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Supplementary Note 1 - Structure parameters of the nanosystem 

The structure parameters (see Supplementary Fig. 3 for the definitions of the parameters) of the 

experimentally reported nanosystem (Fig. 1b) are estimated as follows. The diameters of the GNRs and 

the silica-encapsulated QDs are estimated according to AFM topography images. The diameters of G1, 

G2 and G3 are estimated to be 24.8 nm (d1), 25.3 nm (d2) and 24.6 nm (d3), respectively. The diameters 

of Q1 and Q2 are estimated to be 26 nm (D1) and 27.1 nm (D2), respectively. The lengths of the GNRs 

are then estimated according to the darkfield scattering spectra shown in Fig. 1c. The lengths of G1, G2 

and G3 are estimated to be 84.5 nm (l1), 86 nm (l2) and 86 nm (l3), respectively. Finally, the gap widths 

between G1 and G3 and between G2 and G3 are estimated according to the measured excitation 

enhancement factors since the field enhancement effect in a gap is strongly related to the gap width. The 

gap width between G1 and G3 is estimated to be 29 nm (g1), while the gap width between G2 and G3 is 

estimated to be 26 nm (g2). These estimated structure parameters are used for the numerical simulations 

in the main text, except the structure with only Q1, where g2 is estimated to be 30 nm by comparing the 

AFM image with that of the structure with both Q1 and Q2. Although not quantitatively accurate, 

simulations using these roughly estimated structure parameters can qualitatively reflect the features in 

the experiment. For these simulations, s1 and s2 are taken as 6 nm, as we find that the best excitation 

selectivity is obtained when s1 and s2 are around 6 nm. 

The implementation of selective excitation and selective detection is quite robust to variations in 

structural parameters, although the optimal conditions (the excitation polarization for selective excitation 

and the polarizer angle for selective detection) and the corresponding optimal selectivity may change 

slightly. In Supplementary Table 1, we show some parameter modifications and their influences on 

selective excitations and emission polarizations. For the sake of analysis, the parameter modifications 

are based on a symmetric structure (denoted as #0 in the table) whose parameters are as follows (similar 

to the parameters estimated for the fabricated structure): l1 = l2 = l3 = 86 nm; d1 = d2 = d3 = 25 nm; g1 = 

g2 = 25 nm; D1 = D2 = 25 nm; s1 = s2 = 6 nm; dx1 = dy1 = dz1 = dx2 = dy2 = dz2 = 0 nm. Here dx1 (dx2), dy1 

(dy2) and dz1 (dz2) are the x-, y- and z-directional offset of Q1 (Q2) from the center of the whole silica 

sphere where the QD is encapsulated. From the table, we can see that with all these structure 

modifications, both the selective excitations and the selective detections can be achieved with sufficient 

selectivity. Both the degree of linear polarization (DOLP) and the polarization angle (ψ ) of emission are 

insensitive to the parameter modifications, owing to that the emission wavelength (~808 nm) is off the 

plasmonic resonance. For all the parameter modifications, the DOLPs remain above 0.97 and the 

polarization angle difference between Q1 and Q2 is stable around 90°, facilitating selective detection 

with high transmittance simply using a linear polarizer. Parameter modification dy1 (see structures #12 

and #13) influences the polarization angle of Q1 a bit more than other parameter modifications do. For 

all the parameter modifications, the excitation ratio keeps high enough to perform selective excitation, 

with the required excitation polarization ( ),  θ ϕ  changing with parameter modifications. The 

modifications of s1 (structures #8 and #9), dx1 (structures #10 and #11) and dz1 (structure #15) influence 

the excitation selectivity a bit more than the modification of other parameters, as they tend to degrade 

the dominance of the y-component for the local electric fields at the QDs (see the mechanism for selective 

excitation in Supplementary Note 2). A high excitation selectivity requires small x- and z-component 

electric field at the QDs. The modification of dz1 in the negative direction (structure #15) tends to degrade 

the excitation selectivity, whereas the modification in the positive direction (structure #14) slightly 

improves the excitation selectivity. This is attributed to the existence of the substrate. Without the 
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substrate, the z-component electric field is minimum at the center height of the structure and the field 

distribution is mirror-symmetric in the z-direction about the center height (see Supplementary Fig. 4a,b). 

When there is the substrate, the z-component electric field is minimum at a height several nanometers 

above the center height of the structure and the field distribution is no longer mirror-symmetric in the z-

direction (see Supplementary Fig. 4c,d). 

Supplementary Note 2 - Mechanism for selective excitation 

An elliptically polarized excitation light can be viewed as a coherent combination of an x-polarized ( ↔ ) 

excitation light ( )0 0 xexpE ϕ↔ ↔ n  and a y-polarized () excitation light ( ) y0 0expE ϕ n  , where ,
0
↔ E  

and ,
0ϕ↔   are the amplitude and phase of electric field and x,yn  are the unit vectors. Therefore, the 

elliptical polarization can be fully described by parameters θ  and ϕ , where θ  is the arc tangent of 

the amplitude ratio 00
↔E E , ϕ  is the phase difference 00ϕ ϕ ↔− .  

When illuminating with an elliptically polarized light, the source normalized local electric fields can 

be expressed as  
icos sinϕθ θ↔= ⋅ + ⋅E E Ee ,                            (1) 

where ↔E  and E  are the source normalized local electric fields when illuminating with x-polarized ( ↔ ) 

and y-polarized () light, respectively. Here, cosθ ↔⋅ E  is the source-normalized local electric fields 

generated by the x-component of the elliptically polarized excitation light, and i sinϕ θ ⋅ Ee  is the 

source-normalized local electric fields generated by the y-component of the elliptically polarized 

excitation light. 

When illuminating with either x-polarized ( ↔ ) or y-polarized () light, the source-normalized local 

field at both Q1 and Q2 ( ( ), Q↔E  i ) has a strongly enhanced y-component ( ),
y Q↔ E i  (Supplementary 

Fig. 5b,g) but very weak x-component ( ),
x QE i↔   (Supplementary Fig. 5a,f) and z-component 

( ),
z QE i↔   (Supplementary Fig. 5c,h). That is, the y-component ( ),

y Q↔ E i  is dominant in ( ), Q↔E  i . 

When illuminating with an elliptically polarized light, the y-component of the source-normalized 

electric field at Qi is 

( ) ( ) ( )i
y y yQ cos Q sin QE i E i e E iϕθ θ↔= ⋅ + ⋅  ,                     (2) 

where ( )ycos QE iθ ↔⋅  is the source-normalized y-component electric field generated by the x-

component of the elliptically polarized excitation light, and  ( )i
ysin Qe E iϕ θ ⋅   is the source-normalized 

y-component electric field generated by the y-component. If the elliptically polarized excitation light has 

polarization parameters 

( ) ( )( )y yarctan Q QE i E iθ ↔=                             (3) 

and 

 ( )( ) ( )( )y yQ Q 180E i E iϕ φ φ↔= − −  ,                        (4) 

the generated y-component local electric fields ( )ycos QE iθ ↔⋅  and ( )i
ysin Qe E iϕ θ ⋅   will have the 

same amplitude and are anti-phase. According to Supplementary Equation 2, we will have a complete 

destructive interference to produce a vanishing ( )y QE i . As the y-component ( ),
y Q↔ E i  is dominant in 

( ), Q↔E  i , the local electric field at Qi ( )QE i  is optimally suppressed this way. The amplitudes of the 

very weak x- and z- components determine how small ( )QE i  can be suppressed to. 
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We then consider the local field at the other QD Qj with the elliptically polarized excitation light 

defined by Supplementary Equations 3 and 4. The y-component of the source-normalized electric field 

at Qj is 

( ) ( ) ( )i
y y yQ cos Q sin QE j E j e E jϕθ θ↔= ⋅ + ⋅  .                      (5) 

Here ( )ycos QE jθ ↔⋅  is the source-normalized y-component electric field generated by the x-component 

of the elliptically polarized excitation light, and ( )i
ysin Qe E jϕ θ ⋅   is the source-normalized y-component 

electric field generated by the y-component. Their amplitude ratio is 

( )
( )

( )
( )

( )
( )

( )
( )

i
y y yy

yy y y

sin Q Q QQ
tan

Qcos Q Q Q

e E j E j E iE i

E jE j E j E j

ϕ θ
θ

θ

↔

↔↔ ↔

⋅
= ⋅ =

⋅

  


,                   (6) 

which is close to 1, because the amplitude ratio between the local field at Q1 and at Q2 are similar for x- 

and y- polarized excitation. Their phase difference is 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

i
y y y y

y y y y

sin Q cos Q Q Q

Q Q Q Q 180

e E j E j E j E j

E i E j E j E i

ϕφ θ φ θ ϕ φ φ

φ φ φ φ

↔ ↔

↔ ↔

⋅ − ⋅ = + −

= − + − −

 

  
,            (7) 

which is close to 0, because ( )( )y Q1Eφ ↔  and ( )( )y Q2Eφ ↔  are roughly anti-phase (Supplementary Fig. 

5d) while ( )( )y Q1Eφ   and ( )( )y Q2Eφ   are roughly in-phase (Supplementary Fig. 5i). Therefore, 

according to Supplementary Equation 5, the local field at Qj should experience constructive interference. 

Owing to the imperfect mirror-symmetry of the structure, ( )( )y Q1Eφ ↔  and ( )( )y Q2Eφ ↔  are not 

rigorously anti-phase and ( )( )y Q1Eφ   and ( )( )y Q2Eφ   are not rigorously in-phase. Therefore, the 

phase difference in Supplementary Equation 7 is not exactly 0 and the local field constructive interference 

at Qj is not optimal. 

The combination of the destructive interference at one QD Qi and the constructive interference at the 

other QD Qj leads to selective excitation of Qj with high excitation selectivity. The condition (excitation 

polarization parameters θ  and ϕ ) for optimal selective excitation of Qj is just the condition for optimal 

suppression of the excitation of Qi, but not the condition for optimal excitation enhancement for Qj. With 

the condition for optimal selective excitation, the excitation enhancement for Qj may not be optimal. As 

the amplitudes of the very weak x- and z- components determine how small ( )QE i  can be suppressed 

to, they also determine the best excitation selectivity we can get. 

