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SI Materials and Methods
Nanosilicate Characterization. Synthetic clay nanosilicates (Laponite
XLG, Na+0.7[(Mg5.5Li0.3Si8O20(OH)4]

−
0.7) were obtained from

BYK Additives. Authentication was performed by determining
chemical composites, crystal structure, size, and shape of nano-
silicates. Specifically, inductively coupled plasma mass spectrom-
etry (ICP-MS) (elemental analysis; NexION 300D; PerkinElmer)
and X-ray photoelectron spectroscopy (XPS) (Omicron XPS sys-
tem with Argus detector) was used to determine chemical com-
position of nanosilicates. For ICP-MS, nanosilicates was dissolved
in 0.5% hydrogen peroxide solution for 24 h. ICP-MS analysis was
performed to determine the concentrations of Si, Li, and Mg.
Dried nanosilicates were used for XPS analysis, where binding
energies for magnesium (Mg 2s, 2p), sodium (Na 1s), oxygen
(O 1s), lithium (Li 1s), and silicon (Si 2p) were determined. The
raw values were deconvoluted via Lorentzian function using
GraphPad Prism. X-ray diffraction (XRD) (Bruker D8 Advanced)
was used to determine crystalline structure of nanosilicates. XRD
was performed with a copper source on both powdered nano-
silicates and exfoliated nanosilicates (in water) that were then
flash-frozen in liquid nitrogen and lyophilized. Atomic force mi-
croscopy (AFM) (Bruker Dimension Icon Nanoscope) and
transmission electron microscopy (TEM) were performed to de-
termine the size and shape of the nanosilicates. For both AFM
and TEM, a dilute solution of exfoliated nanosilicates was placed
on silicon substrate or carbon grid. For AFM, nanosilicate thick-
ness was observed via tapping mode, and the data were analysis
using Nanoscope Analysis software. For TEM, an accelerating
voltage of 200 kV using a JEOL-JEM 2010 (Japan) was used to
determine the morphology of nanosilicates. The ζ potential and
hydrodynamic size of nanosilicate–FBS solutions were measured
with a Zetasizer Nano ZS (Malvern Instrument) furnished with a
He–Ne laser at 25 °C. Filtered particles were achieved through
utilization of a 0.2-μm filter.

In Vitro Studies: Cytocompatibility, Cell Uptake, and Retention. Hu-
man mesenchymal stem cells (hMSCs) were acquired from the
Texas A&M Institute for Regenerative Medicine, previously
isolated and subsequently expanded from voluntary donors un-
der an institutionally approved tissue recovery protocol. hMSCs
were cultured under normal media conditions consisting of
α-minimal essential media (alpha-MEM) (HyClone, GE Sci-
ences) with 16.5% FBS (Atlanta Biologicals) and 1% penicillin/
streptomycin (100 U/100 μg/mL; Gibco). After every 2–3 d, one-
half of the culture media was exchanged for fresh media. Cells
were passaged with 0.5% trypsin-EDTA upon reaching con-
fluency of ∼70% and seeded at ∼2,500 cells per cm2. All ex-
periments were completed with cell populations under P5.
Seeded cells were treated with and without nanosilicates
(Laponite XLG, Na+0.7[(Mg5.5Li0.3Si8O20(OH)4]

−
0.7) solution

(50 μg/mL) and cultured for 7 d.
Metabolic activity was monitored via 3-(4, 5-dimethylthiazolyl-

2)-2,5-diphenyltetrazolium bromide (MTT) (ATCC) and Alamar
Blue (Thermo Scientific) assays, per the manufacturers’ proto-
cols. The BD Accuri C6 flow cytometer and a propidium iodide
(PI) (40 μg/mL) stain with RNase (100 μg/mL) were used to
perform cell cycle analysis following earlier protocol (1). Before
seeding, hMSCs were serum starved (only 1% FBS in media) for
24 h to synchronize cell populations and then treated with
nanosilicates. After 48 h of exposure, cells treated with various
concentrations of nanosilicates were trypsinized and fixed in ice-
cold 70% ethanol. Formed cell pellets were washed in PBS,

