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1. The Main Theorem

In this section, we state the main theorem of this work, followed
by its proof and discussion. We finally present an empirical
validation of the result of our main theorem. Before presenting
the main theorem, we make the following additional technical
assumptions:

1) We consider a scaling of γ = O(
√

(1− β) logM), where
M denotes the model order (M (F ) or M (R)). This assumption
leads to asymptotic consistency of `1-regularized ML estima-
tion (1, 2).

2) We assume that the stimuli {st}Tt=1 form a Markovian
random sequence. This assumption facilitates the limiting
arguments used in our asymptotic analysis.

Our main theorem below extends the asymptotic inference
results of the classical deviance difference to our adaptive
de-biased variant:
Theorem S1 Consider simultaneous spike train observations
{{n(c)

t }Tt=1}Cc=1 from an ensemble of C neurons. Let ω̂(c)
k and

ω̂
(c\c̃)
k denote the estimated sparse parameter vectors of neuron

(c) at time window k in two nested logit-linked point process
GLM models, where the contribution of neuron (c̃) is suppressed
in the latter. Suppose that the adaptive estimation is carried
out through solving the `1-regularized ML problem of Eq. 3 at
time window k. Then,

i) in the absence of a GC link from (c̃) to (c), we have
D

(c̃ 7→ c)
k,β → χ2(M (d)), and

ii) in the presence of a GC link from (c̃) to (c), and assuming
that the cross-history coefficients from (c̃) to (c) scale at
least as O

(√
1− β
1 + β

)
, then D(c̃ 7→ c)

k,β → χ2(M (d), ν
(c̃ 7→ c)
k

)
,

as β → 1, where M (d) := M (F ) −M (R) is the dimensionality
difference of the two nested models, and ν(c̃ 7→ c)

k > 0 is the

corresponding non-centrality parameter and is only a function
of the true model parameter of neuron (c) at time k (explicitly
given in closed form in the proof).

Proof of the Main Theorem. Before presenting the proof, we
introduce the following notation. For a log-likelihood function
`(ω) with a parameter vector ω, we have:

˙̀ (ω) := ∇ω`(ω), [S1]
῭(ω) := ∇2

ω`(ω), [S2]

I(ω) := E
{

˙̀ (ω) ˙̀ ′(ω)
}
, [S3]

where ˙̀ (·) is the gradient of the log-likelihood with respect to
the parameter vector ω, known as the score statistic, ῭(·) is
the Hessian of the log-likelihood, and I(·) denotes the Fisher
information matrix as the covariance of the score vector, where
the expectation is over the realization of the process.

For simplicity of analysis, we consider a piece-wise con-
stant model in which ωk is constant within observation win-
dows indexed by i = k − N, k − N + 1, . . . , k for some large
N = O( 1

1−β ), following the tradition of performance analysis
of RLS-type algorithms (3). Recall that the exponentially
weighted log-likelihood at window k is given by:

`βk(ωk) := (1− β)
k∑

i=k−N

βk−i`i(ωk). [S4]

Let ωk and ω̂k denote the true and estimated parameter
vectors of length M associated with a unit at window k, where
M can take any of the two values M (F ) and M (R) correspond-
ing to full and reduced models, respectively. Suppose that the
inverse Hessian exists at ωk for each time k, which we denote
by Θk := (῭βk(ωk))−1 for notational convenience. Throughout
the proof, we make use of our earlier results on the consistency
of the `1-regularized exponentially-weighted maximum likeli-
hood (1, 4). These results imply that for β close enough to 1,
we have ‖ω̂k − ωk‖2 = O(

√
(1− β)s logM), with a choice of

γ = O(
√

(1− β) logM) for the regularization parameter.
The de-biased deviance Dk,β(ω̂k;ωk) of Eq. 6 can be

expressed in the following quadratic form:

Dk,β(ω̂k;ωk) = −
(

1 + β

1− β

)
(wk − ωk)′ ῭βk(ωk) (wk − ωk), [S5]

where

wk := ω̂k −Θk
˙̀β
k(ω̂k). [S6]

By rearranging some terms, Eq. S5 can be expressed as:(
1− β
1 + β

)
Dk,β(ω̂k;ωk) = 2(ω̂k − ωk)′ ˙̀βk(ω̂k)

− (ω̂k − ωk)′῭βk(ω̂k)(ω̂k − ωk)
−Bk + ∆1, [S7]

where Bk := ˙̀β
k(ω̂k)′Θk

˙̀β
k(ω̂k) denotes the bias term due to

`1-regularization, and ∆1 denotes a remainder term given by:

∆1 := (ω̂k−ωk)′
(῭β
k(ω̂k)− ῭β

k(ωk)
)
(ω̂k−ωk). [S8]
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Next, we use the Taylor’s series expansion as follows:

`βk(ωk) = `βk(ω̂k) + (ωk−ω̂k)′ ˙̀βk(ω̂k)

+ 1
2(ωk−ω̂k)′῭βk(ω̃k)(ωk−ω̂k), [S9]

where ω̃k := tωk + (1 − t)ω̂k is an intermediate vector for
some t ∈ (0, 1), such that ‖ω̃k−ωk‖ < ‖ω̂k−ωk‖. Combining
Eqs. S7 and S9, we get:(

1− β
1 + β

)
Dk,β(ω̂k;ωk) = 2(`βk(ω̂k)−`βk(ωk))−Bk+∆2,

[S10]

where the remainder term ∆2 takes a similar form to Eq. S8
with the Hessian evaluated at ω̃k instead. Using the Lipschitz
property of the second-order derivative of the logistic function,
boundedness assumption on the covariates (‖X‖∞ = O(K)),
and the consistency of ω̂k, it can be proved that both remainder
terms ∆1 and ∆2 are asymptotically negligible with a rate of
‖ω̂k−ωk‖3 = oP((1− β)3/2) as β → 1.

In order to adapt the treatment of Davidson and Lever
(5) to our setting, we first consider a sequence of forgetting
factors {βj}∞j=1 approaching unity, i.e., limj→∞ βj = 1. Then,
at window k, we test the null hypothesis H0,k : ω0

k = (ω0,k,0)
against a sequence of local alternatives {Hβj

1,k}
∞
j=1 = {Hβj

1,k :

ω
βj
k = (ω∗0,k,ω

βj
1,k)}, where ωβj1,k =

√
1−βj
1+βj

δk corresponds to
the unspecified sub-vector excluded in the reduced model for
some constant vector δk of dimension M (d).

Statistical inference under the sequence of local alternatives
{Hβj

1,k} is carried out through testing local departures from
null hypothesis to the limiting true parameter ω∗k at the rate
of O

(√
1− βj
1 + βj

)
as βj → 1. For notational convenience, we

drop the dependence of βj on the index j. It is understood
that expressions involving limits of β are interpreted as the
sequential limit. From the definition of wk in Eq. S6, it follows
that:

wk − ωk = ω̂k − ωk −Θk
˙̀β
k(ω̂k)

= −Θk
˙̀β
k(ωk) + ∆, [S11]

where ∆ := (I−Θk
῭β
k(ω̃k))(ω̂k − ωk) , and we used:

˙̀β
k(ω̂k) = ˙̀β

k(ωk) + ῭β
k(ω̃k)(ω̂k − ωk), [S12]

in Eq. S11 which holds for some intermediate vector ω̃k =
tωk + (1 − t)ω̂k for some t ∈ (0, 1). It can be shown that
∆ = oP(1 − β) is asymptotically negligible, following the
aforementioned argument used for ∆1 and ∆2.

Next, we need to determine the asymptotic behavior of the
Hessian ῭β

k(ωk) as β → 1. Due to the dependencies of the
covariates, the common law of large numbers (LLN) for i.i.d.
random variables cannot be applied. Due to the logistic link
used in defining the log-likelihood, the Hessian can be written
as (1− β)X′WDX, where W is a diagonal bounded weighing
matrix, D is a diagonal matrix containing the exponential
weights, and X is the matrix of covariates (1). Also, for finite
M , {n(c)

i }
C
c=1 form a 2C-state Markov chain with φ-mixing

property. Hence, the version of LLN for bounded functions

of φ-mixing random variables can be used to characterize the
limit (e.g., (6) or Theorem 27.4 in (7)). Hence, as β → 1:

῭β
k(ωk) p−→ E[῭i(ωk)] = −I(ωk), [S13]

where the second equality is obtained using the Fisher infor-
mation equality.

Similarly, in order to characterize the asymptotic behavior
of the score statistic, a version of the Central Limit Theorem
(CLT) for dependent random variables is required. Note that
the Lindeberg CLT for i.i.d. random variables does not apply,
since the covariates are highly dependent. In the absence of the
stimuli in the logistic model, i.e., si = 0, ∀i, by invoking the
aforementioned φ-mixing property of the equivalent 2C-state
Markov chain {n(c)

i }
C
c=1, we use a version of the martingale

CLT (6). In the presence of stimuli, by the hypothesis that
the stimuli are generated by a Markov process, we invoke
stronger versions of the CLT for autoregressive models (8, 9).
Hence, the score statistic at the true parameter converges in
distribution to a Gaussian random vector with zero mean and
covariance given by the Fisher information matrix:√

1 + β

1− β
˙̀β
k(ωk) d−→ N (0,I(ωk)), [S14]

as β → 1. Note that this result holds both under H0,k when
ωk = ω0

k is the true parameter vector, and for the sequence
of alternatives Hβ

1,k, where ωk = ωβk is the sequence of true
parameters.