Selective excitation of Q1 and Q2 can be realized in a broad range of wavelengths (by illuminating 

with wavelength-dependent elliptically polarized light) covering non-resonant and resonant excitations. 

Here we present selective excitation of Q2 (excitation suppression of Q1) in a broad range of wavelength. 

The source-normalized field amplitude spectra of the x- and z-component electric field at Q1 are shown 

in Supplementary Fig. 6a. The source-normalized field amplitude spectra of the y-component electric 

field at Q1 are shown in Supplementary Fig. 6b. In the broad range of wavelength, the y-component is 

dominant. The phase spectra of the y-component electric field at Q1 is shown in Supplementary Fig. 6c. 

Then the polarization parameters ( ,  )θ ϕ  for optimal excitation suppression of Q1 at different 

wavelengths can be obtained using the equations ( )y yarctan E Eθ ↔=   and ( ) ( )y y 180E Eϕ φ φ↔= − −   

as shown by the solid curves in Supplementary Fig. 6d. The excitation enhancement factors for Q1 and 

Q2 are shown in Supplementary Fig. 6e when excited with the optimal excitation polarizations at 

different wavelengths. The excitation of Q1 is well suppressed for a broad spectral range, while the 
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excitation of Q2 is strongly enhanced, which enables selective excitation with high selectivity for a broad 

spectral range as shown in Supplementary Fig. 6f. High selectivity exceeding 0.9995 (excitation ratio 

exceeding 4,000) can be achieved around 740 nm. At wavelengths shorter than 710 nm, the dominance 

of the y-component degrades (comparing between xE↔  in Supplementary Fig. 6a and yE↔ in 

Supplementary Fig. 6b), leading to relatively lower selectivity below 0.98 (excitation ratio below 100). 

In the wavelength range where the dominance of the y-component degrades, the optimal excitation 

condition determined using the equations ( )y yarctan E Eθ ↔=   and ( ) ( )y y 180E Eϕ φ φ↔= − −   may 

deviate slightly from the actual optimal excitation condition (comparing between the solid curves and 

the dashed curves in Supplementary Fig. 6d-f, where the dashed curves are determined using the 

searching method described in Supplementary Note 5). 

For understanding selective excitation in our design, two key points need to be addressed in more 

detail. The first key point is why the local fields at the QDs have very weak x- and z-components as 

compared with the dominant y-component (as shown in Supplementary Fig. 5a-c for x-polarized 

excitation and f-h for y-polarized excitation). If there is no substrate, the z-component at the QDs should 

be negligible because the structure is symmetric in the z-direction and the QDs are near the center height 

of the structure (i.e., the symmetry plane). Although the existence of the substrate breaks the symmetry, 

the QDs are still near the height with vanishing z-component electric field (cf. Supplementary Fig. 4 for 

the influence of the substrate on the z-component local fields). To explain the very weak x-components 

at the QDs, consider the electric field distribution around the end of a GNR in Supplementary Fig. 7a. 

We can see from the electric field vectors that the electric fields around the end cap of a GNR are roughly 

normal to the surface of the GNR. Therefore, at the QDs in the U-shaped gold nanostructure, either the 

electric field contributed by the y-oriented GNR (G1 for Q1 and G2 for Q2) or the electric field 

contributed by the x-oriented GNR (G3) should be roughly y-oriented with very weak x-component. 

Moreover, we view the U-shaped gold structure as two parts, one composed of G3 that is x-oriented and 

the other composed of G1 and G2 that are both y-oriented. And we simulate the electric field distributions 

separately for these two parts as shown in Supplementary Fig. 7. At the locations where the QDs should 

reside in the U-shaped nanosystem, the x-component electric fields are very weak for both structure parts 

and for both x- and y-polarized excitations (see Supplementary Fig. 7b,d,f,h). 

The second key point is why the phase relation between the local fields at Q1 and Q2 is anti-phase 

when excited with x-polarized light while it is in-phase when excited with y-polarized light. When 

excited with x-polarized light, only the x-oriented GNR G3 is excited directly. The plasmonic oscillations 

in the y-oriented GNRs G1 and G2 are induced by the plasmonic oscillation in G3 through capacitive 

coupling with the right end and left end of G3, respectively. Therefore, the electric displacement vectors 

in G1 and G2 are in the opposite direction (as shown in Supplementary Fig. 5e). The electric field at Q1 

is contributed by G1 and G3, while the electric field at Q2 is contributed by G2 and G3. Since the electric 

displacement vectors in G1 and G2 are in the opposite direction, the electric field contributed by G1 at 

Q1 and the electric field contributed by G2 at Q2 should be in the opposite direction. Moreover, the 

electric field contributed by G3 at Q1 and the electric field contributed by G3 at Q2 are also in the 

opposite direction (Supplementary Fig. 7a). Therefore, the total electric field at Q1 and Q2 are in the 

opposite direction and the phase of the y-component at Q1 and Q2 are anti-phase as shown in 

Supplementary Fig. 5d. When excited with y-polarized light, the y-oriented GNRs G1 and G2 are directly 

excited. Therefore, the electric displacement vectors in G1 and G2 are in the same direction (as shown 

in Supplementary Fig. 5j). Although G3 is capacitively coupled with G1 and G2 at its two ends 



7 / 39 

respectively, the induced current in G3 by G1 and that by G2 counteracts with each other and therefore 

the plasmonic oscillation in G3 is very weak as shown in Supplementary Fig. 5j. Therefore, the electric 

field at Q1 is contributed only by G1 and the electric field at Q2 is contributed only by G2. Since the 

electric displacement vectors in G1 and G2 are in the same direction, the electric field at Q1 and Q2 

should be in the same direction and the phase of the y-component at Q1 and Q2 are in-phase as shown 

in Supplementary Fig. 5i. 

Supplementary Note 3 - Purcell effect for QDs in the plasmonic nanostructure 

The analysis of Purcell effect for a QD in a plasmonic nanostructure is a non-trivial problem, because 

the exciton in a QD is not a simple dipole, but has complicated fine structure levels1. Each fine structure 

level has its decay rate and transition orientation2. Therefore, the fluorescence decay or Purcell effect for 

a QD is influenced by its intrinsic fine structure and its orientation with respect to the plasmonic 

nanostructure. The Purcell effect determines the energy transfer from the excited QD to the plasmonic 

mode. The plasmonic mode further determines the polarization of photon radiation. 

In the following, we assume that the QD is weakly excited so that the probability of excitation of 

biexcitons or multiexcitons can be neglected and we only need to consider the decay of monoexcitons. 

We also assume that thermalization is much faster than decay dynamics, even with Purcell effect, so that 

the decay dynamics can be described with an effective decay rate3. 

Influence of fine structure on Purcell effect 

The intrinsic decay rate of a QD is the effective decay rate3 
0 0 0

A F

γ ρ γ ρ γ
∈ ∈

= + i i j j
i j

,                             (8) 

where the first term is from the dipole-allowed modes, the second term is from the dipole-forbidden, 

phonon-assisted modes, ρi ( ρ j ) is the population probability of the exciton state A∈i ( F∈j ), 0γ i ( 0γ j ) 

is the decay rate of the exciton state A∈i ( F∈j ). Here 
A F

100%ρ ρ
∈ ∈

+ = i j
i j

. The decay probability 

from state A∈i  ( F∈j ) is 

0 0 0ρ γ γ=i i ip  ( 0 0 0ρ γ γ=j j jp ).                          (9) 

Here 0 0

A F

100%
∈ ∈

+ = i j
i j

p p . 

At room temperature, there is always some dipole-allowed transition state considerably populated, 

therefore the emission from dipole-forbidden decays is negligible due to their extremely slow decay rate 

(~ 1μs− ) as compared with that of dipole-allowed decays (~ 1ns− )3. Therefore, the effective decay rate 

can be simplified as 

0 0

A

γ ρ γ
∈

=  i i
i

.                                (10) 

When the QD is coupled to the plasmonic nanostructure, the decay rate becomes 

0

A A

γ ρ γ ρ γ
∈ ∈

= = i i i i i
i i

f ,                            (11) 
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where the decay rate γ i  is equal to 0γi if , due to the Purcell effect. The Purcell factors if  are different 

for states with different transition wavelengths and different transition orientations, due to the wavelength 

dispersion and anisotropy of the partial local density of states in the plasmonic nanostructure. The 

effective Purcell factor that is experimentally measured can be expressed as 

0

0A
0 0

A

ρ γ
γ

γ γ
∈

∈
= = =




i i i
i

i i
i

f

f p f ,                          (12) 

where we can see that the effective Purcell factor is influenced by the intrinsic fine structure. The decay 

probability from state i  is 
0 0ρ γ

γ
= =i i i i i

i
f p f

p
f

,                               (13) 

from which we can see that Purcell effect can influence the decay probabilities. 

For spherical colloidal QDs, there are five dipole-allowed states: 1L± , 1U±  and 0U . The states 

1L±  and states 1U±  are degenerate respectively. The states 1L+ ( 1L− ) and 1U+  ( 1U− ) emit σ +

( σ − ) photons with right (left) circular polarization in the plane perpendicular to the c-axis of the 

nanocrystal, while the state 0U  emits π  photons with linear polarization along the c-axis 

(Supplementary Fig. 8a). The decay rate can be expressed as 

0 0 0 0
1L 1L 1U 1U 0U 0Uγ ρ γ ρ γ ρ γ= + + ,                          (14) 

where we have combined the degenerate states since 1
1L(U) 1L(U) 1L(U)2

ρ ρ ρ+ −= =  and 
0 0 0
1L(U) 1L(U) 1L(U)γ γ γ+ −= = . The combination of the transitions from 1L±  (or 1U± ) correspond to a 2D-

dipole in the plane perpendicular to the c-axis of the nanocrystal (Supplementary Fig. 8a)2,4. The decay 

probability from these 2D-dipole transitions is 

( )
( )

0 0
1L 1L 1U 1U0

2D 0 0 0
1L 1L 1U 1U 0U 0U

ρ γ ρ γ

ρ γ ρ γ ρ γ

+
=

+ +
p ,                          (15) 

while the decay probability from the linear dipole transition along the c-axis is 

( )
0

0 0U 0U
0U 0 0 0

1L 1L 1U 1U 0U 0U

ρ γ
ρ γ ρ γ ρ γ

=
+ +

p .                        (16) 

When QD is coupled to a plasmonic nanostructure, the decay rate of the QD becomes 

0 0 0
1L 1L 1L 1U 1U 1U 0U 0U 0Uγ ρ γ ρ γ ρ γ= + +f f f ,                      (17) 

where 1Lf , 1Uf  and 0Uf  are the Purcell factors for corresponding transitions. If we neglect the 

wavelength dispersion of the Purcell effect among the fine structure levels, we have 1L 1U 2D= =f f f . 

