## **Supporting Information**

# Discovery of Potent and Selective BRD4 Inhibitors Capable of Blocking TLR3-Induced Acute Airway Inflammation

Zhiqing Liu,<sup>a,1</sup> Bing Tian,<sup>b,c,1</sup> Haiying Chen,<sup>a</sup> Pingyuan Wang,<sup>a</sup>

Allan R. Brasier<sup>b,c,d</sup> and Jia Zhou<sup>a,c,d,\*</sup>

<sup>a</sup>Chemical Biology Program, Department of Pharmacology and Toxicology, <sup>b</sup>Department of Internal Medicine, <sup>c</sup>Sealy Center for Molecular Medicine, <sup>d</sup>Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA

<sup>1</sup>These authors contribute equally to this work.

Corresponding author: \*Tel: 409-772-9748. Fax: 409-772-9648. E-mail: jizhou@utmb.edu.

### **Table of content**

| Figure S1: Molecular docking of 35 into BRD2 BD1                              | 2 |
|-------------------------------------------------------------------------------|---|
| Figure S2: Assessment of chronic treatment of compound 35 on mouse physiology | 3 |
| Table S1: Off-target screening through Eurofins Cerep panel assays            | 4 |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectra                      | 6 |

Figure S1. Molecular docking of 35 into BRD2 BD1. Docking result of 35 with BRD2 BD1 (PDB code: 4A9M).



Figure S2. Assessment of chronic treatment of compound 35 on mouse physiology.



Groups of n = 5 mice were exposed to **35** from 0-50 mg/kg daily (IP). **A**. Effect on body weight. 30 d later, animals were sacrificed and hematological measurements were made (**B**) for red blood cells (RBCs), white blood cells (WBCs), neutrophils, and platelets. **C**. Liver function tests for albumin (ALB), globulin (GLOB), alanine aminotransferase (ALT), and alkaline phosphatase (ALKP). **D**. renal function. Data are shown as 10-90% confidence. No significant difference between groups (ANOVA).

| Receptors/Enzymes                                               | %     |
|-----------------------------------------------------------------|-------|
| $A_{2A}(h)$ (agonist radioligand)                               | 38.1  |
| $a_{1A}(h)$ (agonist radioligand)                               | 17.2  |
| $a_{2A}(h)$ (agonist radioligand)                               | 3.0   |
| $\beta_1(h)$ (agonist radioligand)                              | 7.4   |
| $B_2(h)$ (agonist radioligand)                                  | -2.4  |
| BZD (central) (agonist radioligand)                             | 8.3   |
| $CB_1(h)$ (agonist radioligand)                                 | 24.7  |
| $CB_2(h)$ (agonist radioligand)                                 | 59.3  |
| $CCK_1$ ( $CCK_A$ ) ( <i>h</i> ) (agonist radioligand)          | 17.4  |
| $D_1(h)$ (antagonist radioligand)                               | 21.9  |
| $D_{2s}(h)$ (agonist radioligand)                               | 36.9  |
| ETA (h) (agonist radioligand)                                   | -4.3  |
| NMDA (antagonist radioligand)                                   | 17.0  |
| $H_1(h)$ (antagonist radioligand)                               | 7.1   |
| $H_2(h)$ (antagonist radioligand)                               | -10.1 |
| MAO-A (antagonist radioligand)                                  | 49.8  |
| $M_1(h)$ (antagonist radioligand)                               | -1.5  |
| $M_2(h)$ (antagonist radioligand)                               | 21.6  |
| $M_3(h)$ (antagonist radioligand)                               | 4.8   |
| N neuronal $\alpha 4\beta 2$ ( <i>h</i> ) (agonist radioligand) | -2.9  |
| δ (DOP) (h) (agonist radioligand)                               | -2.7  |
| κ (KOP) (agonist radioligand)                                   | 8.9   |

Table S1. Off-target screening of compound 35 through Eurofins Cerep panel assays<sup>a</sup>

| $\mu$ (MOP) ( <i>h</i> ) (agonist radioligand)                              | 17.4  |
|-----------------------------------------------------------------------------|-------|
| 5-HT <sub>1A</sub> ( $h$ ) (agonist radioligand)                            | -0.1  |
| 5-HT <sub>1B</sub> ( $h$ ) (antagonist radioligand)                         | -9.6  |
| 5-HT <sub>3</sub> ( $h$ ) (antagonist radioligand)                          | -12.9 |
| GR ( <i>h</i> ) (agonist radioligand)                                       | 15.0  |
| $V_{1a}(h)$ (agonist radioligand)                                           | 32.4  |
| Ca <sup>2+</sup> channel (L, dihydropyridine site) (antagonist radioligand) | 42.0  |
| Potassium Channel hERG (human)- [3H] Dofetilide                             | 23.6  |
| K <sub>v</sub> channel (antagonist radioligand)                             | 8.5   |
| Na <sup>+</sup> channel (site 2) (antagonist radioligand)                   | 27.7  |
| 5-HT transporter ( <i>h</i> ) (antagonist radioligand)                      | 15.0  |
| COX1( <i>h</i> )                                                            | 41.6  |
| COX1( <i>h</i> )                                                            | 28.2  |
| PDE3A ( <i>h</i> )                                                          | 46.0  |
| PDE4D2 ( <i>h</i> )                                                         | 39.4  |
| Lck kinase ( <i>h</i> )                                                     | -20.6 |
| acetylcholinesterase (h)                                                    | 11.7  |
| ΙΚΚα ( <i>h</i> )                                                           | -14.2 |
| IKK $\varepsilon$ ( <i>h</i> ) (IKBKE)                                      | -26.2 |

<sup>*a*</sup>The panel assay screening was conducted by Eurofins Pharma Discovery Services (<u>https://www.eurofinsdiscoveryservices.com/</u>). Compound **35** was tested at the concentration of 10  $\mu$ M. Compound binding was calculated as a % inhibition of the binding of a radioactively labeled ligand specific for each target. Compound enzyme inhibition effect was calculated as a % inhibition of control enzyme activity. Results are reported as mean of two independent measurements.

# Copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra





- 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 8.83 - 6.66 - 6.66 - 6.66 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03 - 7.03

















### $\sim$ 9.97 $\sim$ 9.85 $\sim$ 0.85 $\sim$ 0.22 $\sim$ 0.91 $\sim$ 0.22 $\sim$ 0.21 $\sim$ 0.22 $\sim$







2.79 2.74 2.37 2.37 2.37 2.33 2.33















10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.1 f1 (ppm)