The asymptotic normality of wk under H0,k follows by
invoking the Slutsky’s theorem using Eqs. S13 and S14:√

1 + β

1− β (wk − ωk) d−→ N
(
0,I(ωk)−1) , [S15]

as β → 1. Hence, under H0, combining the asymptotic result
on the Hessian in Eq. S13, and the asymptotic normality of
wk in Eq. S15 leads to the weak convergence of the adaptive
de-biased deviance to a central chi-squared distribution with
M degrees of freedom:[

Dk,β(ω̂k;ωk) |H0,k
] d−→ χ2(M), [S16]

as β → 1. Following on the classical results (10, 11), it can
be shown that the deviance difference of two nested full and
reduced models asymptotically converges in distribution to a
central chi-squared with M (d) degrees of freedom:[

Dk,β(ω̂βk ; ω̂0
k)
∣∣H0,k

] d−→ χ2(M (d)), [S17]

as β → 1, where M (d) is the dimension of the specified sub-
vector ω1,k = 0 under the null hypothesis, i.e, the dimension-
ality difference of the two nested models. This establishes part
(i) of the statement of Theorem S1. �

As for part (ii), such an asymptotic result under the se-
quence of local alternative hypotheses will be slightly different,
as the limiting Gaussian distributions are non-zero mean. To
see this, we define the de-biased vector wβ

k associated with
each local alternative Hβ

1,k at time step k as:

wβ
k := ω̂

β
k −Θ∗k ˙̀β

k(ω̂βk), [S18]
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where Θ∗k := Θk(ω∗k). By similar arguments leading to Eq.
S11, it follows that:

wβ
k − ω

∗
k = ω̂

β
k − ω

∗
k −Θ∗k ˙̀β

k(ω̂βk)

= −Θ∗k ˙̀β
k(ω∗k) + oP(1− β) [S19]

= ωβk − ω
∗
k −Θ∗k ˙̀β

k(ωβk) + oP(1− β), [S20]

where we have respectively used the following linear expansions
around ω∗k in Eq. S19 and S20:

˙̀β
k(ω̂βk) = ˙̀β

k(ω∗k) + ῭β
k(ω∗k)(ω̂βk − ω

∗
k) + oP(1− β), [S21]

˙̀β
k(ωβk) = ˙̀β

k(ω∗k) + ῭β
k(ω∗k)(ωβk − ω

∗
k) + oP(1− β). [S22]

Using similar arguments leading to Eqs. S13 and S14, the
asymptotic form of the Hessian and the asymptotic normality
of the score function at the true parameter vector ωβk under
the sequence of local alternatives Hβ

1,k will follow:

῭β
k(ωβk) p−→ −I(ω∗k), [S23]

√
1 + β

1− β
˙̀β
k(ωβk) d−→ N (0,I(ω∗k)). [S24]

Hence, incorporating the asymptotics of Eqs. S23 and
S24 into Eq. S20, the de-biased estimate wβ

k under the se-
quence of local alternatives Hβ

1,k converges in distribution to
a multivariate normal distribution:√

1 + β

1− β (wβ
k − ω

∗
k) d−→ N (δ̄k,I(ω∗k)−1), [S25]

with non-zero asymptotic mean δ̄k := [0′, δ′k]′ as β → 1. The
asymptotic mean is obtained from the asymptotic rate of
the Pitman drift, where the sequence of true local parameter
vectors {ωβk} approach the limit ω∗k at a rate of ‖ωβk − ω

∗
k‖ =

O
(√

1−β
1+β

)
.

Next, consider the decomposition of I(ω∗k) into blocks
corresponding to ω0,k and ω1,k:

I(ω∗k) =
[
I0,0(ω∗k) I0,1(ω∗k)
I1,0(ω∗k) I1,1(ω∗k)

]
. [S26]

By invoking a similar treatment as in the proof of Theorem
1 of (5) via the extension of Cochran’s theorem to non-central
chi-squared distribution (12, 13), and using the asymptotic
result of Eq. S25 in the quadratic forms of Eq. S5 for both the
reduced and full model estimates (ω̂0

k, ω̂
β
k), it can be shown

that the deviance difference of two nested models converges
in distribution to a non-central chi-squared distribution under
the sequence of local alternatives Hβ

1,k as β → 1:[
Dk,β(ω̂βk ; ω̂0

k)
∣∣Hβ

1,k

] d−→ χ2(M (d), νk), [S27]

where M (d) is the dimensionality difference of two nested
models as before, and νk := δ′kĪ1,1(ω∗k)δk is the
non-centrality parameter with Ī1,1(ω∗k) := I1,1(ω∗k) −
I1,0(ω∗k)I−1

0,0(ω∗k)I0,1(ω∗k). This establishes part (ii) of the
statement of Theorem S1. �

Discussion of the Result of Theorem S1. Two remarks regard-
ing the bias correction and implications of the result of Theo-
rem S1 are in order:

Remark 1. The bias term Bk that emerged in the derivation of
Dk,β in Eq. S7 can be estimated as B̂k = ˙̀β

k(ω̂k)′Θ̂k
˙̀β
k(ω̂k),

where Θ̂k =
(῭β
k(ω̂k)

)−1. Proof of the consistency of this
estimate, i.e., B̂k

p−→ Bk follows directly from the consistency
of the inverse Hessian Θ̂k

p−→ Θk. Since we assumed that
the Hessian is invertible at true parameter ωk, there exists a
subsequence of the estimators {ω̂(β`)

k }`, at which the Hessians
are invertible, and approach the true inverse Hessian Θk, given
that M is fixed.

In the case that the Hessian ῭β
k(ω̂k) is not invertible, either

due to the rank-deficiency at ω̂k for some k, or the case
of infinitely growing dimensions M (F ) and M (R) with fixed
difference M (d), we adopt the approach taken in (2) and
compute Θ̂k using the so-called node-wise regression, for which
similar asymptotic results have been proven, implying that
‖Θ̂k −Θk‖∞ = oP(1).
Remark 2. In the conventional asymptotic analysis of deviance,
the true parameters {ωN}∞N=1 associated with the sequence of
local alternatives HN

1 approach the limiting true parameter ω∗
at the rate of O(1/√N), where N is the number of observations.
In our case, given a forgetting factor β, it follows from our
asymptotic analysis that the true (cross-history) parameter
ωβ1,k of order O

(√
1− β
1 + β

)
associated with the alternative Hβ

1,k

will lead to a non-trivial asymptotic distribution of the test
statistic, i.e., a non-central chi-squared distribution. Hence,
one expects that the underlying cross-history coefficients tak-
ing small values would still be detectable for β close enough to
1. In other words, the more number of observations we have
for hypothesis testing, the easier it gets to distinguish between
the null H0 : ω1,k = 0 and the alternative Hβ

1 : ω1,k = ωβ1 .
Therefore, we expect to detect causal links resulting from
regression coefficients as small as O

(√
1− β
1 + β

)
, as stated in the

theorem.

Empirical Validation of the Results of Theorem S1. In order to
validate the results of Theorem S1 empirically, we examine
the distributions of the adaptive de-biased deviance difference
statistics D(c̃ 7→ c)

k for two representative links from Fig. 3: the
GC link (1 7→ 7) which was present in the first segment of the
experiment and vanished in the last segment, and the GC link
(5 7→ 2) which did not exist in the first segment, but emerged
in the last segment.

To this end, we consider 500 realizations of simulated spike
trains corresponding to the network dynamics of Fig. 3 in order
to construct the empirical distribution of D(c̃ 7→ c)

k ’s in the form
of uniform histograms. Fig. S2 shows the resulting histograms
and theoretical density fits (solid curves), as predicted by
Theorem S1, at two selected time points of 40 s (endpoint of
the first segment) and 120 s (endpoint of the third segment).
The histograms are constructed using 15 uniform bins. The
theoretical density χ2(Md) from part (i) of the theorem is
plotted forMd = 10. The theoretical density from part (ii), i.e.,
χ2(Md, ν

(c̃ 7→ c)
k ), is plotted for Md = 10 and the non-centrality

parameter estimates ν̂(c̃ 7→ c)
k obtained by subtracting Md from

the average deviance differences across the 500 realizations.
As it can be observed from Fig. S2, the theoretical predic-

tions closely match the empirical estimates of the densities,
even at a practical value of β = 0.999 (i.e., Neff = 10000) close
enough to unity. We confirmed that similar results hold for
the rest of the links in the network, but have only plotted
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Fig. S2. Empirical and theoretical fits to the distributions of the adaptive de-biased
deviance difference D(c̃ 7→ c)

k
for two selected links from Fig. 3. The empirical

densities are shown as histograms using 15 bins (colored bars) and the theoretical
fits are plotted as solid curves. (A) Empirical and theoretical densities of D(1 7→ 7)

k
at

k = 40 s (existing GC link) and k = 120 s (non-existing GC link), (B) Empirical and
theoretical densities of D(5 7→ 2)

k
at k = 40 s (non-existing GC link) and k = 120 s

(existing GC link).

those corresponding to the aforementioned representative links
for the sake of brevity.

2. Derivations of the Statistical Inference Procedures

Given the deviance data and an estimate of the non-centrality
parameters, the G-causal links can be detected at a fixed FDR
according to Algorithm S1.

Algorithm S1 BY FDR Control and Characterizing the J-
statistics
Input:

{
{D(c̃ 7→ c)

k,β , ν̂
(c̃ 7→ c)
k }K=1 | (c̃ 7→ c) ∈ C

}
, M (d), and α.

1: for k = 1, 2, . . . ,K do
2: for (c̃ 7→ c) ∈ C do
3: Define p-values p(c̃ 7→ c)

k := 1−Fχ2(M(d))

(
D

(c̃ 7→ c)
k

)
4: Sort the calculated p-values as p

(m1)
k ≤ p

(m2)
k ≤

· · · ≤ p
(m|C|)
k where {m1, · · · ,m|C|} is a permutation of

{1, · · · , |C|}
5: Find largest imax for which p(mi)

k ≤ αi := iα

|C| log
(
|C|
)

6: Reject all null hypotheses {H(mi)
0 |i ≤ imax} associated

with the GC links m = m1,m2, . . . ,mimax

7: J
(mi)
k = 0 for i = imax + 1, . . . , |C|

8: J
(mi)
k = 1− ᾱ−F

χ2(M(d) ,̂ν
(mi)
k

)

(
F−1
χ2(M(d))

(1− ᾱ)
)
for

i = 1, . . . , imax

Output:
{
{J(c̃ 7→ c)
k }Kk=1 | (c̃ 7→ c) ∈ C

}
Fig. S3 summarizes the quantities involved in the FDR

control procedure. Fig. S3-A illustrates the variables involved
in hypothesis testing, and Fig. S3-B exhibits the receiver
operating characteristic (ROC) curves for different values of
(M (d), ν), as well as how the J-statistic is calculated for α =
0.05.