Then Supplementary Equation 17 can be expressed as 

( ) ( )0 0 0
2D 1L 1L 1U 1U 0U 0U 0Uγ ρ γ ρ γ ρ γ= + +f f .                     (18) 

Then the effective Purcell factor that is experimentally measured can be expressed as 

( ) ( )
( )

0 0 0
2D 1L 1L 1U 1U 0U 0U 0U 0 0

2D 2D 0U 0U0 0 0 0
1L 1L 1U 1U 0U 0U

ρ γ ρ γ ρ γγ
γ ρ γ ρ γ ρ γ

+ +
= = = +

+ +

f f
f p f p f ,         (19) 

from which we can see that the effective Purcell effect is influenced by the intrinsic decay probabilities 

from the 2D transition dipole and the c-axis transition dipole. For spherical QDs 0
0Up  is much smaller 
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than 0
2Dp , hence the c-axis is also called ‘dark axis’2. With the Purcell effect, the decay probability from 

these 2D-dipole transitions is modified to 

( )
( ) ( )

0 0 02D 1L 1L 1U 1U 2D 2D
2D 0 0 0

2D 1L 1L 1U 1U 0U 0U 0U

ρ γ ρ γ

ρ γ ρ γ ρ γ

+
= =

+ +

f p f
p

ff f
,              (20) 

while the decay probability from the linear dipole transition along the c-axis is modified to 

( )
( ) ( )

0 00U 0U 0U 0U 0U
0U 0 0 0

2D 1L 1L 1U 1U 0U 0U 0U

ρ γ

ρ γ ρ γ ρ γ
= =

+ +

f p f
p

ff f
.              (21) 

From Supplementary Equations 20 and 21, we can see that the ‘dark axis’ may be made bright by the 

Purcell effect, as long as the Purcell factor 0Uf  is much larger than 2Df . 

Influence of orientation on Purcell effect 

The Purcell factors 2Df  and 0Uf  are influenced by the orientation of the QD in the plasmonic 

nanostructure, and can be determined as: 

00 0
y,2Dx,2D z,2D

2D x y z0 0 0
2D 2D 2D

pp p
f f f f

p p p
= + + ,                        (22) 

00 0
y,0Ux,0U z,0U

0U x y z0 0 0
0U 0U 0U

pp p
f f f f

p p p
= + + .                        (23) 

Here xf , yf  and zf  are the Purcell factors for x-, y-, and z-oriented transition dipoles. 0
x,2Dp , 0

y,2Dp  

and 0
z,2Dp  are the intrinsic decay probabilities projected to x-, y- and z-axis for the 2D transition dipole, 

while 0
x,0Up , 0

y,0Up  and 0
z,0Up  are the intrinsic decay probabilities projected to x-, y- and z-axis for the 

linear transition dipole along the c-axis. Substituting Supplementary Equations 22 and 23 into 

Supplementary Equation 19, we can obtain the effective Purcell factor f  using the Purcell factors xf , 

yf , zf  and the intrinsic decay probabilities projected to x-, y- and z-axis: 

0 0 0
x x y y z zf p f p f p f= + + ,                             (24) 

where 0 0 0
x x,2D x,0Up p p= + , 0 0 0

y y,2D y,0Up p p= + , 0 0 0
z z,2D z,0Up p p= + . 

For a QD oriented as shown in Supplementary Fig. 8a, the intrinsic decay probabilities projected to 

x-, y- and z-axis are 

( ) ( )

( ) ( )

( )

( )

( )

( )

2 20 01
x,2D 2D2

2 20 01
y,2D 2D2

20 01
z,2D 2D2

20 0
x,0U 0U

20 0
y,0U 0U

20 0
z,0U 0U

cos cos sin ,

cos sin cos ,

sin ,

sin cos ,

sin sin ,

cos .

p p

p p

p p

p p

p p

p p

β α α

β α α

β

β α

β α

β

 = +  

 = +  

=

=

=

=

                    (25) 

The Purcell factors xf , yf  and zf  at Q1 and Q2 are numerically calculated and plotted in 

Supplementary Fig. 8b,c. With the Purcell effects, the decay probabilities projected to x-, y- and z-axis 

are modified to 
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0
x x

x
p f

p
f

= , 
0
y y

y
p f

p
f

= , 
0
z z

z
p f

p
f

= .                        (26) 

Simulated and measured Purcell effects 

Since 0
0Up  is much smaller than 0

2Dp , the effective Purcell factor f  is maximal when the ‘dark axis’ 

is in the xz plane and is minimal when the ‘dark axis’ is along the y axis. From simulation, we can see 

that xf  and zf  are much smaller than yf , thus the maximal effective Purcell factor can be 

approximately expressed as 01
max 2D y2

f p f= . Then we can get the upper limit of the effective Purcell 

factor as 1
y2

f , which is ~93 for Q1 and ~145 for Q2 (see yf  at 808nm in Supplementary Fig. 8b). The 

experimentally measured effective Purcell factor is ~45±3 for Q1, which is significantly below the upper 

limit implying a non-optimal orientation. The experimentally measured effective Purcell factor is 

~132±8 for Q2, which approaches the upper limit implying a near-optimal orientation. 

As shown in Supplementary Fig. 9a, the lifetime of Q1 is shorter when both Q1 and Q2 are in the 

nanosystem (corresponding to the structure measured in Fig. 3 and 4) than when only Q1 is in the 

nanosystem (corresponding to the structure measured in Fig. 2 of the main text). We attribute this to the 

change of structure parameters during the process of moving Q2 into the nanosystem. As shown by the 

simulated Purcell factors in Supplementary Fig. 9b, both the refractive index of the silica-encapsulated 

Q2 (simply modelled here as a silica sphere) and the decrease of g2 (gap width between G2 and G3) can 

cause a red shift of the plasmonic resonance and consequently increase the Purcell factor at the emission 

wavelength ~808 nm. There is also possibility that the gap width between G1 and G3 is slightly altered 

since pushing Q2 or G2 during the manipulation process may also move G3 through direct or indirect 

contact. We stress here that the influence from the existence of Q2 is due to its refractive index, but not 

the energy transfer. As we will analyze in Supplementary Note 4, the energy transfer rate should be much 

smaller than the spontaneous emission rate and therefore the existence of energy transfer should not 

influence the lifetime measurement. 

Since the lifetime curves are nearly mono-exponential under selective excitation or selective 

detection and the minor decay component can be attributed to the other QD due to the finite selectivity 

(see Supplementary Note 6 for the exponential fitting of the lifetime curves), the decay of each QD can 

be regarded as mono-exponential. When only Q1 is in the nanosystem, the measured lifetime curve is 

indeed mono-exponential (Supplementary Fig. 9a). With strong Purcell effects, the decay dynamics of 

the QDs remains mono-exponential. The mono-exponential decay behaviours are expected in our 

measurement, for two reasons. First, the QDs are weakly excited, so the probability of excitation of 

biexcitons or multiexcitons can be neglected and the measured decay dynamics is of monoexcitons. 

Second, at room temperature the decay dynamics is still much slower than thermalization, so the decay 

dynamics can be well described with an effective decay rate3, which is consistence with our analysis 

above (Supplementary Equation 11) 

Emission polarization 

Since very large effective Purcell factors are experimentally measured while xf  and zf  are very 

small, we can conclude from Supplementary Equation 24 that 0
y yp f f  is near 100%. Then we can 

further conclude from Supplementary Equation 26 that yp  is near 100%, which means that nearly all 

the energy from the exciton decay is extracted to the plasmonic mode excited by a y-oriented dipole as 

shown in Supplementary Fig. 8d (the same as Fig. 1g) for Q2 and Supplementary Fig. 8e (the same as 

Fig. 1f) for Q1. This plasmonic mode further determines the far-field emission polarization. Therefore, 
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as long as the Purcell factor for Q1 (Q2) is much larger than 1, the orientation of Q1 (Q2) will not 

influence its emission polarization. Its emission polarization should be the same as that of a y-oriented 

1D dipole emitter at its location. To numerically calculate the far-field polarization, we use a y-oriented 

1D dipole at the location of the QD and simulate the near field distribution in a plane slightly below the 

plasmonic nanostructure and perform a far-field projection routine. The calculated far-field polarizations 

are in good agreement with the experimental results, as shown in Fig. 2b and Fig. 3b. 

It is the distinct locations in the nanosystem that makes Q1 and Q2 couple to distinct plasmonic 

modes and consequently radiate with entirely different polarization states (roughly orthogonal to each 

other). To confirm this, we re-assemble the structure by moving the GNRs (Q1 is not moved) so that Q1 

locates at the gap between G2 and G3 (which is Q2’s location before the re-assembly) as shown by the 

AFM image in the lower inset in Supplementary Fig. 10 (the tiny bump on G3 is a fragment that sticks 

during the manipulation). When Q1 is at the gap between G1 and G3 (i.e., before the re-assembly), the 

polarization angle is ~46° (blue experimental data points and simulated continuous curve in 

Supplementary Fig. 10 or Fig. 2b). When Q1 is at the gap between G2 and G3 (i.e., after the re-assembly), 

the polarization angle changes to ~132° (red experimental data points and simulated continuous curve in 

Supplementary Fig. 10), which is very near the polarization angle of Q2 shown in Fig. 3b (for comparison, 

also shown with green ‘x’-shaped data points in Supplementary Fig. 10). 

The GNR farthest from the QD affects the far-field polarization. Before G2 is added, the far-field 

emission polarization of Q1 is linearly polarized with a polarization angle of ~52° (red experimental data 

points and simulated continuous curve in Supplementary Fig. 11a), while after G2 is added, the 

polarization angle rotates to ~46° (blue experimental data points and simulated continuous curve in 

Supplementary Fig. 11a). The electric field coupled to G2 (comparing field profile in panel c with that 

in panel b in Supplementary Fig. 11) is roughly anti-phase with the electric field in G1 and thus reduces 

the y-polarized component in the far-field radiation, which explains the slight rotation of polarization 

angle. 

