequenced at the Department of Genome Sciences, University of Washington (Table S7). Two biological replicates were performed for each RNAseq experiment. Reads alignment and gene ID mapping were done using Bowtie2 and HTSeq against *T. brucei* 427 genome tritrypDB version 9, respectively, read counts were obtained with Get ReadCount.py (in house software) and differential gene expression using edgeR (9) using a likelihood ratio test (10). Libraries were filtered for genes with low read using a minimum of one count per million (CPM) per gene, *i.e.* 5 counts per gene in the smallest library, and counts were required to be present in at least two libraries of the same biological replicate group for a gene to be considered for analysis. Genes were considered differentially expressed when fold-changes ≥ 2 and p-values ≤ 0.05 . For GSEA the phenoTest package in R was used (11, 12). Gene sets were constructed with genes that are differentially expressed in BF slender, intermediate and stumpy forms and PF (13), and include genes which are upregulated (72 genes) or downregulated (254 genes) in BF stumpy compared to BF slender; and upregulated (130 genes) or downregulated (178 genes) BF intermediate compared to BF slender. It also include sets of genes which are upregulated in BF compared to PF (157 genes), or PF compared to BF (70 genes). Gene sets were analyzed using 1,000 permutation tests by comparing gene sets against the RNAseq data set IPMK knockdown at 36h. False discovery rates (q) were calculated by Benjamini–Hochberg procedure and significance indicated by *q-*value <0.05. Gene sets were represented using barcode plot using Limma package in R (14).

2. Differentiation and flow cytometry analysis

IPMK knockdown and expression of PAD1: T. brucei IPMK CN were grown at late log phase $(-1.5x10^6$ parasites/ml) with or without tet (0.5 μ g/ml) for 24h and 36h in 40 ml HMI-9 medium at 37°C. Afterwards, 10 ml aliquots were fixed in 1% paraformaldehyde (PFA, vol/vol) in PBS for 30 minutes at RT. Fixed cells were centrifuged for 5 minutes at 4,000 rpm at RT and blocked in PBS 10% FBS (vol/vol) for 1h at RT. Cells were washed by centrifugation as above and incubated in PBS 5% FBS (vol/vol) with pAb a-PAD1 with gentle shacking (see Table S6 for antibody dilutions) for 2h at RT, then washed three times with 1 mL of PBS by centrifugations, as described above, and then incubated with goat αrabbit IgG (H+L) Alexa Fluor 568® (Molecular Probes, Table S6) for 1h at RT with gentle shacking. Cells were washed three times in PBS by centrifugation and analyzed by flow cytometry using a BD™ LSR II flow cytometer (BD Biosciences) and FlowJo software (Flowjo, LLC).

IPMK overexpression and EP procyclin analysis: *T. brucei* BF that express tet-reguatable Cterminally V5-tagged IPMK were grown at late log phase (~1.5x10⁶ parasites/ml) without tet in HMI-9 a 37° C for 24h. Afterwards, cells were centrifuged for 5 min at 4,000 rpm at RT and transferred to 24well plates at 2.0x10⁷ parasites/ml without or with tet (1 μ g/ml) and cultured in SDM-79 at 27^oC for 3 days in presence of various concentrations of CCA (0.16, 0.5, 1, 3 and 6 mM). Afterwards, cells were fixed in 1% PFA (vol/vol) in PBS for 30 minutes at RT. Cells were washed by centrifugation as above and incubated in PBS 5% FBS (vol/vol) with mAb ɑ-EP procyclin (clone tbrp1/247) with gentle shacking (see Table S6 for antibody dilutions) for 2h at RT. Cells were then washed three times with 1 mL of PBS by centrifugations and then incubated with goat α-mouse IgG (H+L) Alexa Fluor 488® (Molecular Probes, Table S6) for 1h at RT with gentle shacking. Cells were washed three times in PBS by centrifugation and analyzed by flow cytometry as described above.

Differentiation analysis of T. brucei IPMK CN that exclusively express T. cruzi or L. major IPMK:

T. brucei IPMK CN or which contains a copy of *L.major* IPMK or *T. cruzi* IPMK introduced in the tubulin locus for constitutive expression (15) were grown at late log phase $({\sim}1.5x10^6$ parasites/ml) with tet (0.5 μg/ml) for 36h in 40 ml HMI-9 medium at 37°C. Afterwards, cells were washed twice in HMI-9 without tet and 2 mL aliquots were transferred to 24-well plates at $2.0x10⁷$ parasites/mL without or with tet (1 μ g/ml) and cultured in SDM-79 at 27^oC for 3 days. Afterwards, cells were fixed in 1% PFA (vol/vol) in PBS for 30 minutes at RT. Cells were stained with ɑ-EP procyclin antibodies (as described above) and analyzed by flow cytometry using a BD™ LSR II flow cytometer (BD Biosciences) and FlowJo software (Flowjo, LLC).