In order to estimate the unknown non-centrality parameters
ν

(c̃ 7→ c)
k given in Theorem S1, we make two additional assump-
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Fig. S3. A) PDFs of H0 and H1 for M(d) = 10, ν = 15, and α = 0.05, B)
ROC curves for different values of M = {2 (narrow) , 4 (medium) , 6 (thick)} and
ν = {0 (black) , 2.5 (red) , 5 (blue) , 10 (green)}.

tions. First, although the result of Theorem S1 establishes
convergence in distribution as β → 1, we make the assumption
that D(c̃ 7→ c)

k,β is a sample drawn from a χ2(M (d), ν
(c̃ 7→ c)
k

)
density, when β is close to 1. This assumption is akin to the
common adoption of a Gaussian density to parametrically
describe uncertainties which are known to converge in distri-
bution to a Gaussian random variable, thanks to the law of
large numbers. In what follows, the dependence of D(c̃ 7→ c)

k,β

and ν(c̃ 7→ c)
k on c, c̃, and β will be suppressed for notational

convenience.
Second, we assume that νk changes smoothly in time. To

this end, given that νk ≥ 0, we define the exponential link
νk = exp(zk), for some random variable zk in the range of
(−∞,∞) and impose first-order autoregressive dynamics of
the form:

zk = ρzk−1 + ek, [S28]

where 0 < ρ ≤ 1 is a scaling factor, and ek ∼ N (0, σ2
e) is a

zero-mean i.i.d. Gaussian random variable with a variance of
σ2
e . Together with the assumption of Dk ∼ χ2(M (d), νk

)
, Eq.

S28 forms a state-space model describing the dynamics of νk.
The parameters ρ and σ2

e are unknown, and need to be
estimated. Assuming that the values of ρ and σ2

e are known, we
can estimate {zk}Kk=1 given the sequence of deviance differences
{Dk}Kk=1 using approximate state-space smoothing (14). The
resulting estimator consists of two steps: a forward filter, and
a backward fixed interval smoother.

For the filtering algorithm, we exploit the unimodal prop-
erty of non-central chi-squared distribution, and make a re-
cursive Gaussian approximation to the posterior probability
density function p(zk|Dβ

1:k), where the posterior modes and
variances are computed recursively (14). Let zk|l and σ2

k|l
denote the respective mode and variance of the state variable
zk, given the deviance samples up to and including time l,
{D(c̃ 7→ c)

i,β }li=1. For notational convenience, we drop the depen-
dence of D(c̃ 7→c)

i,β on c̃, c and β, and denote it by Di. Using
the Bayes’ rule and substituting the non-central chi-squared
density function into the log-posterior, we get:

zk|k := argmax
zk

{
− (Dk + exp(zk))

2 + ξ

2(logDk − zk)

+ log Iξ(ζk)−
(zk − zk|k−1)2

2σ2
k|k−1

}
, [S29]

where ζk :=
√
Dk exp(zk), and Iξ(.) denotes the modified

Bessel function of the first kind of order ξ := M (d)/2 − 1.
Note that in Eq. S29 a Gaussian approximation is applied
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to the density p(zk|Dβ
1:k−1) ∼ N (zk|k−1, σ

2
k|k−1), where the

mode and variance are easily derived from Eq. S28 as zk|k−1 =
ρzk−1|k−1 and σ2

k|k−1 = ρ2σ2
k−1|k−1 + σ2

e . From Eq. S29, the
posterior mode zk|k can be computed as the solution to the
following nonlinear equation:

zk = zk|k−1 +
σ2
k|k−1

2
(
ζk rξ(ζk)− exp(zk)

)
, [S30]

where the function rξ(ζ) := Iξ+1(ζ)/Iξ(ζ) is the ratio of modi-
fied Bessel functions of the first kind with order difference of
one. This nonlinear equation can be solved numerically using
iterative techniques such as Newton’s method.

Given zk|k, the posterior variance σ2
k|k can be computed

as the negative inverse of the second order derivative of the
log-posterior at zk|k:

σ2
k|k =

((
σ2
k|k−1

)−1+
exp(zk|k)

2 −
ζ2
k|k

4

(
1−

Iξ−1(ζk|k)Iξ+1(ζk|k)
Iξ(ζk|k)2

))−1

, [S31]

where ζk|k :=
√
Dk exp(zk|k), and we used the recurrence

relation Iξ−1(ζ) = Iξ+1(ζ)+(2ξ/ζ)Iξ(ζ) to simplify the update
rule. Unlike the ordinary Bessel functions, the modified Bessel
functions of the first kind Iξ(·) are exponentially growing. This
could cause numerical stability issues for the recursive update
rules of Eqs. S30 and S31, as the input ζk may take large
values through recursion leading to extremely large values of
the modified Bessel functions. To resolve potential numerical
instability, we use the following sharp bounds on the ratio of
Bessel function (15):√
ζ2+(ξ+1)2−(ξ + 1)≤ ζ rξ(ζ) ≤

√
ζ2+(ξ+1/2)2−(ξ+1/2).

We select the upper-bound as the more accurate approximate
of the ratio ζ rξ(ζ) in Eq. S30 for large values of ζ. Moreover,
the second order Bessel ratio in Eq. S31 can be replaced using
a sharp upper bound on the Turánian of the modified Bessel
functions of the first kind, Iξ(ζ)2 − Iξ−1(ζ)Iξ+1(ζ) (16):

Iξ(ζ)2 − Iξ−1(ζ)Iξ+1(ζ)
Iξ(ζ)2 ≤ 1√

ζ2 + ξ2 − 1/4
. [S32]

Given filtered outputs zk|k and σ2
k|k obtained from the for-

ward filtering algorithm, we next perform backward smoothing
using the fixed interval smoothing algorithm (14), yielding
the smoothed posterior modes zk|K and variances σ2

k|K for
k = K,K − 1, . . . , 1 as follows:{

zk−1|K = zk−1|k−1 + sk(zk|K − zk|k−1)
σ2
k−1|K = σ2

k−1|k−1 + s2
k(σ2

k|K − σ2
k|k−1)

, [S33]

where sk := ρσ2
k−1|k−1/σ

2
k|k−1 is the backward smoothing

gain. It should be noted that unlike the forward filtering, the
backward smoothing step results in an overall batch-mode al-
gorithm, as it refines the preceding filtered estimates zk|k using
the deviance data Di for i > k. Nevertheless, for real-time im-
plementations one can always resort to the filtered estimates
of the non-centrality parameters. Statistical confidence re-
gions for both the filtered estimates ẑfiltered

k ∼ N (zk|k, σ2
k|k)

and smoothed estimates ẑsmoothed
k ∼ N (zk|K , σ2

k|K) can be
computed at each time step k and mapped to those of
ν̂filtered
k = exp

(
ẑfiltered
k

)
and ν̂smoothed

k = exp
(
ẑsmoothed
k

)
in a

straightforward fashion. Algorithm S2 summarizes the non-
central χ2 filtering and smoothing procedure.

Algorithm S2 Non-central χ2 Filtering and Smoothing Al-
gorithm

Input: Dk, M (d), ρ, σ2
e , z0|0 and σ2

0|0.
1: for k = 1, 2, . . . ,K do
2: Define ξ := M (d)/2− 1 and ζk|k :=

√
Dk exp(zk|k)

3: zk|k−1 = ρ zk−1|k−1
4: σ2

k|k−1 = ρ2σ2
k−1|k−1 + σ2

e

5: zk|k = zk|k−1 +
σ2
k|k−1

2

(√
ζ2
k|k+(ξ+1/2)2−(ξ+1/2)−

exp(zk|k)
)

6: σ2
k|k =

(
(σ2
k|k−1)−1 + exp(zk|k)

2 −
ζ2
k|k

4
√

ζ2
k|k+ξ2−1/4

)−1

7: ν̂filtered
k = exp(zk|k)

8: CRfiltered
k =

[
exp
(
zk|k ± Φ−1(1− ε/2)σk|k

)]
9: Given {zk|k}Kk=1 and {σ2

k|k}Kk=1
10: for k = K,K − 1, . . . , 1 do
11: zk−1|K = zk−1|k−1 + sk(zk|K − zk|k−1)
12: σ2

k−1|K = σ2
k−1|k−1 + s2

k(σ2
k|K − σ2

k|k−1)
13: ν̂smoothed

k−1 = exp(zk−1|K)
14: CRsmoothed

k−1 =
[
exp
(
zk−1|K ± Φ−1(1− ε/2)σk−1|K

)]
Output: Filtered estimates (ν̂ filtered

1:K , CRfiltered
1:K ), and smoothed

estimates (ν̂ smoothed
1:K , CRsmoothed

1:K )

In order to simultaneously smooth zk’s and estimate the
unknown parameters ρ and σ2

e , an Expectation-Maximization
(EM) algorithm can be used (17). The details of EM algorithm
are given in Section 4.

3. Derivation of the Recursive Computation of the AGC

In order to achieve recursive computation, we exploit the
smoothness of the point process log-likelihood function, and
approximate each scalar-valued log-likelihood function `i(ω̂k)
using a second order Taylor’s series expansion around ω̂i for
i ≤ k. Retaining the first three terms of the expansion yields:

`i(ω̂k) ≈ `i(ω̂i) + (ω̂k − ω̂i)′ ˙̀ i(ω̂i) + 1
2 (ω̂k − ω̂i)′῭i(ω̂i)(ω̂k − ω̂i),

[S34]

where ˙̀
i(·) and ῭

i(·) denote the gradient vector and Hessian
matrix with respect to ω, which can be computed from Eq. 2
for the logit-linked GLM model as follows:

˙̀
i(ω̂i) = X′iεi, [S35]

῭
i(ω̂i) = −X′iΛiXi, [S36]

where εi := ni − λi(ω̂i)∆ denotes the point pro-
cess innovation vector at time window i, and Λi :=
diag (λi∆� (1− λi∆)) is a W × W diagonal matrix with
(Λi)m,m := λ(i−1)W+m(ω̂i)∆(1 − λ(i−1)W+m(ω̂i)∆) as the
m-th diagonal element obtained from the second-order deriva-
tive of the logistic log-likelihood function. Substituting the
quadratic Taylor’s approximation of Eq. S34 into Eq. 2 and
rearranging terms will lead to the following recursive update
rule for the adaptive log-likelihoods at time step k:

`βk(ω̂k) = ak + ω̂
′
kbk + 1

2 ω̂
′
kBkω̂k, [S37]

where
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ak =
k∑
i=1

βk−i
(
1W ′`i(ω̂i)− ω̂′iX′iεi −

1
2 ω̂
′
iX′iΛiXiω̂i

)
,

bk=
k∑
i=1

βk−iX′i
(
εi + ΛiXiω̂i

)
,

Bk=−
k∑
i=1

βk−iX′iΛiXi, [S38]

in which `i(ω̂i) := [`(i−1)W+1(ω̂i), . . . , `iW (ω̂i)]′ denotes the
vector of log-likelihoods corresponding to the ith time window,
and 1W := [1, . . . , 1]′ is the vector of all ones of length W . It
is easy to see that ak, bk and Bk also admit recursive update
rules at time step k:

ak = β ak−1 + 1W ′`k(ω̂k)− ω̂′kX′kεk −
1
2 ω̂
′
kX′kΛkXkω̂k,

bk = β bk−1 + X′k (εk + ΛkXkω̂k) ,
Bk = βBk−1 −X′kΛkXk. [S39]
By performing the recursive computation of Eq. S37 for

both the full model and the reduced model, a fully recursive
update procedure for the AGC measure of Eq. 5 is obtained,
which enables us to track the G-causal interactions among the
neurons in an online fashion. This fully recursive procedure
can be further extended to our proposed statistical inference
framework based on the de-biased deviance statistics. To this
end, we obtain a recursive update rule for the quadratic bias
terms in Eq. 6. The recursion for the score statistic evaluated
at the current estimate, ˙̀β

k(ω̂k), is readily available through a
similar treatment using the Taylor’s series expansion and is
employed in the `1–PPF1 filtering procedure for estimating
the maximizers of `1-regularized ML problems recursively (1).
This update rule simplifies to:

˙̀β
k(ω̂k) = bk + Bkω̂k. [S40]

The inverse Hessians ῭β
k(ω̂k)−1 can also be efficiently com-

puted via the Woodbury matrix identity applied to the update
rule of Bk. When the Hessians are not invertible, a recursive
implementation of the node-wise regression procedure of (2)
can be used, which is developed in (18) using the SPARLS iter-
ation (19) for RLS-type exponentially weighted log-likelihoods.
Algorithm S3 summarized the recursive computation of the
exponentially-weighted log-likelihoods at window k.

Algorithm S3 Recursive update rule for `βk(ω̂k)

Input: nk, Xk, ω̂k, ak−1, bk−1, and Bk−1.
1: yk = Xkω̂k
2: λk∆ = logit−1 (yk)
3: εk = nk − λk∆
4: Λk = diag (λk∆� (1− λk∆))
5: ak = β ak−1 + 1W ′`k(ω̂k)− y′kεk − 1

2y′kΛkyk
6: bk = β bk−1 + X′k (εk + Λkyk)
7: Bk = βBk−1 −X′kΛkXk

Output: `βk(ω̂k) = ak + ω̂
′
kbk + 1

2 ω̂
′
kBkω̂k

4. Parameter Selection

In this section, we describe how the various parameters in our
proposed AGC estimation procedure are selected, and discuss
the underlying trade-offs thereof.

Forgetting Factor. In the adaptive filtering setting with a for-
getting factor mechanism β and window size W , the effec-
tive block length of the filter is determined by Neff = W

1−β .
It was shown in (1) that the estimation error scales as
O(
√
s logM/Neff) in the `2 sense, where s denotes the spar-

sity level. Thus, the forgetting factor β controls the trade-off
between the estimation and tracking performance of the fil-
ter. That is, a choice of β close to 1 corresponds to a large
effective block length Neff , which in turn results in a more
accurate estimation of the modulation parameters ω̂k, and
consequently the AGC, at the cost of losing the trackability
of the underlying dynamics. On the other extreme, a choice
of β far from 1 reduces the effective block length, and thereby
results in capturing the fast dynamics of the underlying time-
varying process, although the estimation accuracy degrades.
As discussed in the remark following the proof of Theorem 1,
the proposed statistical testing procedure enables us to detect
G-causal links associated with true cross-history components
of the order of ωβk = O(

√
1− β). Hence, a choice of β close

to 1 will increase the test strengths. In the applications of
interest in this paper, the underlying dynamics are slower
than the sampling rate, which allows us to choose forgetting
factor values sufficiently close to 1. While it may be benefi-
cial to tune β via cross-validation, our numerical experiments
show that the resulting values of β turn to be close to 1 (i.e.,
1 − β ∈ [10−4, 10−2]). Therefore, in order to simplify the
cross-validation procedure, we fixed the value of β close to 1 in
our analysis. It is noteworthy that the usage of the forgetting
factor mechanism mitigates the problem of choosing a window
size faced by GC inference methods based on sliding-window
processing.
Model Order Selection. Our model selection procedure is
grounded in the compressed sensing theory. In contrast to
classical model order selection procedures (e.g., AIC), com-
pressed sensing suggests choosing large model orders followed
by sparse regularization to avoid overfitting. Indeed, our recent
results on extending the theoretical guarantees of compressed
sensing to processes with non-i.i.d. and history dependent
covariates (1, 4), show that recovery of sparse history kernels
with large ambient dimensions M is possible from a limited
number of observations N , in which N may be comparable or
smaller than M , as long as the sparsity level s is small enough.
In more precise terms, long kernels of self-history can be ro-
bustly estimated given an effective number of observations
Neff scaling sub-linearly with M and s.

The benefit of employing such models with long self-history
kernels is two-fold: first, long self-history kernels M self

H enable
us to maximally capture the intrinsic spiking statistics of a
unit. Second, due to the autoregressive nature of these models,
long self-history kernels allow for estimation, and thereby
correcting for the effects of latent confounding variables, which
cannot be explained by the cross-history influences from other
units. Thus, we choose M self

H > M cross
H to maximally capture

the aforementioned intrinsic and latent confounding effects.
At the same time, smaller values of M cross

H are beneficial in
increasing the statistical test strengths, as they directly set
the statistical thresholds for multiple hypothesis testing. In
Section 9, we present two illustrative numerical experiments
that corroborate our choices for these parameters.
Adaptive Filtering Parameters. In order to achieve an estima-
tion performance with high accuracy, we select the effective
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block length Neff �M (F ) to be larger than the kernel length.
We use non-overlapping spike counting windows of length WH

for parameterizing the self- and cross-history kernels, where
WH is often chosen to be comparable to the data window
length W .

For the adaptive filtering setting, we first standardize the
matrix of covariates (i.e., zero-mean columns with unit norm),
and then apply the `1–PPF1 adaptive filter, with a step size
of ς := 1−β

cW
, where c is a constant often chosen in the range

c ∈ [1, 10], to achieve different levels of smoothing (1).
The regularization parameter γ for the `1–PPF1 is cho-

sen as γ = O
(√

logM/Neff
)
based on the results of The-

orem 1 in (1), and the asymptotic scaling requirement in
(2), to obtain consistent `1-regularized ML estimates. In or-
der to adapt this parameter to different neurons, we choose
γ(c) = γ̄(c)

√
κ̄(c) logM/Neff for neuron (c), where κ̄(c) :=

var(n(c)) = λ̄∆(c)(1 − λ̄∆(c)), followed by tuning the nor-
malized regularization parameter γ̄(c) for each neuron in a
data-driven fashion via the even-odd two-fold cross validation
procedure discussed in (1).

Note that when the underlying functional network is fully
connected, the cross-validation procedure for tuning the regu-
larization parameter γ is expected to choose values near zero
(i.e., no sparsity in the parameter vectors), and hence our
methodology can adapt to non-sparse network connectivity as
well. For the applications of interest in this work, the cross-
validation procedure consistently resulted in sparse functional
networks.

Finally, it is possible to generalize the `1-regularization
scheme to have a different regularization parameter γ(c,c̃) for
the cross-history parameters of units (c) and (c̃). Theoretical
analysis, however, suggest that there is little benefit in terms
of estimation accuracy in doing so, which comes at the cost of
higher computational complexity in the cross-validation and
bias correction stages. More precisely, separate regularization
of each of the cross-history parameters may result in better
constants in the error rate, but the asymptotic scaling of the
rate remains unchanged. For instance, as mentioned earlier
the results of (1) show that the estimation error scales as
O(
√
s logM/Neff), which is optimal modulo the logarithmic

factor. By viewing the concatenation of several sparse vec-
tors as another sparse vector, we use a single regularization
parameter that is tuned appropriately via cross-validation in
order to select a sparse model at a near optimal error rate.
Nevertheless, the `1-PPF1 procedure can be generalized in a
straightforward fashion to accommodate multiple regulariza-
tion parameters, thanks to the separable nature of the `1 norm
and the underlying proximal algorithms (See (1) for details).

Parameters of the Non-central χ2 Filtering and Smoothing.
For the non-central χ2 filtering and smoothing algorithm, we
select the scaling factor ρ ∈ [0.999, 1] close (or equal) to one
to promote temporal continuity. The state variance σ2

e plays
the role of a smoothing factor for non-centrality parameter
estimates ν̂k, and can be determined in two ways. First, we
can choose a small value in the range [10−7, 10−4] suggested by
our numerical experiments, which results in smooth estimates
of ν̂k for a wide range of settings. Second, σ2

e can be sys-
tematically estimated via the expectation maximization (EM)
algorithm (20) in a data-driven fashion using the observed
deviance data D1:K := {Dk}Kk=1. We take z1:K := {zk}Kk=1 as
the set of latent variables for the EM algorithm. Given an

estimate σ̂2,(`)
e at the `-th iteration, the E-step at the (`+1)-st

iteration computes:

Ez

[
log p

(
D1:K , z1:K |σ2

e

)∣∣D1:K , σ̂
2,(`)
e

]
= −K2 log(σ2

e)

− 1
2σ2

e

K∑
k=1

{(
σ2
k|K+z2

k|K
)
+ρ2 (σ2

k−1|K+z2
k−1|K

)
− 2ρ

(
σ2
k−1,k|K + zk−1|Kzk|K

)}
+ cnst.,

[S41]

where Ez
[
.|D1:K , σ̂

2,(`)
e

]
denotes the expectation operator with

respect to the latent variables given the complete set of de-
viance data D1:K and the current estimate of the parameter
σ̂

2,(`)
e , and cnst. denotes all terms not dependent on σ2

e . It is
noteworthy that calculation of the E-step involves computation
of the smoothed means and variances Ez

[
z2
k |D1:K , σ̂

2,(`)
e

]
=

σ2
k|K + z2

k|K , which are readily available from the non-central
chi-squared smoothing given by Eq. S33, and the covariance
terms Ez

[
zk−1zk|D1:K , σ̂

2,(`)
e

]
= σ2

k−1,k|K+zk−1|Kzk|K , which
can be computed using a state-space covariance smoothing
algorithm (17) as σ2

k−1,k|K = skσ
2
k|K . The M-step gives the

update for σ̂2,(`+1)
e by maximizing S41 as follows:

σ̂2,(`+1)
e = 1

K

K∑
k=1

{(
σ2
k|K + z2

k|K
)
+ρ2(σ2

k−1|K + z2
k−1|K

)
− 2ρ

(
σ2
k−1,k|K + zk−1|Kzk|K

)}
. [S42]

5. Numerical Choices of the Parameters Used in the
Applications Section

Parameters for the Simulated Example. We selected the mod-
ulation parameter vectors to be the same for all the G-causal
interactions, and set to ωexc. = [1, 0, 0, 2, 0, 0, 0, 0, 0, 1] for exci-
tatory links and ωinh. = −ωexc. for the inhibitory links, where
each component corresponds to a uniform non-overlapping
spike counting window of length 10 bins (or 10 ms). The
modulation parameter vector associated with the non-existing
G-causal links (such as (8 7→ 2)) is set to all zeros. The
self-history dependence for all neurons is chosen to be of in-
hibitory and static nature to maintain stable behavior for
simulation purposes. The norm of all non-zero parameter vec-
tors is normalized to 1. The average spiking probability is set
to λ̄∆ ≈ 0.07� 1 by choosing the baseline firing parameter
µk = −2.597 to be the same for all neurons.