Supplementary Note 4 - Energy transfer between the QDs 

For simplicity, here we model the emitters as point dipoles, one as the donor and the other as the acceptor. 

Further more, the dipoles are assumed to have the optimal orientations for energy transfer. For dipole-

dipole energy transfer at subwavelength distance, the optimal orientation is pointing from donor to 

acceptor, as shown in the lower two insets in Supplementary Fig. 12a. For energy transfer with the 

plasmonic nanostructure, the optimal orientation is the y-direction, as shown in the upper inset in 

Supplementary Fig. 12a. Energy transfer rate ETγ  scale with ( ) 2
A D A D,⋅n G r r n


, that is, 

( ) 2
ET A D A D,γ ∝ ⋅n G r r n


,                             (27) 

where Dn  ( An ) is the unit vector denoting the dipole orientation of the donor (acceptor), Dr  ( Ar ) is 

the position of the donor (acceptor) and ( )D A,G r r


 is the Green’s function5. In Supplementary Fig. 12a, 

we show the numerically simulated value of ( ) 2
A D A D,⋅n G r r n


 (as a function of the wavelength of 

energy transfer) for three different cases. We can see that with the gold nanostructure, the value of 

( ) 2
A D A D,⋅n G r r n


 is strongly enhanced (red solid curve) as compared with the case without the gold 

nanostructure (blue dashed curve). The energy transfer rate enhancement factor ETf  is shown in 
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Supplementary Fig. 12b. At the wavelength of ~808 nm (i.e., the emission wavelength of the QDs used 

in our experiment), the enhancement factor is ~540. With this enhancement, the energy transfer rate 

between the two dipole emitters (~61 nm apart) coupled with the gold nanostructure will be the same as 

that between two dipole emitters ~22 nm apart (without the gold nanostructure), as shown by the 

intersection of the red solid curve and the blue solid curve at ~808 nm in Supplementary Fig. 12a. 

In the experiment, the situation is more complex. Most importantly, the QDs has to be modelled as 

a combination of a 2D dipole and a 1D dipole, and the orientations of the QDs may deviate from the 

ideal case, which will significantly reduce both the Purcell effect and the enhancement factor of the 

energy transfer rate. For simplicity, the reduction can be effectively attributed to the orientation deviation 

of a 1D dipole from the y direction. Suppose that the donor (acceptor) dipole emitter Dμ  ( Aμ ) deviate 

from the y direction by an angle of Dθ  ( Aθ ). Recall that the Purcell factor 

( ){ }Purcell μ 0 0 μIm ,∝ ⋅ ⋅n G r r n


f ,                          (28) 

while the enhancement factor for the energy transfer rate 

( ) 2
ET A D A D,∝ ⋅n G r r n


f .                             (29) 

In the nanosystem, for both ( )0 0,G r r


 and ( )D A,G r r


, other components are negligible as compared 

with the component yyG . Therefore, the Purcell factor for the donor (acceptor) scales with 2
Dcos θ  

( 2
Acos θ ) while the enhancement factor of the energy transfer rate scales with 2 2

D Acos cosθ θ⋅ , that is, 

2
D Dcos θ∝f ,                                  (30) 

2
A Acos θ∝f ,                                  (31) 

2 2
ET D Acos cosθ θ∝ ⋅f .                             (32) 

To roughly estimate the enhancement of energy transfer rate, we compare theoretical Purcell factors with 

the experimentally observed Purcell factors. The theoretical Purcell factor (for the emission wavelength 

of ~808 nm) is ~188 for the dipole emitter 1μ  and ~290 for the dipole emitter 2μ  (Supplementary Fig. 

12c), while in the experiment we observe a Purcell factor of ~45±3 for Q1 and a Purcell factor of ~132±8 

for Q2, which are reduced with a factor of ~4.2 and ~2.2 respectively. Then we can roughly estimate that 

the enhancement factor of the energy transfer rate is reduced from the theoretical value (~540) by a factor 

of ~9.2 (the product of the reduction factors ~4.2 and ~2.2) to ~59. 

Although the energy transfer rate is expected to be strongly enhanced in the nanosystem, it is still 

much smaller than the enhanced spontaneous emission rates and therefore, considering the competition 

between the energy transfer and the spontaneous emission of the donor6, the energy transfer efficiency 

is so low that we can safely neglect the energy transfer in our experiment. For dipole-dipole energy 

transfer in homogenous free-space, the energy transfer rate ETγ  decays rapidly with donor-acceptor 

distance R and can be expressed as 
6

0
ET 0γ γ  = ⋅  

 

R

R
,                               (33) 

where 0γ  is the intrinsic decay rate of the donor (in the absence of the acceptor) and 0R  is the Förster 

radius. 0R  is typically in the range of 2-9 nm7. Since the energy transfer rate is enhanced to be the same 

as that between two dipole emitters ~22 nm apart, we can estimate the energy transfer rate to be 
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6

0
ET 0

9 nm

22 nm 213

γγ γ  ≤ ⋅ = 
 

.                           (34) 

At the same time, the spontaneous emission rates of both dipole emitters are also strongly enhanced as 

shown in Supplementary Fig. 12c. The spontaneous emission rate of dipole emitter 1μ  is enhanced to 

be 1 0188 γ γ=  and the emission rate of the dipole emitter 2μ  is enhanced to be 2 0290 γ γ= . So we 

have 

ET 4
( 1,2)

4 10

γγ < =
×

i i .                             (35) 

Therefore, the energy transfer efficiency iE  (i denotes that iμ  is the donor), defined as the fraction of 

energy transferred to the acceptor compared to the total energy released from the decay of the donor 

 ET

ET

γ
γ γ

=
+i

i
E ,                                (36) 

is estimated to be lower than 52.5 10−× . As the Purcell factor for the donor (acceptor) scales with 2
Dcos θ  

( 2
Acos θ ) and the enhancement factor of the energy transfer rate scales with 2 2

D Acos cosθ θ⋅  

(Supplementary Equations 30-32), if we consider the orientation deviation angles of the donor and 

acceptor dipole emitter from the optimal y-orientation Dθ  and Aθ , the energy transfer efficiency 

would be even lower. Such a low energy transfer efficiency indicates that the energy transfer can be 

neglected in the decay of the emitters and will not influence the characterization of the emission 

properties of the emitters. On the other hand, although we can selectively excite the donor and selectively 

detect the acceptor, either the excitation selectivity or the detection selectivity in the experiment is not 

high enough to enable the characterization of the energy transfer. With the finite excitation selectivity of 

~0.96, although the direct excitation of the acceptor is only ~1/50 of that of the selectively excited donor, 

the energy transfer from the donor to the acceptor would still be much weaker than the direct excitation 

of the acceptor. With the finite detection selectivity of ~0.96, although most of the emission from the 

donor is blocked, the detected emission from the energy transfer would still be much less than the directly 

detected emission from the donor. 

 From Supplementary Equations 28 and 29, we see that the energy transfer enhancement factor scales 

quadratically with the Green function while the Purcell factor scales linearly with the Green function (the 

imaginary part). If the Green functions are further enhanced by shrinking the gap size of the plasmonic 

structure, the energy transfer enhancement factor can be made much larger than the Purcell factor, and 

then the energy transfer efficiency (Supplementary Equation 36) can be enhanced. 

Supplementary Note 5 - Finding optimal polarization for selective excitation and optimal 

polarizer angle for selective detection 

To perform far-field selective excitation and far-field selective detection, the key task is to experimentally 

find, for each QD, the optimal polarization for excitation suppression and optimal polarizer angle for 

emission blocking. 

When only one QD is in the system, we find the optimal excitation polarization for excitation 

suppression by successively searching the elliptical polarization parameters ϕ  and θ  to minimize the 

emission intensity. First, we set θ  to a moderate value 0θ  (e.g., 45 ) and scan ϕ  to find the optimal 
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ϕ  that minimizes the emission intensity. Then, we set ϕ  to this optimal ϕ  and scan θ  to find the 

optimal θ  that minimizes the emission intensity. 

As long as the y-component local fields yE↔  and yE  are dominant at the QDs, this searching 

method is theoretically equivalent to the direct calculation method using ( )y yarctan E Eθ ↔=   and 

( ) ( )y y 180E Eϕ φ φ↔= − −   (described in Supplementary Note 2). Numerical simulations show that this 

searching method gives results (dashed curves in Supplementary Fig. 6d-f) in agreement with those given 

by direct calculation (solid curves in Supplementary Fig. 6d-f), and slightly better results at wavelengths 

shorter than 710 nm where the dominance of the y-component degrades. 

When both QDs are in the system, if we use the emission intensity as the figure of merit for 

optimization of the excitation polarization, there is mutual dependence between determination of the 

optimal polarization for selective excitation and determination of the optimal polarizer angle for selective 

detection. To find the optimal excitation polarization to suppress either QD, we have to selectively detect 

the QD to minimize its emission intensity. To find the optimal polarizer angle to selectively detect either 

QD, we have to selectively excite the QD to measure its emission polarization. 

This mutual dependence can be avoided if the objective parameter for optimization of the excitation 

polarization does not rely on selective detection. The degree of polarization (DOP) is such a feasible 

objective parameter, which is very sensitive to incoherent mixing of photons from Q1 and Q2 (since the 

emissions from Q1 and Q2 are designed to have pure polarizations well separated on the Poincaré sphere) 

and can be conveniently obtained by measuring the Stokes parameters. 