Differentiation of T. brucei IPMK CN in presence of TCA cycle or myo-inositol metabolites: T.

brucei IPMK CN were grown at late log phase (~1.5x106 parasites/ml) with or without tet (0.5 μg/ml) for 36h in 40 ml HMI-9 medium at 37°C. Afterwards, cells were washed twice in HMI-9 without tet and aliguots of 2.0x10⁷ parasites/mL were transferred to 24-well plates in SDM-79 and cultured for 3 days at 27°C in absence or presence of CCA (6 mM), malate (10 mM), α-ketoglutarate (10mM), succinate (10 mM), or myo-inositol (10 mM). After day 3, cells were fixed in 1% PFA and aliquots of 1 ml of cells were collected for EP procyclin expression analysis by flow cytometry as described above.

3. Growth curve analysis

Cumulative growth curve analyses of *T. brucei* SYJ 2 or IP1Pase CNs were performed as previously described (16). Briefly, *T. brucei* BF were grown in HMI-9 at 37^oC with 5% CO₂ I n presence or absence of tet (0.5 μ g/mL) and counted daily using a cell counter (Beckman) and diluted daily to 5.0 x 10⁴ parasites/ml in new medium, and the procedure was repeated for 7 consecutive days.

4. Viability assays

Viability assays were performed as previously described (17). Briefly, compound stocks were prepared at a 10 mM – 1M concentration in dimethyl sulfoxide or Ethanol. *T. brucei* BF (100 μL at 2.0 x 104 parasites/ml) were plated in 96-well plates and mixed with 100 μL of compounds at 2-fold serial dilutions, *i.e.* SHAM (100 mM – 0.2 mM), Oligomycin (10 – 0.02 μg/ml), Sodium Azide (40 – 0.08 μM), Antimycin (40 – 0.08 μM), Rotenone (100 – 0.2 μM), and potassium cyanide (100 – 0.2 μM), all diluted in HMI-9 medium with 10% FBS. Parasites not treated with compounds were also plated as controls. After 36h of incubation at 37 °C and 5% CO2, 20μL of alamarBlue (Invitrogen) was added, and the assays were developed for 4h. Fluorescence measurements were obtained using a SpectraMax M2 microplate reader (Molecular Devices) with excitation at 544 nm and emission at 590 nm (590-nm cutoff). Data were analyzed using GraphPad Prism for Windows.

Supporting References

- 1. Becker M*, et al.* (2004) Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. *Genome Res* 14(11):2319-2329.
- 2. Merritt C & Stuart K (2013) Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei. *Mol Biochem Parasitol* 190(1):44-49.
- 3. Parker HL*, et al.* (1995) Three genes and two isozymes: gene conversion and the compartmentalization and expression of the phosphoglycerate kinases of Trypanosoma (Nannomonas) congolense. *Mol Biochem Parasitol* 69(2):269-279.
- 4. Furuya T*, et al.* (2002) Glucose is toxic to glycosome-deficient trypanosomes. *Proc Natl Acad Sci U S A* 99(22):14177-14182.
- 5. Myler PJ, Allison J, Agabian N, & Stuart K (1984) Antigenic variation in African trypanosomes by gene replacement or activation of alternate telomeres. *Cell* 39(1):203-211.
- 6. Cestari I*, et al.* (2013) A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. *Mol Cell Biol* 33(24):4872-4888.
- 7. Dean S, Marchetti R, Kirk K, & Matthews KR (2009) A surface transporter family conveys the trypanosome differentiation signal. *Nature* 459(7244):213-217.
- 8. Kolev NG, Ullu E, & Tschudi C (2015) Construction of Trypanosoma brucei Illumina RNA-Seq libraries enriched for transcript ends. *Methods Mol Biol* 1201:165-175.
- 9. Robinson MD, McCarthy DJ, & Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26(1):139-140.
- 10. McCarthy DJ, Chen Y, & Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res* 40(10):4288-4297.
- 11. Evarist P (2013) phenoTest: Tools to test association between gene expression and phenotype in a way that is efficient, structured, fast and scalable. We also provide tools to do GSEA (Gene set enrichment analysis) and copy number variation. *Bioconductor (R package)* R package version 1.23.1. .
- 12. Subramanian A*, et al.* (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* 102(43):15545-15550.
- 13. Capewell P*, et al.* (2013) Regulation of Trypanosoma brucei Total and Polysomal mRNA during Development within Its Mammalian Host. *PLoS One* 8(6):e67069.
- 14. Ritchie ME*, et al.* (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 43(7):e47.
- 15. Cestari I, Haas P, Moretti NS, Schenkman S, & Stuart K (2016) Chemogenetic Characterization of Inositol Phosphate Metabolic Pathway Reveals Druggable Enzymes for Targeting Kinetoplastid Parasites. *Cell Chem Biol* 23(5):608-617.
- 16. Cestari I & Stuart K (2015) Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes. *Proc Natl Acad Sci U S A* 112(21):E2803-2812.
- 17. Cestari I & Stuart K (2013) Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African Trypanosomiasis. *J Biol Chem* 288(20):14256-14263.