followed by incubation in a PI staining solution at 37 °C for
30 min. Cells were stored at 4 °C until flow cytometer analysis.
For endocytosis inhibition analysis by flow cytometry, cells were
cultured under normal conditions in six-well plates. Cells were
washed three times with PBS and then treated with inhibitors
of clathrin-mediated, calveolar-mediated, or macropinocytosis
(35 μM chlorpromazine hydrochloride, 10 μM nystatin, or 400 nM
wortmannin, respectively) (Sigma-Aldrich) at 37 °C for 30 min.
After this pretreatment, silicate nanoparticles fluorescently tag-
ged with Rhodamine B were added to the culture (final con-
centration, 100 μg/mL) and incubated for a further 60 min.
Subsequently, the cells were washed with PBS, trypsinized, and
then suspended in cell culture medium. Particle uptake was then
analyzed via flow cytometry. Hyperspectral images and data were
captured using an Olympus research-grade optical microscope
equipped with CytoViva patented enhanced dark-field illumi-
nation optics and full-spectrum aluminum halogen source illu-
mination. The system was also equipped with the CytoViva
hyperspectral imaging system, producing spectral image files
from 400 to 1,000 nm at 2-nm spectral resolution. CytoViva’s
customized version of ENVI hyperspectral image analysis soft-
ware was used to quantify the sample’s spectral response and
conduct any spectral mapping of the sample elements.
For evaluation of reactive oxygen species (ROS) production,

the BDAccuri C6 flow cytometer was used. hMSCs were cultured
in a 12-well plate to ∼70% confluency, and then treated with an
ERK inhibitor (PD184352; 5 μM) for 2 h at 37 °C. Cells were
then incubated with dihydroethidium (DHE) (25 μM) for 10 min
37 °C. Then, cells were washed with PBS and treated with 50 μg/mL
nanosilicates in phenol-red–free and serum-free media for 2 h at
37 °C. After 2 h, cells were washed with PBS, trypsinized, spun
down, and then resuspended in PBS for flow cytometer analysis.
For lysosomal staining and actin staining, hMSCs were cultured

in a 12-well plate to ∼70% confluency. hMSCs were treated with
1 μL of CellLight Lysosomes-GFP and incubated overnight at
37 °C for lysosomal staining. Then, hMSCs were treated with
rhodamine-labeled nanosilicates for 3 h at 37 °C and later fixed
with 2.5% glutaraldehyde. Similarly, for actin staining, hMSCs
were treated with nanosilicates for 24 h, and then fixed with
2.5% glutaraldehyde and permeabilized with 0.1% Triton X-100.
Phalloidin stain was then added, and samples were incubated for
1 h at 37 °C. The stain was removed and washed with 1× PBS,
and then samples were treated with PI/RNase for 30 min at
37 °C. Both lysosomal-stained and actin-stained samples were
imaged via a confocal microscope (Nikon). Further tracking of
nanosilicates and lysosomal activity was done using the BD
Accuri C6 flow cytometer. hMSCs were treated with rhodamine-
labeled nanosilicates for 1, 3, and 7 d, and then treated with
CellLight Lysosome-GFP overnight. Cells were then washed
with PBS, trypsinized, spun down, and resuspended in PBS for
analysis.
For investigating nanosilicate dissociation within hMSC cul-

ture, ICP-MS (elemental analysis) (NexION 300D; PerkinElmer)
was performed. hMSCs were cultured with nanosilicates for 1, 3,
and 7 d, and then cells were washed with PBS, trypsinized, spun
down, and then resuspended in deionized water. After recen-
trifugation, the pellet was digested in a 1% nitric acid, 0.5%
hydrogen peroxide solution for ICP-MS analysis in which the
concentrations of Si, Li, and Mg were determined. This digestion
protocol was modified from an earlier study (2).
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Whole-Transcriptome Sequencing and Analysis. For total mRNA
extraction, cells were cultured until 65% confluent and were
subjected to two different media compositions for 1 wk. One
subset of cells maintained normal media conditions as a negative
control (two replicates); another group was treated with nano-
silicates (Laponite XLG, Na+0.7[(Mg5.5Li0.3Si8O20(OH)4]