In this work, we use the emission intensity as the objective parameter for optimization of the 

excitation polarization. We overcome the mutual dependence by iteratively optimizing the polarization 

for selective excitation and the polarizer angle for selective detection until stable values emerge after a 

small number of iterations, as illustrated in Supplementary Fig. 13, where panel a illustrates the 

optimization process for selective excitation of Q1 (i.e., excitation suppression of Q2) and selective 

detection of Q2 (i.e., blocking the emission of Q1), and panel b illustrates the optimization process for 

selective excitation of Q2 (i.e., excitation suppression of Q1) and selective detection of Q1 (i.e., blocking 

the emission of Q2). The superscripts in brackets (i) denotes the current round number of iteration. Since 

the processes in panel a and b are similar, here we describe in detail only the process in panel a. Before 

we start the optimization, we have to first decide (1)
Q1ψ  (for the first round of iteration, the superscripts i 

is 1) as the initial value of the emission polarization angle of Q1 to start the optimization. Emission 

polarization angle from preliminary numerical simulation is a good candidate for (1)
Q1ψ . Later, we will 

see that the optimization process permits a quite wide range of the initial value (1)
Q1ψ . From the emission 

polarization angle of Q1 ( )
Q1ψ i  (decided as a initial value for i = 1 or produced from the previous iteration 

for i > 1), the polarizer angle α  is set accordingly to ( )
Q1 90ψ + i . This way, the transmittance for Q2 

( )( )
Q2 Q1 90ψ + iT  is larger than the transmittance for Q1 ( )( )

Q1 Q1 90ψ + iT , so that Q2 is selectively detected 

with a certain selectivity. Here ( )Q1 αT  and ( )Q2 αT  are functions of the polarizer angle α , and are 

related to the actual emission polarization parameters of Q1 ( Q1 Q1,ψ χ ) and Q2 ( Q2 Q2,ψ χ ), respectively: 

( ) ( ) ( )
2

Q12 2
Q1 Q1 Q12 2

Q1 Q1

tan1
cos sin

1 tan 1 tan

χ
α α ψ α ψ

χ χ
= − + −

+ +
T ,             (37) 
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( ) ( ) ( )
2

Q22 2
Q2 Q2 Q22 2

Q2 Q2

tan1
cos sin

1 tan 1 tan

χ
α α ψ α ψ

χ χ
= − + −

+ +
T .             (38) 

Under this detection condition, we can then find the optimal excitation polarization by successively 

searching the elliptical polarization parameters ϕ  and θ  that minimize the detected emission intensity. 

First, set θ  to a moderate value 0θ  (e.g., 45 ) and scan ϕ  to find the optimal ϕ  that minimizes the 

detected emission intensity. Due to finite detection selectivity, the detected emission intensity includes 

contributions from both Q1 and Q2 and can be expressed as (normalized) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
Q1 0 Q1 Q2 0 Q21 Q1 Q1, 90 , 90ϕ θ ϕ ψ θ ϕ ψ= ⋅ + + ⋅ + i i ig f T f T ,            (39) 

where ( )Q1 ,θ ϕf  and ( )Q2 ,θ ϕf  are the excitation enhancement factors for Q1 and Q2 as functions of 

the excitation polarization parameters ( ,θ ϕ ): 

( ) ( ) ( )

( ) ( )

( ) ( )

2i
Q1 x x

2i
y y

2i
z z

, cos Q1 sin Q1

              cos Q1 sin Q1

              cos Q1 sin Q1

f E e E

E e E

E e E

ϕ

ϕ

ϕ

θ ϕ θ θ

θ θ

θ θ

↔

↔

↔

 = ⋅ + ⋅ 

 + ⋅ + ⋅ 

 + ⋅ + ⋅ 







,                     (40) 

( ) ( ) ( )

( ) ( )

( ) ( )

2i
Q2 x x

2i
y y

2i
z z

, cos Q2 sin Q2

              cos Q2 sin Q2

              cos Q2 sin Q2

f E e E

E e E

E e E

ϕ

ϕ

ϕ

θ ϕ θ θ

θ θ

θ θ

↔

↔

↔

 = ⋅ + ⋅ 

 + ⋅ + ⋅ 

 + ⋅ + ⋅ 







.                    (41) 

The found optimal ϕ  is denoted as ( )
1ϕ i . Then set ϕ  to this optimal value ( )

1ϕ i  and scan θ  to find 

the optimal θ  that minimizes the detected emission intensity (normalized) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
Q1 Q1 Q2 Q21 1 Q1 1 Q1, 90 , 90θ θ ϕ ψ θ ϕ ψ= ⋅ + + ⋅ + i i i i ih f T f T .            (42) 

The found optimal θ  is denoted as ( )
1θ i . This way, with the excitation polarization parameters 

( ( ) ( )
1 1,θ ϕi i ), the excitation enhancement factors for Q1 ( )( ) ( )

Q1 1 1,θ ϕi if  is larger than the excitation 

enhancement factors for Q2 ( )( ) ( )
Q2 1 1,θ ϕi if , that is, Q2 is suppressed to a certain degree and Q1 is 

selectively excited with a certain selectivity. Under this excitation condition, we then scan the polarizer 

angle α  to find the polarizer angle that minimizes the detected emission. Due to finite excitation 

selectivity, the detected emission includes contributions from both Q1 and Q2 and can be expressed as 

(normalized) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
Q1 Q1 Q2 Q21 1 1 1 1, ,ν α θ ϕ α θ ϕ α= ⋅ + ⋅i i i i if T f T .                (43) 

From the found polarizer angle α , we can get the polarization angle ( 1)
Q1 90ψ α+ = − i . From ( 1)

Q1ψ +i  we 

can then start another iteration described above until convergence is achieved for both ( )
Q1ψ i  and 

( ( ) ( )
1 1,θ ϕi i ). The convergence speed is fast enough for our structure that the finally optimized excitation 

polarization and polarizer angle can be obtained within a small number of iterations if the starting trial 

value of the polarizer angle ( (1)
Q1 90ψ +  ) doesn’t deviate too much from the optimal value ( Q1 90ψ +  ). 

We theoretically demonstrate in Supplementary Fig. 14 the optimization process for the structure 

simulated in the main text. In Supplementary Fig. 14a, we start from a (1)
Q1ψ  that deviates 20° from the 
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actual polarization angle Q1ψ . This (1)
Q1ψ  results in a transmittance ratio 

( ) ( )(1) (1)
Q2 Q1Q1 Q190 90ψ ψ+ + T T  of 7.5. With such a moderate transmittance ratio, we find excitation 

polarization parameters ( (1) (1)
1 1,θ ϕ ) that deviate only slightly from the actual optimal excitation 

parameters ( 1 1,θ ϕ ) and can already be used as the final optimal parameters. Then with the excitation 

polarization parameters, high excitation selectivity is achieved and we can subsequently find (2)
Q1ψ  with 

negligible deviation from the actual polarization angle Q1ψ . Using (2)
Q1ψ , the excitation polarization 

parameters ( (2) (2)
1 1,θ ϕ ) can further be found with negligible deviation from ( 1 1,θ ϕ ). In Supplementary 

Fig. 14b, we start from another (1)
Q1ψ  that deviates an even larger angle (40 ° ) from Q1ψ . The 

transmittance ratio ( ) ( )(1) (1)
Q2 Q1Q1 Q190 90ψ ψ+ + T T  is only 1.64. Nevertheless, with such a small 

transmittance ratio, we can still get excitation polarization parameters ( (1) (1)
1 1,θ ϕ ) that deviate not too 

much from the optimal excitation parameters ( 1 1,θ ϕ ). The parameters ( (1) (1)
1 1,θ ϕ ) can already offer 

efficient excitation selectivity to subsequently get a (2)
Q1ψ  with negligible deviation from the actual 

polarization angle Q1ψ . Comparing between Supplementary Fig. 14a and b, we can see that the initial 

value (1)
Q1ψ  influences only the accuracy in the first iteration. 

The optimization process permits a quite wide range of the initial value (1)
Q1ψ  for quickly producing 

the optimal results within a small number of iterations. The assumed deviation of 20° is actually already 

a quite large deviation assumption if emission polarization angle from preliminary numerical simulation 

are adopted as (1)
Q1ψ , as the emission polarization is not very sensitive to the change of structure 

parameters as demonstrated in Supplementary Note 1. Therefore, this optimization process can be quite 

robust. Even if we start from (1)
Q1ψ  with a too large deviation (e.g., 60°) from Q1ψ , the optimization can 

still quickly converge to stable values. However, in this case the optimization target is no longer Q1ψ  

(for selective detection of Q2) and ( 1 1,θ ϕ ) (for selective excitation of Q1), but actually changes to Q2ψ  

(for selective detection of Q1) and ( 2 2,θ ϕ ) (for selective excitation of Q2). In other words, the 

optimization process shown in Supplementary Fig. 13a actually changes to that in Supplementary Fig. 

13b. For example, if (1)
Q1ψ  is equal to Q1 60ψ +  , ( )(1)

Q2 Q1 90  ψ + T (34.5%) will be significantly smaller 

than ( )(1)
Q1 Q1 90ψ + T  (74.5%), and therefore the intended selective detection of Q1 will actually be 

selective detection of Q2. 

Supplementary Note 6 - Exponential fitting of fluorescence decay curves  

The spontaneous fluorescence decay curves measured when Q1 is selectively excited (blue solid data 

points in Fig. 4), when Q2 is selectively excited (red solid data points in Fig. 4), and when Q1 and Q2 

are equally excited (yellow-green solid data points in Fig. 4), are fitted using the following bi-exponential 

decay function 

( ) ( )0 1 0 2

0 1 2
τ τ− − − −= + +t t t ty y A e A e .                        (44) 

For these three fits, the lifetime parameters 1τ  and 2τ  are shared. The fitting results are as follows. 

When Q1 is selectively excited (blue solid data points in Fig. 4), the fitting result is 

( ) ( )10ns 1.88ns 10ns 6.47ns4
Q1-SE 7.4 10 0.11 0.92− − − −−= × + +t ty e e .              (45) 
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When Q2 is selectively excited (red solid data points in Fig. 4), the fitting result is 

( ) ( )10ns 1.88ns 10ns 6.47ns4
Q2-SE 3.3 10 1.1 0.016− − − −−= × + +t ty e e .              (46) 

When Q1 and Q2 are equally excited (yellow-green solid data points in Fig. 4), the fitting result is 

( ) ( )10ns 1.88ns 10ns 6.47ns4
Q1+Q2 2.8 10 0.79 0.27− − − −−= × + +t ty e e .            (47) 

From the fitting results, we can obtain the proportions of the decay components with different lifetimes. 