To model the dynamics of the G-causal links in the second
segment of the simulation, we enforce a linear time evolu-
tion for all the coefficients of underlying parameter vector,
with a respective decay and growth for the links associated
with neurons (1) and (5). For estimation of G-causal in-
teractions, we select the sparse parameter vector associated
with the full GLM model of neuron (c) to be in form of
ω

(c)
k = [µ(c)

k ,ω
(c,1)
k

′
,ω

(c,2)
k

′
, . . . ,ω

(c,C)
k

′
]′ of length M (F ), com-

posed of the scalar baseline parameter µ(c)
k , and sub-vectors

ω
(c,c)
k of length M self

H , and ω(c,c̃)
k of length M cross

H for c̃ 6= c, de-
noting the respective parameter vectors tuning the self-history
dependence and the cross-history effects from neuron (c̃). We
select M cross

H = M self
H = 10 history components associated with
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the respective kernel lengths of Lcross
H = Lself

H = 100 ms, ob-
tained by non-overlapping windows of length WH = 10 bins.
Note that M (F ) = 81, and M (R) = M (F ) −M cross

H = 71.
We employ the sparse adaptive filter `1–PPF1 to estimate

the sparse parameter vectors ω̂k at every time step k for
both the full and reduced models. For the `1–PPF1 filtering
algorithm, an effective block length of Neff = 10k is selected
with a window size of W = 20, forgetting factor of β = 0.998
chosen sufficiently close to one, step size of ς := 1−β

W
, and

L = 1 number of iterations. The regularization parameter
is tuned for each cell separately γ̄(c) ∈ [0.3, 0.5], via the two-
fold even-odd cross validation (1). For the χ2 filtering and
smoothing algorithm, the smoothing and scaling factors are
selected as σ2

e = 5 × 10−6 and ρ = 1, respectively, using an
initialization of z0|0 = 0 and σ2

0|0 = 1 in the EM algorithm.
For the performance comparison in Fig. 3-E, we have

adapted the methods in (21) and (22), which are designed for
static connectivity inference, to the time-varying setting in full
fairness. First, due to the batch-mode computation of these
static methods, we divided the total K = 120k observed bins
to non-overlapping window segments of length WML = 10k,
matching the effective block lengthNeff of our dynamic method.
Both methods compute the ML estimates of the network
parameters for each segment. We have therefore selected the
true model orders MML = 10 for both methods, matching
the selected model order for our AGC inference method, so
as to have a fair statistical comparison and to ensure that
they operate at their optimal performance (note that the
dimensionality difference Md has a particularly pivotal role in
the inference procedure).

The method in (21) computes a static GC connectivity
map obtained from nested full and reduced ML estimates,
followed by an FDR control procedure for correction of multiple
comparison errors. The method in (22) performs a likelihood-
ratio test to assess the significance of each pair-wise interaction.
The same significance levels are chosen for the statistical tests
in both methods, to match our FDR rate of α = 0.1. Finally,
both methods have been modified to the logit-linked GLM
setting, in order to ensure their consistency with the generative
model used for simulating the spike trains.

Parameters for the Analysis of Spontaneous Activity in the
Mouse Auditory Cortex. We used time bins of length ∆ =
33 ms, equal to the sampling interval. For the GLM mod-
els, we chose M cross

H = 3 cross-history components associated
with a block length of Lcross

H = 10 samples, obtained by non-
overlapping windows of length [2, 4, 4] samples. To correct
for possible latent confounding effects, we select a larger self-
history kernel of Lself

H = 30 samples segmented using windows
of [2, 4, 4, . . . , 4] samples, giving a total of M self

H = 8 parame-
ters. We corrected for the clustered spike detection effect of
the constrained-foopsi method, using a masking window for
rejecting multiple consecutive spikes. We selected an optimal
data-driven masking window of size Wmask = 8 samples, ob-
tained by computing minimum rise-time of the calcium peaks
inferred from the smoothed fluorescence traces of all cells.
Then, the spikes detected within an interval of length Wmask

are rejected.
We employ `1–PPF1 algorithm for estimating ω̂k with a

forgetting factor of β = 0.999, a window size of W = 10 bins,
and L = 1 number of iterations. The regularization parameter
was tuned for each cell via two-fold even-odd cross validation.

The χ2 filtering and smoothing algorithm parameters are
chosen as ρ = 0.999, and σ2

e = 10−3. The J-statistics are
evaluated at the mean FDR for the detected GC links.

Parameters for the Analysis of the Ferret A1-PFC Activity.
We discretized the total duration of T = 420 s using bins
of length ∆ = 1 ms. The GLM modulation parameter
ωk := [µk;ωhist

k ;ωSTRF
k ] at time k consists of the baseline firing

parameter µk, the history dependence vector ωhist
k , as well as

the STRF vector denoted by ωSTRF
k . For the history depen-

dence parameters, we selected M cross
H = 3 cross-history and

M self
H = 21 self-history components associated with respec-

tive history block lengths of Lcross
H = 100 ms and Lself

H = 1 s,
using non-overlapping windows of W cross

H = [20, 30, 50] and
W self
H = [20, 30, 50, . . . , 50] bins, respectively.
For the STRF parameters, we use a vectorized array of

size I × J , with I = 50 time lag bins, and J = 50 fre-
quency bins in logarithmic scale, uniformly spanning time
lags in the range of [0, 50] ms, and frequencies in the range
of f ∈ [500, 16k] Hz, respectively. To capture the inherent
sparsity of the STRFs in the time-frequency domain, we use a
representation θSTRF

k = GωSTRF
k , where G is a Gaussian time-

frequency dictionary of 49 Gaussian atoms (1), and ωSTRF
k and

θSTRF
k denote the sparse representation of the STRF (with 49

parameters) and the vectorized STRF at time k, respectively.
We used two-dimensional symmetric Gaussian kernels with a
variance of D2/4 as Gaussian atoms in time-frequency plane,
where atoms are distributed on a grid of size 7 × 7 with a
spacing of D = 7 bins. The vectorized array of the TORC
sequence spectrograms with J frequency bins and I time lags
is considered as the stimulus sequence sk in the GLM model.

We used the `1–PPF1 filter to estimate the sparse parameter
vectors ω̂k associated with the reduced and full GLMs for each
neuron in a dynamic fashion. We selected a forgetting factor
of β = 0.9998, a window size of W = 8, a step size ς = 1−β

5W ,
L = 20 number of iterations per step, and regularization
parameters γ(c) tuned for each unit separately via two-fold
even-odd cross validation. We chose the scaling factor ρ = β,
and the smoothing factor σ2

e = 5 × 10−6 for the χ2 filtering
and smoothing algorithm. The FDR is controlled at the
rate α = 0.1, and the J-statistics computed at mean FDR
ᾱ = 0.0119, testing for |C| = 9 × 8 = 72 possible GC links
among the units.

6. Computational Complexity Considerations
The computational complexity of Algorithm 1 (per cross-
validation iteration) is linear in the total data length T and
quadratic in the network size C and parameter orders M ,
due to the RLS-type adaptive filtering procedure used (1).
However, the high number of cross-validation iterations re-
quired to tune the regularization parameters increases the
overall runtime of the algorithm. Substantial reduction of
the runtime can be achieved by parallel implementation: the
cross-validation steps for each unit can be done independently
of the others, and therefore using a natural parallel imple-
mentation, the runtime would reduce by 1/C. We have not
used this parallel scheme in our current implementation de-
posited on GitHub (https://github.com/Arsha89/AGC_Analysis),
as we deemed it beyond the scope of this work. In order to
efficiently analyze data from high-density neuronal recordings,
we suggest the use of a parallel implementation and view it as
a future work.
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7. Robustness to the Choice of Parameters

In this section, we inspect the robustness of the proposed AGC
inference with respect to the choice of three major parameters:
the dimensionality differenceMd, the regularization parameter
γ, and the effective block length of the adaptive filter Teff :=
Neff∆ = W∆

1−β . Before doing so, we describe the computation
and statistical assessment of the TDR and FAR performance
metrics in the analysis of Figs. 3 and 4, as well as the current
and forthcoming section.

The TDR and FAR Performance Metrics. In the Applications
section of the main manuscript, we compared the performance
of the proposed AGC inference with the methods of (22) and
(21) in terms of TDR and FAR performance metrics. Given the
continuous nature of the AGC links, as opposed to the binary
connectivity measures of the other two methods, we binarize
the resulting J-statistics for fairness of comparison. To this
end, let A(c̃ 7→ c)

R be the fraction of times within a time window
where the AGC link (c̃ 7→ c) is identified with high statistical
significance J(c̃ 7→ c)

k > Jth. We call an AGC link active within
a given time window if A(c̃ 7→ c)

R > Ath, and inactive otherwise.
We selected the thresholds to be Ath = 1

3 and Jth = 1−ᾱ
3 .