−
0.7)

(50 μg/mL) for 48 h (two replicates), after which the media was
replaced with normal media for the remaining 5 d. Excess
nanosilicates were removed as they are expected to be cleared
within 48 h. Upon completion of the week, cells were washed
with PBS and pelleted. RNA was isolated and collected via a
Roche, High Purity RNA Isolation kit following the manufac-
turer’s protocol. Initial quality of nucleic material (∼1.5–2.0 μg)
was evaluated using spectrometer absorbance ratios between
280/260 nm around 2.0. Samples were analyzed via a high-
output HiSeq platform with TruSeqRNA sample preparation
and single-end read length of 125 bases (Charlie Johnson, Ge-
nomics and Bioinformatics Service, Texas A&M AgriLife Re-
search, College Station, TX). The sequenced reads were
trimmed and aligned to the human genome (hg19) using a
RNA-seq aligner, Spliced Transcripts Alignment to a Reference
(STAR) (3). STAR is a RNA-seq alignment algorithm specifi-
cally designed for alignment of reads generated from spliced
RNAs. For the control group, 21,563,695 (uniquely mapped,
20,153,164) and 24,531,989 (uniquely mapped, 22,900,448) se-
quenced reads successfully aligned to the genome for the two
replicates. Similarly, 22,266,394 (uniquely mapped, 20,623,575)
and 15,769,384 (uniquely mapped, 14,633,793) reads aligned to
the genome for the nanosilicate-treated group for both the
replicates. For further analysis, only uniquely mapping reads
were utilized. The Reference Sequence (RefSeq) genome an-
notation the human genome (hg19, GRCh37 Genome Refer-
ence Consortium Human Reference 37) obtained from
University of California, Santa Cruz, genome browser was uti-
lized for obtaining the gene definition. The gene models can
also be obtained by using the Bioconductor package Genomic-
Features in R environment (4). Expression of a gene was de-
termined by counting the number of uniquely mapped reads
overlapping the coding exons normalized by gene length in reads
per kilobase per million (RPKM). We utilized the RPKM
measure only to filter the expressed genes. The distribution of
expression of genes in each sample shows that 1 RPKM is a
reasonable cutoff to remove the genes with no or minimal ex-
pression (Fig. S4). Genes >1 RPKM were considered to be
expressed in any condition if they were expressed in both the
replicates. Genes expressed in at least one of the condition were
then tested for differential expression. Generalized linear
models (GLMs) were used to identify the differentially
expressed genes where the expression counts were modeled as
negative binomial distribution (5). The bioconductor package
DESeq was used for this purpose. All analyses were done in R.
The GO enrichment analysis was done using GOStats bio-
conductor package. REVIGO (6) was used to refine the ex-
tensive list of significant CC GO terms. It reduces the functional
redundancies and clusters the terms based on semantic simi-
larity measures. Visualization of gene networks was accom-
plished through Cytoscape (7) and GeneMANIA (8) and
ClueGO (9) by direct comparisons to the reference genome.
DAVID Bioinformatics Resources were also utilized for genetic
network analysis (10). Only genes with a P adjusted value
(Benjamini–Hochberg false-discovery rate) < 0.05 were included
within the network and subsequent GO enrichment analysis.

RNA-seq Validation Using qRT-PCR and Western Blot. For qRT-PCR,
cells were cultured under similar conditions as RNA-seq. Following
RNA isolation, cDNA was synthesized from 1 μg of RNA for each
sample via SuperScript III Reverse Transcriptase (Thermo Fisher)
following manufacturer’s protocol. Primers were designed via NCBI/