The proportion of the photon counts from the decay component with lifetime 1τ  is 

 1 1

1 1 2 2

τ
τ τ+

A

A A
,                                 (48) 

while the proportion of the photon counts from the decay component with lifetime 2τ  is 

2 2

1 1 2 2

τ
τ τ+

A

A A
.                                 (49) 

When Q1 is selectively excited, ~96.6% of the photon counts comes from the decay with a lifetime of 

~6.47 ns, while only ~3.4% comes from the decay with a lifetime of ~1.88ns. When Q2 is selectively 

excited, ~95.2% comes from the decay with a lifetime of ~1.88 ns, while only ~4.8% comes from the 

decay with a lifetime of ~6.47 ns. When Q1 and Q2 are equally excited, ~54% comes from the decay 

with a lifetime of ~6.47 ns, while ~46% comes from the decay with a lifetime of ~1.88 ns. 

In the decay of the selectively excited Q1 (Q2), the minor ~3.4% (~4.8%) decay component with a 

lifetime of ~1.88 ns (~6.47 ns) makes the decay slightly bi-exponential. Since the lifetime of the minor 

decay component is equal to the lifetime of the other QD, we attribute the slight bi-exponential nature to 

the finite excitation selectivity. 

The spontaneous fluorescence decay curves measured when Q1 is selectively detected (blue 

hollowed data points in Fig. 4) and when Q2 is selectively excited (red hollowed data points in Fig. 4) 

can also be fitted to slightly bi-exponential decay curves with the lifetimes 1.88 ns and 6.47 ns, as follows. 

When Q1 is selectively detected (blue hollowed data points in Fig. 4), the fitting result is 

( ) ( )10ns 1.88ns 10ns 6.47ns4
Q1-SD 6.6 10 0.085 0.89− − − −−= × + +t ty e e .              (50) 

When Q2 is selectively excited (red hollowed data points in Fig. 4), the fitting result is 

( ) ( )10ns 1.88ns 10ns 6.47ns4
Q2-SD 2.7 10 1.1 0.012− − − −−= × + +t ty e e .              (51) 

When Q1 is selectively detected, ~97.3% of the photon counts comes from the decay with a lifetime of 

~6.47 ns, while only ~2.7% comes from the decay with a lifetime of ~1.88ns. When Q2 is selectively 

detected, ~96.4% comes from the decay with a lifetime of ~1.88 ns, while only ~3.6% comes from the 

decay with a lifetime of ~6.47 ns. We attribute the slight bi-exponential nature to the finite detection 

selectivity. 

 Since the lifetime curves are nearly mono-exponential under selective excitation or selective 

detection and the minor decay component can be attributed to the other QD due to the finite selectivity, 

the decay of each QD can be regarded as mono-exponential. When only Q1 is in the nanosystem, the 

measured lifetime curve is indeed mono-exponential (Supplementary Fig. 9a). 
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Supplementary Note 7 - Photon collection efficiency 

To measure the excitation cross sections or excitation enhancement factors for QDs, the collection 

efficiency for QD emission is required. Here, the required collection efficiency is a relative efficiency 

normalized to the collection efficiency for a horizontally oriented linear dipole. The collection efficiency 

for QD emission is influenced by three factors: dipole orientation, structure loss and optical transmittance. 

Before the QD is coupled to the plasmonic nanostructure, the detection efficiency of QD emission is 

influenced by the orientation of the QD (approximately a 2D-dipole; see Supplementary Fig. 8a), which 

can be determined by the measured polarization (Fig. 2b) and the numerical aperture of the collective 

objective (NA = 0.7) 8. After the QD is coupled to the plasmonic nanostructure, the radiation pattern is 

tailored to a linear dipole with horizontal orientation (Fig. 2b and Fig. 3b). 

Due to the loss in the plasmonic nanostructure the effective quantum efficiency of the nanosystem is 

less than 100%9,10.The measured large effective Purcell factors show that nearly all the energy from the 

exciton decay is extracted to the plasmonic mode excited by a y-oriented dipole (Supplementary Fig. 

8d,e). Therefore, the effective quantum efficiency, which is defined as the ratio between the counts of 

far-field photons and the counts of radiative recombinations of excitons, can be obtained through 

simulation using a y-oriented dipole. The simulated effective quantum efficiencies for Q1 and Q2 are 

shown in Supplementary Fig. 8f. 

When a linear polarizer is inserted for selective detection, the collection efficiency for the selectively 

detected QD is further influenced by the transmittance of the polarizer, which can be determined 

according to the polarizer angle and the measured emission polarization of the selectively detected QD 

(Fig. 3b). 

Supplementary Note 8 - Plasmon-mediated entanglement 

Structure of the nanosystem 

To make the plasmon-mediated interaction between the emitters much faster than dephasing processes 

in typical solid-state quantum emitters, we modify the plasmonic nanostructure as shown in 

Supplementary Fig. 15a. The widths of the gaps are significantly reduced from ~25 nm to 6 nm. The 

sizes of the three constituent GNRs are also reduced: the diameters are reduced from ~25 nm to 10 nm, 

while the lengths are reduced from ~86 nm to 42 nm. The two quantum emitters are identical and 

modelled as two point dipoles 1μ  and 2μ  oscillating along the y-direction with the same transition 

dipole moment, i.e., 1 1μ=μ n y  and 2 2μ=μ n y , where 1 2= =μ μ μ . The emitters are positioned 3 nm 

above the substrate, considering a practical emitter at the center of a nanoparticle with a diameter of 6 

nm and placed on the substrate. The parameters s1 and s2 (see definition of s1 and s2 in Supplementary 

Fig. 3) are 1.5 nm, which is optimized for selective excitation. 

Quantum dynamics 

In this nanosystem, the plasmon dissipation is much faster than plasmon-emitter interactions, so the 

coupling between plasmon and emitters is in the weak-coupling regime. We can trace out the plasmonic 

degrees of freedom and focus on the dynamics of the reduced density matrix ρ̂  for the emitters’ 

subsystem, which is described by the following master equation11,12 
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( )i ˆˆ ˆ ˆ,H L
t

ρ ρ ρ∂  = − + ∂ 
,                            (52) 

where ( ) ( )† † †
e

1,2

ˆ ˆ ˆ ˆ ˆ ˆ ˆω δ σ σ σ σ σ σ
= ≠

= + + + Ω +    i i ij j i ii i i
i i j i

H g  is the effective Hamiltonian of the emitter 

subsystem, while ( ) ( )† † †1
2

,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2ρ γ σ σ ρ ρσ σ σ ρσ= − + − ij j j ii i j
i j

L  is the Lindblad superoperator. In the first 

term of Ĥ , eω  is the transition frequency, and δi  is the lamb shift, which is induced by emitter-

plasmon interaction. The second term of Ĥ  describes the coherent interaction between emitters leading 

to exciton energy level shifts, while ( )ρ̂L  describes the exciton relaxations induced by self and mutual 

interactions. The third term of Ĥ  describes the resonant excitation on emitter i  with a Rabi frequency 
Ωi . The key parameters ijg  and ijγ  in the master equation are the coherent and non-coherent 

interaction rates, respectively, which can be determined using classical Green’s function ( )e, ,i j ωG r r


 

as12,13 

( )
2

*e
e2

0

Re , ,ij i i j jg
c

ω ω
ε

 =  μ G r r μ



,                          (53) 

( )
2

*e
e2

0

2
Im , ,ij i i j j

c

ωγ ω
ε

 =  μ G r r μ



.                          (54) 

Since the transition dipoles of the quantum emitters in the nanosystem are set to the y-direction, i.e., 

1 1μ=μ n y  and 2 2μ=μ n y , only the component ( )yy e, ,i jG ωr r  of the Green’s function needs to be 

determined, according to the relationship 

( ) ( )
2

0
yy e e2

e

, , , ,i j y i j
j

c
G E

εω ω
ω μ

=r r r r ,                         (55) 

where ( )y e, ,i jE ωr r  is the y-component electric field at ri  when an electric dipole source μ nj y  is 

placed at rj , which is numerically calculated using FDTD simulation. 
The simulated ijg  and γ ij  versus transition wavelength are shown in Supplementary Fig. 15b, 

where all the rate parameters are in units of the free-space spontaneous decay rate 0γ , which can be 

expressed as ( )
2

2e
0 0 0 0 e2

0

2
Im , ,

c

ωγ μ ω
ε

 =  G r r



, where ( )0 0 0 e, ,ωG r r


 is the vacuum Green’s function, 

eω  is the transition frequency. Due to structural symmetry, we have 12 21=g g , 12 21γ γ= , 11 22γ γ γ= = . 

At the resonance wavelength 808 nm, the interaction is purely dissipative, with a vanishing 12g  and 

maximal γ  and 12γ . The extremely enhanced dissipative interaction 12γ  is ~72,000 times faster than 

the intrinsic decay rate 0γ  of the emitters. For a typical transition dipole moment of 10 Debye, the free-

space decay rate 0γ  is ~(16.8 ns)-1 at ~808 nm transition wavelength, and the enhanced dissipative 

interaction 12γ  reaches ~(0.23 ps)-1. Such an interaction rate can feasibly overwhelm dephasing 

processes in typical solid-state quantum emitters14-18. 

For ideally identical emitters or emitters with finite but small transition energy difference in realistic 

implementations, as long as the plasmon-enhanced interaction rates are much larger than the dephasing 

rates, the eigenstates of the singly excited emitter subsystem are the maximally entangled states 

( )( )1 2 1 21 2 , ,± = ±e g g e , where ig ( ie ) denotes the ground (excited) state of the emitter μi
5. 

Using the basis consisting of the singly excited states ± , the ground state 1 20 ,= g g  and the doubly 
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excited state 1 22 ,= e e , the master equation (Supplementary Equation 52) can be solved and gives an 

energy shift of 12±g  for state ±  and the following rate equations for the diagonal matrix elements 

of the reduced density matrix ρ̂ 13 

 

( ) ( )
( ) ( )
( ) ( )

00 12 12

12 12 22

12 12 22

22 22

,

,

,

2 .

ρ γ γ ρ γ γ ρ
ρ γ γ ρ γ γ ρ
ρ γ γ ρ γ γ ρ
ρ γρ

++ −−

++ ++

−− −−

= + + −

= − + + +

= − − + −
= −









                         (56) 

The diagonal matrix elements determine the population probabilities of the corresponding states: 

000 ρ=p , ++ρ+ =p , ρ−−− =p , 222 ρ=p . The energy shifts and population dynamics are 

schematically depicted in Supplementary Fig. 15c. From the rate equations (Supplementary Equation 56), 

we can see that the decay rate of the symmetric state +  is 12γ γ γ+ = +  (red curve in Supplementary 

Fig. 15d), while that of the anti-symmetric state −  is 12γ γ γ− = −  (blue curve in Supplementary Fig. 