The TDR at each time window is computed as the ratio of
the correctly identified links to the total number of existing
GC links. The FAR at each time k is computed as the ratio of
spuriously detected links to the total number of non-existent
links. Given the ground truth GC map shown in Fig. 3-E,
these performance metrics can be computed for the static
(first and last) segments of the experiment in a straightforward
fashion. For the middle segment, where the GC influences
undergo dynamic changes, we define the ground truth as
follows: a threshold of Gth = 1

4 is used to binarize the ground
truth GC links, which linearly ascend from 0 to 1 (emerging
link) or descend from 1 to 0 (vanishing link) in the middle
segment. For each repetition of the simulation, the FAR and
TDR metrics are computed for each of the three segments
by averaging over the time windows within, resulting in two
summary statistics. Boxes indicate the mean values as well as
the 90% confidence intervals pooled across all repetitions, and
are plotted in green and red, respectively.

Due to the highly non-Gaussian nature of the empirical
distributions of the paired difference metrics, we have used
the non-parametric Wilcoxon signed-rank test for comparison,
both in the main manuscript (Fig. 4) and the forthcoming
section. The corresponding effect sizes are computed in the
form of rank correlation r := W /S , where W is the Wilcoxon
signed-rank statistic and S is the total sum of ranks (23).

The AUC values reported in the main manuscript (Fig. 4)
are computed as the area under the ROC curves. These curves
are obtained by varying the values of mean FDR ᾱ ∈ [0, 1]
for AGC and the statistical thresholds of (21) and (22) and

AGC

(22)
(21)

1

0.5

0.75

10.50 10.50 10.50

TD
R

FAR

Segment 1 Segment 3Segment 2

Fig. S4. ROC performance curves of the AGC inference (blue) and the methods of
(21) (red) and (22) (green) for the three segments of the simulation setting of the main
manuscript (Fig. 4).

plotting the corresponding (TDR,FAR) pairs averaged across
repetitions. Figure S4 shows the ROC curves of the three
methods for the three segments of simulation. While the
methods of (21) and (22) exhibit similar ROC performances,
the AGC achieves higher AUC values, particularly in the
middle segment. We expect the performance gap between
the AGC inference and the other two methods to increase for
larger networks with higher sparsity.
Assessing the Robustness of AGC Inference to the Choice
of Parameters. We consider three different choices for each
parameter {Md, cγ , Teff}, and for each choice, we run the sim-
ulation of Fig. 3 for R = 100 repetitions, where a random
sequence of spike trains are generated at each repetition based
on the network dynamics of Fig. 3-A. In each setting, the rest
of the parameters are chosen as described in section 5.
Robustness to the choice ofMd. For the dimensionality difference
Md, we consider three settings of Md ∈ {10, 15, 20}. Fig. S5
shows the performance results for different choices of Md.
While the FAR values remain consistently low (i.e., < 0.01, on
average), as expected the larger choices of Md would impose
stricter statistical thresholds on the hypothesis tests (See Fig.
S3-B), leading to slight degradation of the TDR performance.

Md
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Segment 1 Segment 3Segment 2

10 15 20 10 15 20 10 15 20
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0

Fig. S5. Performance of the AGC inference for three different values of Md ∈
{10, 15, 20}, in terms of TDR (top row) and FAR (bottom row).

Robustness to the choice of γ. For the choice of regularization pa-
rameter, we consider three different settings for γ = cγγ

∗, cγ ∈
{0.1, 1, 10}, where cγ denotes a scaling factor and γ∗ represents
the optimally tuned regularization parameter vector obtained
from cell-by-cell two-fold even-odd cross-validation. Fig. S6
reveals the robustness of the AGC inference with respect to the
choice of the regularization parameter. It can be observed that
the resulting performance metrics show resilience to under-
regularization (cγ = 0.1), while the TDR performance notably
degrades due to over-regularization (cγ = 10). This is due
to the fact that larger choices of γ would shrink the inferred
cross-history coefficients and thereby remove weaker GC effects,
which would lead to reduced TDR (and FAR) performance for
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R

Segment 1 Segment 3Segment 2
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cγ

0.1 1 10 0.1 1 10
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0.5
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0

Fig. S6. Performance of the AGC inference for three different scalings γ for cγ ∈
{0.1, 1, 10}, in terms of TDR (top row) and FAR (bottom row).
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Fig. S7. Performance of the AGC inference for three different values of Teff ∈
{5, 10, 20} s, in terms of TDR (top row) and FAR (bottom row).

all segments. The optimally-tuned choice of the regularization
parameter γ = γ∗ obtained via cross-validation achieves a
favorable TDR-FAR performance trade-off.
Robustness to the choice of Teff . For the effective filtering length,
we select three different settings of Teff ∈ {5, 10, 20} s. Fig. S7
exhibits the significant influence of effective filtering length
Teff on the performance of AGC inference, where as expected
larger choices of Teff would increase both the TDR and FAR
metrics. In other words, larger effective number of samples
for GC inference at each time step would increase both the
capability of correct identification (due to increased estimation
accuracy of the existing links) and the risk of false detection
(due to increased effective observation noise).

8. Inspecting the Roles of Adaptive Sparse Estimation
and Bias Correction in AGC Inference

In this section, we inspect the roles of the bias correction
procedure as well as sparse estimation in our proposed AGC
inference method using an illustrative simulation study. We
examine how these features affect the performance in terms of
correct identification of the GC links and avoiding false posi-
tives. To this end, we compare the performance of our AGC
inference method with a variant in which the bias correction
stage is removed, as well as the conventional static ML-based
GC inference (21), in which the dynamics and sparsity are not
taken into account.

We consider R = 100 realizations of a random network
configuration comprising Nc = 10 neurons, causally interacting
through NLinks = 10 randomly selected directional links. For
each repetition and given the network configuration, a sequence
of spike trains with a duration of T = 30 s is generated with a
bin size of ∆ = 1 ms. The average baseline spiking probability
is set to λ̄∆ = 0.05. For spike generation, we use a logit-linked
GLM model with a static block-sparse parameter vector ω(c̃,c)

with a support set of S = {1, 5, 10}, and respective values
of (ω(c̃,c))S = {2,−1, 1} to model the self- and cross-history
dependencies among neurons. Each history component is
associated with a non-overlapping history window of WH = 5
time bins. The sign of the history kernel determines the
aggregate excitatory or inhibitory effect of a causal link. We
assume self-excitatory behavior for all neurons. For GLM
estimation, we select M cross

H = M self
H = 10 history components,

associated with spike counting windows of length 5 time bins.
For the `1–PPF1 algorithm, we select the forgetting factor β =
0.999, and a filtering window size ofW = 5 bins (corresponding
to an effective window length of 5 s), cw = 1 and L = 1
number of iterations. The regularization parameter γ is tuned
for each neuron via two-fold even-odd cross-validation. The
χ2 filtering and smoothing algorithm parameters are chosen
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Fig. S8. Performance comparison of AGC inference to its variant without bias correc-
tion and GC inference based on static ML. (A) ground truth GC maps in a network
of 20 neurons, (B) AGC inference, (C) AGC inference without bias correction, and
(D) GC inference based on static ML (21). For the subplots B, C and D, the top rows
correspond to three snapshots of the network inference result for a given realization,
and the bottom rows show the TDR and FAR curves computed based on 100 real-
izations, for the six non-overlapping segments. Stars indicate significant differences
between the AGC and static ML, with effect sizes of r ≥ 0.8 (Wilcoxon signed-rank
test, p < 0.001).

as σ2
e = 5× 10−6 and ρ = 1, and the FDR is controlled at a

significance level of α = 0.1.
Fig. S8-A shows the static ground truth GC maps for a

selected realization, plotted at three time instances in the form
of 10 × 10 matrices. Fig. S8-B, C and D show the results
for the full AGC inference method, its variant with no bias
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correction, and the ML-based static GC method, respectively.
Each panel consists of three rows: snapshots of the detected
GC maps for one realization (top row), and the TDR (second
row) and FAR (third row) performance metrics for consecutive
non-overlapping 5 s windows, pooled across the R = 100
repetitions. Boxes show the mean and 90% confidence regions.
The static GC maps in Fig. S8-D are estimated using non-
overlapping windows of lengthWeff = 5 s, equal to the effective
filtering block length of the AGC method.

Figs. S8-B and C reveal the favorable FAR performance
of the AGC method as compared to the static ML, even
in the absence of bias correction. In particular, based on
the Wilcoxon signed-rank test with a p-value of p < 0.001,
the FAR performance of AGC inference is significantly lower
than that of the static ML for all segments (effect sizes of
r = 0.44, 0.38, 0.44, 0.52, 0.37, and 0.37 in the six segments,
respectively). However, the lack of bias correction (Fig. S8–
C) results in lower TDR performance compared to the AGC
method. The TDR performance of the AGC method is also
significantly higher than that of the static ML for the last 4
segments, but is outperformed by the static ML in the first
segment (effect sizes of r = 1, 0.17, 0.73, 0.74, 0.88 and 0.90, in
the six segments, respectively), which is expected due to the
initialization period of ∼ 5 s for the AGC method.

This illustrative example shows that the static ML-based
approach that does not account for sparsity overfits the pa-
rameters when applied to limited data, and hence results in
low true positive performance and a high number of spurious
link detections. In comparison, the AGC method provides
favorable TDR and FAR performance, but only after the ini-
tialization period, which is of the order of the effective window
length. In addition, this example highlights the crucial role
of bias correction for the deviance difference statistics in our
proposed statistical inference procedure.

9. Robustness Against Latent Confounding Causal Ef-
fects: Three Simulation Studies

In this section, we will inspect the robustness of our proposed
AGC inference method with respect to the problem of latent
confounding causal effects, which is one of the major challenges
in GC inference. When the two data time series Xt and Yt
subject to G-causal inference are driven by a third latent
common process Zt, with possibly different latencies, i.e.,
(Xt ← Zt → Yt), the GC inference may lead to spurious
detection of causal effects between Xt and Yt. This is due to
the fact that the common information from Zt is pronounced
into both time series Xt and Yt, and cannot be captured by the
conditional covariates due to the latent nature of Zt, and may
result in false positive errors, thereby limiting the reliability
of GC inference.

Although the original form of the GC measure does not take
into account the latent confounding causal effects, several solu-
tions have been proposed in the literature to resolve this issue.
As an example, a variant of GC called “partial G-causality” is
introduced in (24), which shows superior performance in terms
of removing the effects of unknown confounding influences
compared to the conditional GC.