Primer-BLAST and quality checked via Integrated DNA Technolo-
gies’ OligoAnalyzer. The following primers were designed and used:
GAPDH (forward: 5′-CCTTCATTGACCTCAACTACATGG-3′;
reverse: 5′-TGGAAGATGGTGATGGGATTTCC-3′), COMP
(forward: 5′-AACAGTGCCCAGGAGGAC-3′; reverse: 5′-TTGTC-
TACCACCTTGTCTGC-3′), ACAN (forward: 5′-AAGGGCGAG-
TGGAATGATGT-3′; reverse: 5′-CGTTTGTAGGTGGTGGC-
TGTG-3′), CLTCL1 (forward: 5′-TTTTGGCAGGTCAGG-
CATCC-3′; reverse: 5′-ACCTGTGCTTTCCCAAGACT-3′),
COL11A1 (forward: 5′-GACTATCCCCTCTTCAGAACTGT-
TAAC-3′; reverse: 5′-CTTCTATCAAGTGGTTTCGTGGTTT-3′),
and TXNIP (forward: 5′-ACACATGGTGCTCTTCAGGG-3′; re-
verse: 5′-AGTTGGTATATGCAACAAGCCA-3′). SYBR Green
reagent was then used for amplification quantification. Expression
and fold change values were calculated from fluorescence using the
program DART-PCR (11). For Western blot analysis, cells were
cultured under similar conditions as qRT-PCR and RNA-seq. Pro-
tein samples were isolated via a Laemmli buffer (4% SDS, 20%
glycerol, 10% 2-mercaptoethanol, 100 mM Tris HCl, and 0.2%
bromophenol blue). Gel electrophoresis (Mini Gel Tank; Invi-
trogen) was performed on protein samples, and subsequent gels
were transferred (iBlot 2; Invitrogen) to a nitrocellulose membrane
according to the manufacturer’s protocol. The membranes were
blocked with 5% BSA in PBST (PBS plus 0.1% Tween 20) for
30 min, and then Western processed (iBind; Invitrogen). β-Actin,
COMP, p-MEK1/2, and COL1A1 primary antibodies and HRP-
conjugated secondary antibodies were purchased from Boster Bio,
and incubation was performed per the manufacturer’s protocols.
Blots were developed (SuperSignal West Pico PLUS Chemilumi-
nescent Substrate; Thermo Fisher) and imaged via LI-COR 3600 C-
Digit Blot Scanner. Protein bands were quantified with LI-COR
software. The blots were then restored and reblocked with 5%
BSA in PBST for further protein analysis.

In Vitro Functional Study. For differentiation studies, hMSCs were
treated with either osteogenic (normal media supplemented with
10 mM β-glycerophosphate and 50 μM ascorbic acid) or chon-
drogenic media (DMEM supplemented with 1% ITS+, 10−7 M
dexamethasone, and 1 mM sodium pyruvate) with and without
nanosilicates. For osteogenic differentiation, samples were fixed
with 2.5% glutaraldehyde at 14 and 21 d and stained for alkaline
phosphatase [1-Step nitro-blue tetrazolium chloride (NBT)/5-
bromo-4-chloro-3′-indolyl phosphate p-toluidine salt (BCIP)
substrate solution; Thermo Fisher Scientific] and mineralization
(Alizarin Red S stain; Electron Microscopy Sciences), respec-
tively. Alizarin Red was quantified via acetic acid extraction and
subsequent colorimetric detection (12). For chondrogenic dif-
ferentiation, samples were fixed with 2.5% glutaraldehyde at
various time points, washed with PBS, 1% acetic acid, and then
quickly stained with 0.1% Safranin O for 5 min. Samples were
washed again with PBS twice and then imaged. For immunos-
taining, fixed cells were incubated with a 1% BSA in PBST (PBS
plus 0.1% Tween 20) for 30 min to block nonspecific binding.
Cells were then incubated with a mouse anti-human aggrecan
primary antibody (Abcam) within a 1% BSA solution overnight
at 4 °C. The primary antibody was then removed and cells were
washed with PBS multiple times. Subsequently, cells were in-
cubated for 1 h at room temperature with a goat anti-mouse IgG
with conjugated Alexa Fluor 647 (Abcam) in a 1% BSA solution.
The secondary antibody was then decanted, and cells were
washed multiple times with PBS. Samples were stored in PBS in
the dark at 4 °C until imaging.