15d). Since 12γ  is positive and close to γ  around the plasmonic resonance wavelength (~808 nm), the 

symmetric state +  is super-radiant while the anti-symmetric state −  is sub-radiant. The super-

radiant state +  decays at rate 5
0~ 1.48 10γ γ+ × , which is ~40 times faster than the decay rate of the 

sub-radiant state −  ( 3
0~ 3.74 10γ γ− × ). As we demonstrate below, this large decay rate difference leads 

to spontaneous generation of entanglement between the emitters. 

Spontaneous entanglement generation 

As an example demonstration of spontaneous entanglement generation, the system is initialized to a 

singly excited unentangled state 1 2,e g  (a superposition of states +  and − : 

( )( )1 2, 1 2= + + −e g ). This initial state can be prepared by selective excitation of emitter 1μ  as 

shown in Supplementary Fig. 16. Due to the height mismatch between the emitter and the GNRs, there 

are significant z-components of the local fields at the emitters, which reduce the theoretical excitation 

selectivity. Nevertheless, under such an unfavourable condition, the excitation selectivity is still 

sufficiently high for experiment. 

In the basis { }0 , , , 2+ − , the density matrix of the initial state 1 2,e g  is expressed as 

( )

0 0 0 0

0 1 2 1 2 0
ˆ 0

0 1 2 1 2 0

0 0 0 0

ρ

 
 
 =
 
 
 

.                              (57) 

Since the system is initialized in a singly excited state and left to decay spontaneously without driving, 

the dynamics is confined in the reduced basis { }0 ,  ,  + − , and the rate equations for the population 

evolutions can be reduced to 

( ) ( )
( )
( )

0 12 12

12

12

,

,

,

ρ γ γ ρ γ γ ρ
ρ γ γ ρ
ρ γ γ ρ

++ −−

++ ++
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= − +

= − −







                        (58) 

from which the spontaneous evolutions of the populations are obtained as 

( ) ( )
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                         (59) 

which are plotted in Supplementary Fig. 15e. The entanglement is evaluated using concurrence 

( ) ( )2 24Imρ ρ ρ++ −− +−= − +C 12, where the matrix element ( )1221
2

γρ −−
+− = i g tte e , which is obtained 



21 / 39 

through solving rate equation ( )122ρ γ ρ+− +−= − + g i  with the initial condition 1
2

(0)ρ+− = . Around the 

resonance wavelength 808nm, 12g  is vanishing, therefore ρ+−  is real and the concurrence is reduced 

to ρ ρ++ −−= −C  (solid curve in Supplementary Fig. 15e). From Supplementary Fig. 15e, we can see 

that both states ±  decays from a population probability of 0.5. The state +  decays very quickly 

while the state −  decays much more slowly, which quickly leads to imbalance between states ±  and 

thus induces entanglement. At ( ) ( ) ( ) 5
12 12 12 0ln 2 2.5 10γ γ γ γ γ τ−=  + −  = × t , the entanglement reaches 

a maximum 0.44=C , where the population of the fast decaying state +  become negligible as 

compared with the slow decaying state − . After that, the entanglement decays slowly at approximately 

the decay rate of state −  until the dephasing processes (not explicitly involved in the master equation 

and the rate equations) destroy the entanglement. For wavelength slightly detuned from the plasmonic 

resonance 808 nm, the non-vanishing 12g  will induce a slight oscillation in the time evolution of the 

concurrence. 

Entanglement detection 

The states ±  decay to different plasmonic modes as shown by the electric field profiles in 

Supplementary Fig. 15f,g. The field profiles are numerically calculated by coherently adding the field 

profiles from dipole sources 1μ  and 2μ  with phase delay 180° for state +  and 0° for state − . 

The plasmons from the decay of state +  radiate to x-polarized photons with radiation efficiency of 

~1.9% (red curve in Supplementary Fig. 15h), while the plasmons from the decay of state −  radiate 

to y-polarized photons with radiation efficiency of ~9.3% (blue curve in Supplementary Fig. 15h). 

Therefore, through polarization analysis of the photon radiation, states ±  can be distinguished and the 

state of the system can be analyzed.  
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Supplementary Figure 1 Emission stability of single QDs on the substrate. a,b The emission intensity 

time trajectories (left) and the corresponding distributions of intensity (right) for Q1 (a) and Q2 (b), which 

are encapsulated with a silica shell. QDs with silica-encapsulation blink only occasionally and have stable 

bright-state intensity level. c,d The emission intensity time trajectories (left) and the corresponding 

histograms of the distribution of intensities (right) for two typical QDs without silica-encapsulation. QDs 

without silica-encapsulation blink frequently and part of them have rather broad distributions of intensity 

(e.g., in panel d).  
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Supplementary Figure 2 Optical setup for photoluminescence characterization. The optical system is a 

home-built microscopic single-molecule fluorescence detection system, consisting of an excitation module, 

a microscope, and a photon counting module. NLPCF, nonlinear photonic crystal fiber; LPF, long-pass 

edge filter; SPF, short-pass edge filter; BDP, beam displacement plate; BS, beam splitter; PM, power 

meter; VNDF, variable neutral density filter; LP, linear polarizer; HWP, half-waveplate; QWP, quarter-

waveplate; PH, pinhole.  
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Supplementary Figure 3 Structure parameters of the nanosystem. a View from +z direction. The 

parameters l1, l2 and l3 are the lengths of G1, G2 and G3, respectively. The parameters d1, d2 and d3 are 

the diameters of G1, G2 and G3, respectively. The parameters D1 and D2 are the diameters of Q1 and Q2 

(including the silica shell), respectively. The parameters g1 and g2 are the gap widths between G1 and G3 

and between G2 and G3, respectively. The end-caps of the GNRs are modelled as half oblate spheroids 

with an aspect ratio of 0.5. The parameter s1 (s2) is the x-directional distance from the center of G1 (G2) 

to the equatorial plane of the spheroidal end-cap of G3. b View from +x direction.  
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Supplementary Figure 4 Simulated z-component electric field distributions in the xz plane passing 

through the center of the QDs when excited with x- and y-polarized light at 740 nm wavelength. a Source-

normalized intensities of the z-component electric fields when there is no substrate and when excited with 

x-polarized light (denoted as ↔ ). b Same as panel (a) but when excited with y-polarized light (denoted 

as ). c,d Same as panels (a) and (b) but when there is the substrate. The intensity distributions in (a)-

(d) share the colour bar.  
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Supplementary Figure 5 Numerically simulated field distributions when excited with x- and y-polarized 

light at 740 nm wavelength. a-c Distributions of the source-normalized intensities of the x- (a), y- (b) and 

z- (c) component electric fields when excited with x-polarized light (denoted as ↔ ). d Distribution of the 

phases of the y-component electric fields when excited with x-polarized light (denoted as ↔ ). e 

Distribution of the source-normalized intensities of the electric fields and the arrow plots of the electric 

displacement vectors when excited with x-polarized light (denoted as ↔ ). f-h Distributions of the source-

normalized intensities of the x- (f), y- (g) and z- (h) component electric fields when excited with y-polarized 

light (denoted as ). i Distribution of the phases of the y-component electric fields when excited with y-

polarized light (denoted as ). j Distribution of the source-normalized intensities of the electric fields and 

the arrow plots of the electric displacement vectors when excited with y-polarized light (denoted as ). 

Scale bars in (a)-(j) are 50 nm. The intensity distributions in (a)-(c), (e), (f)-(h) and (j) share the colour bar 

for electric field intensity. The phase distributions in (d) and (i) share the colour bar for phase. 
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Supplementary Figure 6 Excitation suppression of Q1 (selective excitation of Q2) in a broad range of 

wavelength. a Source-normalized amplitude spectra of the x- (dashed curves) and z- (dotted curves) 

component electric field at Q1 when excited with x- (red curves) and y- (blue curves) polarized light. b 

Source-normalized amplitude spectra of the y-component electric field at Q1 when excited with x- (red 

curve) and y- (blue curve) polarized light. c Phase spectra of the y-component electric field at Q1 when 

excited with x- (red curve) and y- (blue curve) polarized light. d Polarization parameters ( ,  )θ ϕ  for 

optimal excitation suppression of Q1 (selective excitation of Q2) at different wavelengths. The solid curves 

are determined through direct calculation using equations ( )θ ↔= 
y yarctan E E  and 

( ) ( )ϕ φ φ↔= − − 
y y 180E E  described in Supplementary Note 2. The dashed curves are determined using 

the searching method described in Supplementary Note 5. e Excitation enhancement factors for Q1 (left 

y-axis) and Q2 (right y-axis) when excited with optimal polarization parameters ( ,  )θ ϕ  at different 

wavelengths (shown in panel d). f Excitation ratio Q2 Q1σ σ when excited with optimal polarization 

parameters ( ,  )θ ϕ  at different wavelengths (shown in panel d).  
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Supplementary Figure 7 Field distributions simulated separately for two parts of the U-shaped 

nanostructure when excited with x- and y-polarized light at 740 nm wavelength. a,b Source-normalized 

intensities and arrow plots of the electric fields (a) and source-normalized intensities of the x-component 

electric fields (b) when excited with x-polarized light (denoted as ↔ ) for the part composed of G3. c,d 

Same as panels (a) and (b) but excited with y-polarized light (denoted as ). e-h Same as panels (a)-(d) 

but for the part composed of G1 and G2. Scale bars in (a)-(h) are 50 nm. The intensity distributions in (a)-

(h) share the colour bar.  



29 / 39 

 

Supplementary Figure 8 Simulation of Purcell effects for the quantum dots in the plasmonic 

nanostructure. a Schematic illustration of the 3D orientation of a spherical QD. b Simulated Purcell factor 

yf  (for y-oriented dipole transitions) at Q1 and Q2. c Simulated Purcell factors xf  and zf  (for x- and z-

oriented dipole transitions) at Q1 and Q2. d,e Simulated distributions of electric field intensities and electric 

displacement vectors of the plasmonic mode excited at 808 nm wavelength by a y-oriented dipole at Q1 

(e) and Q2 (d). Scale bars are 50 nm. f Simulated effective quantum efficiencies of Q1 and Q2 in the 

nanosystem. The grey vertical lines in panels (b), (c) and (f) denote the central emission wavelength 

(~808 nm) of the QDs.  