Our proposed method for AGC inference mitigates this issue
through several mechanisms. First, the hypothesis of sparsity
allows for stable estimation of high order GLM models, with
large number of self-history components in both the reduced

and full models used in the conditional GC measure. Hence,
we expect that the latent effects are captured via the high
order self-history parameters due to the autoregressive nature
of the GLM models, which promotes the detection of the
actual GC links between the units using the cross-history
components. This feature is akin to estimating latent Moving
Average (MA) components using autoregressive models in the
ARMA modeling paradigm.

Second, by explicitly modeling the dynamics of the non-
centrality parameters describing the deviance statistics, and
thereby using the χ2 filtering and smoothing algorithm to
reliably estimate them, we expect that only the temporally-
salient G-causal effects are captured, and the transient G-
causal links possibly due to confounding influences manifested
in the deviance statistics are suppressed.

Third, the non-centrality parameter estimates allow us
to characterize the test strengths for the rejected nulls (i.e.,
detected GC interactions) obtained by the FDR-controlled
multiple hypothesis testing framework, in a model-based fash-
ion. The resulting J-statistics can be further used to reject
the detected GC links with low test strength, which may be
due to transient latent effects.

In order to demonstrate these features, we test the per-
formance of our proposed method for GC inference in the
presence of confounding causal effects under three scenarios:
1) confounding deterministic common input, 2) confounding
stochastic common input, and 3) confounding effects due to
network subsampling.
Scenario 1: Confounding Effects Due to Latent Deterministic
Common Input. We first consider an illustrative two-neuron
example. We consider a setting with a GC-link from neuron
(2) to (1), and no GC link in the opposite direction. We also
consider a hidden (confounding) source (H) affecting both
neurons. We assess the robustness of our algorithm in terms of
two performance metrics: the detected false alarm rate (FAR)
corresponding to the link (1 7→ 2), and the true detection rate
(TDR) for correctly identifying the link (2 7→ 1), all in the
presence of the confounding source (H 7→ 1, 2) (Fig. S9–A).

We assume a stationary environment with static GC links,
and we use the same spiking statistics as in the previous
simulation setting based on a logit-linked GLM model. We
consider the case with no self-history dependence in order to
more specifically inspect the trade-off between the cross-history
and the latent confounding influences on our GC inference
procedure. To model the cross-history dependence associated
with the GC link (2 7→ 1), we select a uniform modulation
vector ω(1,2)

k = 1√
W (1,2)

1W (1,2) covering a window of W (1,2)

time bins, where 1W (1,2) denotes the vector of all ones of
length W (1,2). The effect of the latent hidden source is later
added to the contributing effects in the GLM models for both
neurons. For the estimation of the GLM models, a larger
number of M self

H = 5 × M cross
H self-history components are

considered compared to the cross-history in order to capture
the effects of the latent confounding influences.

In this first scenario, a sinusoidal signal xk =
AH sin(2πk/200) is afferent to neurons (1) and (2) as the
latent common input with different delays. We consider a
phase difference of π/2 between the latent inputs to neurons
(1) and (2) to account for the delay. For simulation of this
scenario, we select a cross-history window ofW (1,2) = 100, and
a uniform non-overlapping spike counting window of length

Sheikhattar et al. SI Appendix | SI–11



HHH
HHλ̄∆
E 0.01 0.05

0.01 FAR 0.01± 0.05 0.13± 0.20
TDR 0.66± 0.32 1

0.05 FAR 0.11± 0.11 0.15± 0.10
TDR 0.89± 0.11 1

0.1 FAR 0.15± 0.09 0.12± 0.06
TDR 0.90± 0.08 1

Table S1. Performance metrics of AGC inference in presence of a
latent deterministic sinusoidal common input. Entries show mean +/-
standard deviation.
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Fig. S9. The performance of the proposed GC inference method in presence of
the latent confounding causal effects corresponding to the realization from Table
S1 with median performance metric pair (FAR, TDR) at the setting (λ̄∆, ECS) =
(0.05, 0.01). A) dual-neuron network model with hidden source, B) spike trains
of both neurons within 4 s window, C) estimated non-centrality ν̂k corresponding
to GC links (1 7→ 2) (blue) and (2 7→ 1) (red) across time, along with the 95%
confidence regions, and the shifted deviance differences Dk,β − M(d) (black
traces), D) estimated J-statistics Jk for both GC links obtained via statistical inference
procedure based on BY rejection.

WH = 50 for parameterizing the history components, and
M cross
H = 20 number of cross-history components.
For fairness of comparison, we choose the mean power EH of

the latent confounding source to be equal to the mean power of
the G-causal link EGC := var(ω(1,2)T

k x(1,2)
k ) for both scenarios,

and denote them by E . We run the simulation for R = 50
repetitions, where a spike train of K = 180k samples covering
a duration of T = 180 s is generated with ∆ = 1 ms time bins
for each realization. For the `1–PPF1 sparse filtering setup,
we chose an effective block length of Neff = W

1−β in the set
{10k, 20k, 100k}, with respective average spiking probabilities
of λ̄∆ ∈ {0.1, 0.05, 0.01}. The regularization parameter γ is
tuned for both neurons via two-fold even-odd cross-validation.
For the χ2 filtering and smoothing setup, we selected a scaling
factor ρ = 1, and a smoothing factor σ2

e = 10−4. We infer the
GC links for each run, and finally measure the mean FAR and
TDR across all realizations.

Table S1 exhibits the (FAR, TDR) performance pairs for
six different settings of (λ̄∆, E) for the sinusoidal latent source,
pooled across the 50 repetitions. Each row and column cor-
respond to specific choices of the average spiking probability
λ̄∆ and mean confounding power EH , respectively. The ef-
fective number of spikes per filtering window neff := Neff λ̄∆
is chosen to be the same across all rows. We selected two
different values of E ∈ {0.01, 0.05}. The FDR is controlled
at the respective rates of α = 0.1 and 0.05 for E = 0.01 and
0.05. The respective small and large values of FARs and TDRs
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Fig. S10. A sample of the self-history coefficient of neuron (2) in the latent sinusoidal
common input scenario for a generic trial and time window. The error bars show 90%
confidence intervals. Coefficients that are significantly away from zero are highlighted
in black.

in the entries of Table S1 reveal the utility of our proposed
method in suppressing the effect of confounding latent causal
influences, while identifying the true G-causal links between
the two neurons with high sensitivity and specificity. In addi-
tion, they suggest that high-order self-history components are
capable of capturing both deterministic and stochastic latent
effects. It is worth mentioning that the six different settings
in Table S1 are chosen to span the low-spiking (λ̄∆ = 0.01)
and high-spiking (λ̄∆ = 0.1) regimes, both in presence of weak
(E = 0.01) and strong (E = 0.05) confounding effects.

In order to illustrate the aforementioned features of our
proposed method in detecting the salient effects, and charac-
terizing the corresponding test powers, we have shown one
realization from Table S1 in Fig. S9, corresponding to the
setting (λ̄∆, E) = (0.05, 0.01). The corresponding spike trains
of neurons (1) and (2) within a small window of 4 s are shown
in Fig. S9-B. Fig. S9-C shows the time-course of the esti-
mated non-centrality parameter ν̂(17→2)

k associated with the
false positive error (1 7→ 2) (blue trace), and ν̂(27→1)

k associated
with the true positive excitatory G-causal link (2 7→ 1) (red
trace). The black traces show the shifted deviance differences
Dk,β−M (d). Fig. S9-D shows the time-course of the estimated
J-statistics corresponding to the existing GC link (2 7→ 1) (red
trace) and the non-existing (1 7→ 2) link (blue). As expected,
the existing GC link is detected in a temporally-salient fash-
ion with high test strength, whereas the non-existing link is
overwhelmingly rejected, with low test strength otherwise. In
order to highlight the effect of capturing the latent input using
long self-history kernels, a sample of the self-history coeffi-
cients of neuron (2) in the sinusoidal latent input scenario are
shown in Fig. S10. The coefficients that are away from zero
at a significance level of 90% are highlighted in black. The
estimated sparse high-order self-history components are able
to capture the sinusoidal latent input based on the temporal
correlations in the spiking history of the neuron.

Scenario 2: Confounding Effects Due to Latent Stochastic
Common Input. For the second scenario, we consider a similar
setting as the previous one, but generate a high-order AR
process to model a general stochastic latent confounding ef-
fect. We use a block-sparse structure for the AR kernel with
parameters ωH = [0.7, 0, 0, 0,−0.05, 0, 0, 0, 0.02]′, where each
coefficient is associated with a non-overlapping spike counting
window of length WH = 25 bins. The AR coefficients are nor-
malized to result in a stable process. We selected an arbitrary
delay of 40 bins between the common input to the two neurons.
A cross-history window of length W (1,2) = 50, and a spike
counting window of length WH = 25, and M cross

H = 10 number
of cross-history components are selected for this setting. All

SI–12 | SI Appendix Sheikhattar et al.



HHH
HHλ̄∆
E 0.01 0.05

0.01 FAR 0.07± 0.18 0.05± 0.16
TDR 0.81± 0.29 1

0.05 FAR 0.10± 0.09 0.06± 0.07
TDR 0.92± 0.11 1

0.1 FAR 0.09± 0.06 0.06± 0.05
TDR 0.93± 0.05 1

Table S2. Performance metrics of AGC inference in presence of a
latent stochastic AR common input. Entries show mean +/- standard
deviation.

the other parameters used for AGC inference are chosen the
same as in the previous scenario.

In the same vein as Table S1, Table S2 exhibits the (FAR,
TDR) performance pairs for six different settings of (λ̄∆, E)
for the AR latent source. Similarly, the respective small and
large values of FARs and TDRs in the entries of Table S2
confirm the utility of our proposed method in suppressing the
effect of confounding latent causal influences.

Scenario 3: Confounding Effects due to Network Subsam-
pling. In the third scenario, we evaluate the performance of our
proposed AGC inference method in the context of the more
general confounding setting of network subsampling. This
scenario occurs when the observable neurons are subsampled
from a large neuronal network, and are prone to significant
confounding effects from the unobserved portion of the net-
work (Fig. S11). This scenario often happens in the analysis
of experimentally recorded data, in which the observable neu-
ronal ensemble consists of a small subset of a larger latent
network of neurons, due to the physical limitations of data
acquisition.