Statistical Analysis. Statistical analysis was performed via GraphPad
Prism software. One-way ANOVA with post hoc Tukey tests was
performed. Significant significance values were determined as P
values less than 0.5.
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Fig. S1. Physical characterization of nanosilicates was completed to evaluate particles before introducing to hMSCs. (A) TEM of nanosilicates demonstrated
disk morphology and nanoscale size. (B) XPS analysis revealed an elemental composition similar to that of the idealized stoichiometric ratio found within a unit
cell of the nanosilicates. (C) AFM corroborated the nanoscale diameter (25–50 nm) and thickness (1–1.5 nm) of the nanosilicates. (D) XRD of both bulk and
exfoliated (flash frozen with subsequent lyophilization) nanosilicates generated peaks at diffraction planes (001), (100), and (005) for both, with (110) and (300)
present in the bulk sample. (E) DLS measurements quantified variability of nanosilicate hydrodynamic size in particles and displayed a narrow range of di-
ameters (polydispersity index, 0.22) around 45 nm.
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Fig. S2. Nanosilicate effect on cellular processes. (A) Metabolic activity, assessed via MTT assay, remained unaffected by nanosilicate introduction at bioactive
concentrations. Minimal effect of nanosilicates was observed on cell health monitored via (B) Alamar blue assay, (C) cytoskeletal organization, and (D) cell cycle
analysis.
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Fig. S3. Nanosilicate interactions with hMSCs were monitored using flow cytometry and ICP-MS. (A) Uptake of fluorescently tagged nanosilicates displayed
concentration-dependent internalization. (B) Endocytosis of particles occurred rapidly with chemical inhibition of a clathrin-mediated process reducing uptake.
(C) Following internalization, tagged particles were trafficked to lysosomal bodies with an increase in these vesicles observed after 24 h and returning to basal
levels over the course of a week. (D) Introduction of nanosilicates to low-pH environments of late endosome/lysosome vesicles initiated dissolution of the
particles over a week. Ion products were greatest at 24 h and decreased over time as nanosilicates continued to be trafficked in and out of the cell in addition
to particle dissociation.
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Fig. S4. RNA-seq data analysis. (A) Distribution of log2(RPKM + 0.01) of all genes. (B) MA plot (Bland–Altman plot) for the all genes that are tested by the
RPKM > 1 cutoff. (C) Replicate variation of RNA-seq samples. Correlation for replicates among untreated and treated populations, respectively, indicate high
degrees of reliability and consistency between tested samples. (D) Broad grouping of GO terms into three main groups: biological processes, cellular com-
ponent, and molecular function. (E) GO terms specific to endocytosis process. (F) PCR validation of RNA-seq specific to a gene controlling clathrin machinery
[clathrin heavy chain like 1 (CLTCL1)].
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Fig. S5. (A) Network of GO terms and expressed gene clusters around each respective correlating term illustrating highly interconnected stimulation with
nanosilicates; (B) GO terms could be subsequently divided into four primary cellular systems including basic processes, membrane organization, kinase sig-
naling, and differentiation responses; (C) gene network displaying interconnected genetic targets after nanosilicate treatment with high degrees of expression
and statistical significance (red, up-regulated; green, down-regulated; size increases with significance).
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Fig. S6. (A) Kegg pathway specific to MAPK signaling with differentially expressed genes from RNA-seq (red, up-regulated; blue, down-regulated). (B) Or-
ganization of gene expression throughout MAPK signaling pathways. (C) Expression tracks of TXNIP in hMSCs and nanosilicate-treated hMSCs.
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Fig. S7. Volcano plots showing key genes differentially regulated for key GO terms.
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Fig. S8. (A) Expression tracks for collagen type I (COL1A1) for control (blue) and treated (red) populations. (B) Western blot for differentiation-specific
proteins, COMP, for control and nanosilicate-treated samples. Addition of a MEK inhibitor reduced protein synthesis of both targets. *P < 0.05; ***P < 0.001.
ns, not significant.
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