30 / 39 

 

Supplementary Figure 9 Lifetime of Q1 before and after moving Q2 into the nanosystem. a Measured 

lifetime of Q1 before (red hollowed data points and red fitting curve) and after (blue solid data points and 

blue fitting curve) moving Q2 into the nanosystem. b Simulated Purcell factors yf  (for y-oriented dipole 

transitions) for different structure parameters showing the influence of the refractive index of the silica-

encapsulated Q2 (modelled as a silica sphere) and the change of gap width g2. The grey vertical line 

denotes the emission wavelength of ~808 nm.  
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Supplementary Figure 10 Emission polarization of Q1 at different locations of the nanosystem. Polar 

plots of the emission polarization measurements when Q1 is at the gap between G1 and G3 (blue 

experimental data points and simulated continuous curve; middle inset) and when Q1 is at the gap 

between G2 and G3 (red experimental data points and simulated continuous curve; lower inset, the tiny 

bump on G3 is a fragment that sticks during the manipulation). For comparison, the emission polarizations 

of selectively excited Q1 (yellow ‘+’-shaped data points) and Q2 (green ‘x’-shaped data points) when both 

QDs are in the nanosystem are also plotted, which is the same as in Fig. 3b. 
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Supplementary Figure 11 Influence of the gold nanorod on the far-field emission polarization. a Polar 

plots of the emission polarization measurements when Q1 is coupled to the L-shaped (before G2 is added) 

gold nanostructure (upper inset, red experimental data points and simulated continuous curve) and the 

U-shaped (after G2 is added) gold nanostructure (lower inset, blue experimental data points and simulated 

continuous curve). b,c Numerically simulated maps of electric field intensities and electric displacement 

vectors of the plasmonic mode excited at 808 nm wavelength by a y-oriented dipole located at Q1 in the 

L- (b) and U- (c) shaped gold nanostructure.  
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Supplementary Figure 12 Simulated energy transfer enhancement and Purcell effect for dipole emitters 

in the gold nanostructure. a Numerically simulated value of ( ) 2
A D A D,⋅n G r r n


 (as a function of the 

wavelength of energy transfer) for three different cases: dipole emitters coupled with the gold 

nanostructure (red solid curve); dipole emitters ~22 nm apart and without the gold nanostructure (blue 

solid curve); dipole emitters ~61 nm apart and without the gold nanostructure (blue dashed curve). b 

Enhancement factor of the energy transfer rate between the dipole emitters coupled with the gold 

nanostructure. c Spontaneous emission rate enhancement factors (Purcell factors) for the dipole emitters 

in the gold nanostructure. The grey vertical lines in panels (a)-(c) denote the emission wavelength of ~808 

nm.  
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Supplementary Figure 13 Optimization process to get parameters for selective excitation and selective 

detection. a Optimization process for selective excitation of Q1 (i.e., excitation suppression of Q2) and 

selective detection of Q2 (i.e., blocking the emission from Q1). b Optimization process for selective 

excitation of Q2 (i.e., excitation suppression of Q1) and selective detection of Q1 (i.e., blocking the 

emission from Q2).  
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Supplementary Figure 14 Theoretical demonstration of the optimization process for the structure 

simulated in the main text. a Demonstration of the optimization process that start with a (1)
Q1ψ  equal to 

Q1 20ψ +  . b Demonstration of the optimization process that start with a (1)
Q1ψ  equal to Q1 40ψ +  . 
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Supplementary Figure 15 Plasmon-mediated entanglement between the emitters in the modified 

nanosystem. a Structure parameters of the nanosystem. The three GNRs are identical. The two quantum 

emitters are identical and modelled as two point dipoles 1μ  and 2μ  oscillating along the y-direction with 

the same transition dipole moment. b Simulated rate parameters for the emitters’ subsystem versus 

transition wavelength. The vertical grey line denotes the wavelength 808 nm, where 12 0g =  while 12γ  

is at its peak value. c Schematic of the level structure and decay channels. d Simulated decay rate of 

states ±  versus transition wavelength. The vertical grey line denotes the wavelength 808 nm, where 

the decay rate of state +  reaches its maximum. e Spontaneous evolution of the population probabilities 

of states ±  ( ρ±± ) and the concurrence (C), at 808 nm wavelength, where 12 0g = . f,g Distributions of 

electric field intensities and electric displacement vectors of the plasmonic modes from the decay of state 

+  (f) and −  (g) at 808 nm wavelength. The double arrow on top of the profile indicates the 

corresponding polarization of the far-field radiation. The two profiles share the colour bar. h Far-field 

radiation efficiency (the fraction of energy radiated into the far field) for states ± . The vertical grey line 

denotes the wavelength 808 nm. 
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Supplementary Figure 16 Selective excitation of the emitters in the modified nanosystem for 

entanglement study. a,b Distribution of source-normalized electric field intensity when 1μ  (a) or 2μ  (b) 

is selectively excited at 808 nm wavelength using the elliptical polarization displayed on the top of the 

panel. The optimal excitation polarization parameters ( ,  )θ ϕ  are (70°, 73.6°) (a) and (70°, -106.5°) (b), 

respectively. The profile plane is 5 nm above the substrate. c Excitation enhancement factors for 1μ  

(solid curve) and 2μ  (dashed curve) as ϕ  varies ( θ  is 70°; excitation wavelength is 808 nm). d 

Excitation ratio 
1 2

σ σμ μ  (solid curve) and 
2 1

σ σμ μ  (dashed curve) as ϕ  varies (θ  is 70°; excitation 

wavelength is 808 nm). e Polarization parameters ( ,  )θ ϕ  for optimal selective excitation of 1μ  (optimal 

excitation suppression of 2μ ) at different wavelengths. The optimal polarization ellipses are displayed on 

the top of the panel for excitation wavelengths 760 nm, 780 nm and 808 nm. f Excitation enhancement 

factors for 2μ  (left y-axis) and 1μ  (right y-axis) when the system is excited with optimal polarization 

parameters ( ,  )θ ϕ  at different wavelengths (shown in panel e). g Excitation ratio 
1 2

σ σμ μ  when the 

system is excited with optimal polarization parameters ( ,  )θ ϕ  at different wavelengths (shown in panel 

e). h Excitation enhancement spectra for 1μ  (solid curves) and 2μ  (dashed curves) when the system 

is excited using elliptical polarizations for optimal selective excitation of 1μ  at 760 nm (blue curves), 780 

nm (yellow-green curves) and 808 nm (red curves).  
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Supplementary Table 1 Structure parameter modifications and their influences on selective 
excitation and emission polarization. 

 

Structure 

parameter 

modification 

Selective excitation of 
Q1 

(excitation @ 740 nm) 

Selective excitation of 
Q2 

(excitation @740 nm)

emission polarization of 
Q1 

(@ 808 nm) 

emission polarization of 
Q2 

(@ 808 nm) 

( ),  θ ϕ (*) 
Q1

Q2

σ
σ

(*) ( ), θ ϕ (*) 
Q2

Q1

σ
σ

(*)
Q1ψ (*)

Q1χ (*)
DOLP(*) Q2ψ (*) Q2χ (*) DOLP(*)

#0 - (49.2, 93.7) 1560 (49.2, -86.3) 1560 43.6 -4.5 0.988 136.4 4.5 0.988

#1 l1: +3 nm (31.9, 93.4) 1720 (47.8, -97.6) 1100 47 -3.5 0.993 139.3 5.9 0.979 

#2 l1: -3 nm (61.4, 71.8) 896 (50.2, -79.2) 2070 40.5 -5.4 0.982 134.3 3.7 0.992 

#3 d1: +1 nm (54.9, 90.3) 1270 (48.8, -83.4) 1530 42.7 -4.8 0.986 136 4.3 0.989 

#4 d1: -1 nm (31.2, 90.4) 1510 (47.5, -94.7) 1420 45.7 -3.9 0.991 138.6 5.7 0.980 

#5 d3: +1 nm (48.5, 88.8) 1420 (48.5, -91.2) 1420 45.5 -4.2 0.989 134.5 4.2 0.989 

#6 d3: -1 nm (46.9, 107.5) 1640 (46.9, -72.5) 1640 38.3 -6.2 0.977 141.7 6.2 0.977 

#7 g1: +5 nm (56.6, 67.6) 644 (48.7, -88) 1440 45.8 -4.5 0.988 131.5 3.2 0.994 

#8 s1: -6 nm (47.9, 93) 1370 (51.5, -91.5) 490 42.9 -4.2 0.989 136.6 4.6 0.987 

#9 s1: +6 nm (47.8, 93.1) 1620 (44, -80.4) 661 47.1 -4.9 0.985 135.8 4.5 0.988 

#10 dx1: +4 nm (49.2, 93.7) 1460 (49.8, -86.8) 450 42.8 -4.6 0.987 136.4 4.5 0.988 

#11 dx1: -4 nm (49.2, 93.7) 1430 (48.3, -85.9) 539 44.6 -4.5 0.988 136.4 4.5 0.988 

#12 dy1: +4 nm (49.2, 93.7) 2330 (45.9, -80.8) 2490 50.8 -4.8 0.986 136.4 4.5 0.988 

#13 dy1: -4 nm (49.2, 93.7) 1490 (53.9, -92.4) 1090 35.7 -4 0.990 136.4 4.5 0.988 

#14 dz1: +4 nm (49.2, 93.7) 1420 (49.2, -85.9) 1530 43.8 -4.4 0.988 136.4 4.5 0.988 

#15 dz1: -4 nm (49.2, 93.7) 1420 (49, -86.6) 170 43.8 -4.7 0.987 136.4 4.5 0.988 

(*) ( ),  θ ϕ : the excitation polarization parameters; Q1 Q2σ σ : excitation ratio; Q1ψ ( Q2ψ ): the angle of the major axis 

of the emission polarization ellipse of Q1 (Q2); Q1χ ( Q2χ ): the arc tangent of the ratio between the semi-minor and 

semi-major diameters of the emission polarization ellipse of Q1 (Q2); DOLP: the degree of linear polarization. 
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