In order to test the robustness of our method to the problem
of network subsampling, we consider a network of Nc = 20
neurons, where the AGC inference is performed on a small
subnetwork of Ncs = 3 observable neurons. We repeat the
network subsampling simulation for R = 100 realizations,
where a random network configuration consisting of NLinks =
40 links randomly selected out of 380 possible directional
links is considered for each realization. To determine the
observable ensemble for AGC inference, we randomly select
a subset of Ncs neurons, such that there would be at least
one direct latent common input to a pair of causally-linked
observable neurons (e.g. neurons 1 and 2 in Fig. S11). For

3

1 2

Fig. S11. A schematic depiction of the network subsampling scenario. A small
observable subnetwork of three neurons (within the dashed circle) are sampled from
a large latent neuronal network. The observable subnetwork and the interactions
within are represented by blue, red and green colors, while the latent neurons and
interactions are shown in gray.

HHH
HHλ̄∆
E 0.01 0.03

0.01 FAR 0.01± 0.03 0.04± 0.07
TDR 0.74± 0.27 0.99± 0.01

0.05 FAR 0.01± 0.01 0.01± 0.02
TDR 0.71± 0.14 1

0.1 FAR 0.01± 0.01 0.01± 0.01
TDR 0.68± 0.11 1

Table S3. Performance metrics of AGC inference under network sub-
sampling. Entries show mean +/- standard deviation.

simulation, we consider a static setting for the GC links,
where the underlying parameters remain constant throughout
the entire duration. We use a block-sparse kernel of ωH =
[2,−1, 0, 0,−0.5, 0, 0, 0, 0,−0.5]′ with non-overlapping history
windows of length WH = 5 bins, to model the self- and cross-
history dependence among the causally interacting neurons.
The effective excitatory or inhibitory natures of the GC links
are determined by positive (ω(c̃,c) = +ωH) or negative polarity
(ω(c̃,c) = −ωH) of the kernel. We assume the self-history
dependence to be of excitatory nature for all neurons, and the
probability of excitatory or inhibitory cross-history dependence
is set to 50% for all links.

For each realization, we generate spike trains with a total
duration of T = 180 s with ∆ = 1 ms time bins. For estimation
of the GLM models, a total number ofM cross

H = 10 cross-history
and M self

H = 20 self-history components are considered with
a spike counting window of length 5 for parameterizing the
history components.

We repeat the network subsampling simulation and perform
the AGC inference for six different settings of (λ̄∆, E) pairs,
similar to the Tables S1 and S2, where two different values of
the mean GC link power E ∈ {0.01, 0.03} and three different
values of the average spiking probability λ̄∆ ∈ {0.01, 0.05, 0.1}
are selected. We use the same parameter settings for the
`1–PPF1 filter and the non-central χ2 filtering and smooth-
ing as in the previous two scenarios for the three different
λ̄∆ settings. The regularization parameter γ is tuned for
each observable neuron separately via two-fold even-odd cross-
validation. The FDR is controlled at a significance level of
α = 0.1.

As before, we evaluate the performance of AGC inference
in terms of two performance metrics: FAR and TDR within
the observable network across all realizations. Table S3 sum-
marizes the performance results for the six different settings.
The resulting metrics reveal the favorable performance of our
proposed AGC inference in suppressing the false positives due
to the latent confounding causal effects (low FAR rate of ∼ 1%,
on average), while maintaining high true detection rates (high
TDR rate of ∼ 70%, on average). Together with the results of
the two foregoing scenarios, these results corroborate our ear-
lier assessment of the AGC inference in maintaining a degree
of immunity to latent confounding effects.

10. Cross-history Coefficient Dynamics of the Top-
down and Bottom-up Links in the Ferret A1-PFC
Analysis

In this section, we examine the dynamics of the cross-history
coefficients involved in the extracted top-down and bottom-
up GC links in the ferret A1-PFC interaction during active
behavior (See Fig. 6). Recall that two of the major findings

Sheikhattar et al. SI Appendix | SI–13



0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

0

0.1

-0.1

0.2

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

1

2
3

4

5

9

8

6

7

1

2
3

4

5

9

8

6

7 1

2
3

4

5

9

8

6

7

Passive Active Passive

1

2
3

4

5

9

8

6

7

low
-la

t.
mid-

lat
.

hig
h-l

at.

low
-la

t.
mid-

lat
.

hig
h-l

at.

Time (s)

Low-latency
Mid-latency
High-latency

Low-latency
Mid-latency
High-latency

C
ro

ss
-h

is
to

ry
 c

oe
ffi

ci
en

ts

B

A

Inhibition

Excitation
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indicated by the dashed vertical lines. Each panel also depicts the inferred AGC network. Downward and upward vertical arrows in the middle panel highlight the significant
changes in the coefficients.

of this analysis were: 1) emergence of a bottom-up inhibitory
link from unit 4 in A1 to 8 in PFC, followed by 2) a top-down
excitatory link from unit 8 in PFC to 3 in A1. The latter effect
resulted in the disappearance of the frequency selectivity of
unit 3 which was originally sharply tuned to f = 8 kHz. In
addition, unit 4 which affects unit 8 is sharply tuned to the
target frequency of f = 2.5 kHz.

In order to gain insight into the nature of these influences,
we examine the time-course of the estimated underlying cross-
history coefficients. Fig. S12-A shows the time-course of
the cross-history coefficients ω̂(8,4)

k (red traces) and ω̂
(3,8)
k

(green traces) corresponding to the bottom-up and top-down
links, respectively. As mentioned in Section 5, the cross-
history coefficients consists of three components: a low-latency
component corresponding to a cross-history window of 20 ms,
a mid-latency component corresponding to a cross-history
window of 30 ms, and a high-latency component corresponding
to a cross-history window of 50 ms, which cover an overall
cross-history window of 100 ms. The low-, mid- and high-
latency components are distinguished by their line width in
Fig. S12-A, as indicated in the figure legend.

Consistent with our AGC inference results of Fig. 6, these
cross-history coefficients undergo major changes shortly af-
ter the onset of the active segment, some of which persist
throughout a considerable portion of the post-active passive
segment. Note that the observed delay of order ∼ 40 s in
adaptive parameter estimation is consistent with the choice of
effective window length W

1−β for W = 8 and β = 0.9998.
In order to dissect these dynamics more carefully, we have

plotted three snapshots of these coefficients together with their
90% confidence intervals in Fig. S12-B. The confidence inter-
vals are obtained based on the de-biasing procedure to account

for the bias of the adaptive `1-regularized ML estimates (1, 2).
Note that, unlike the conventional unbiased Gaussian case,
the confidence intervals are not evenly centered around the
estimates, which highlights the effect of bias correction. The
confidence intervals are not shown in Fig. S12-A for graphical
clarity. Each panel also shows the inferred AGC network from
Fig. 6, in which the units not involved in the top-down and
bottom-up GC links are grayed out for graphical simplicity.

The left panel shows that during the first passive task,
most of the cross-history coefficients are insignificant, which
is also reflected in the absence of any cross-region link in
the inferred AGC network. The middle panel reveals the
emergence of low-latency excitation together with strong mid-
and high-latency inhibition from unit 4 to 8 (indicated by
downward arrows), hence the overall inhibitory bottom-up
GC link. Similarly, the strong low- and mid-latency excitation
from unit 8 to 3 (indicated by upward arrows) results in the
top-down excitatory GC link. The latter excitation locks the
activity of unit 3 to that of unit 8, and as a result the high
frequency responsiveness of unit 3 is suppressed. Finally, the
right panel shows that the cross-history coefficients return to
the original setting of the pre-active condition.

As mentioned in the discussion following Fig. 6, the fluc-
tuations of the J-statistics (e.g., red trace in Fig. 6-B, panel
8) are due to the FDR correction procedure, which results
in rejecting the null hypotheses only corresponding to links
with strong enough coefficients at a given time step. There-
fore, the stochastic fluctuations of the cross-history coefficients
(e.g., red traces in Fig. S12-A) lead to the fluctuations of
the deviance statistics around the statistical thresholds set by
the FDR control procedure in our multiple hypothesis testing
framework.
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11. Assessing the Reliability of the AGC Inference Re-
sults from the Ferret A1-PFC Experiment via Surro-
gate Data Analysis

Given the lack of access to ground truth in the analysis of real
data, it is crucial to assess the reliability of our results using
carefully devised surrogate data. To this end, we generate two
sets of data using random shuffling and network subsampling
procedures, and thereby evaluate the consistency of our results.

Analysis of Surrogate Data from Random Shuffling. We first
assess the reliability of the inferred AGC networks in the
analysis of the ferret A1-PFC interaction through surrogate
data obtained by random shuffling. To this end, we randomly
shuffle the activity of single-units across different repetitions
(14 repetitions in total), such that each repetition of a single
unit would be randomly aligned with different repetitions of
other single units recorded at different experimental periods.
We then infer the AGC network patterns for each shuffled
composition of the repetitions. Our goal is to investigate
whether our AGC inference procedure detects any significant
GC pattern from the shuffled data.

We repeat the random shuffling procedure for R = 100
trials, and compute the J-statistics for different links across
the whole experiment. We test the reliability of the detected
significant links from the original unshuffled data by comparing
their J-statistics to those pooled from the randomly shuffled
surrogate data. For brevity, we focus on two of the most
notable GC links: the top-down (8 7→ 3) link from PCF to A1
and the bottom-up (4 7→ 8) link from A1 to PFC.

Fig. S13 shows the time course of the J-statistics for these
two representative GC links inferred from both the original
(red and green traces) and surrogate (gray traces) data. In each
panel, the black solid trace represents the mean J-statistics
across the R = 100 randomly shuffled repetitions, and the
colored hulls indicate the corresponding 95% confidence regions.
It can be observed that the mean J-statistics from the surrogate
data do not surpass the small value of 0.06, while the originally
detected J-statistics take large values in the range of ∈ (0.7, 1).
For instance, the value of J(87→3)

k at k = 300 s is significantly
higher than those from the surrogate data (One-tailed Z-test,
p < 0.0001).

Moreover, the J-statistics of the surrogate data do not
suggest any task-dependent behavior, as opposed to those from
the original data. To illustrate this more precisely, suppose
that the task-dependence behavior of the link (8 7→ 3) were
to be preserved in the surrogate data, i.e., this link would
persist for blocks comparable in length to that of the original
data. Given that this link is active with significant J-statistics
for ∼ 120s, then it would be expected that the average J-
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Fig. S14. Analysis of surrogate data from network subsampling in the ferret A1-PFC
experiment, where unit 8 (shown in gray) is excluded from the analysis. As expected,
the significant bottom-up and top-down links between A1 and PFC vanish.

statistics of this link for the surrogate data would be close
to 120/420 ≈ 0.28. However, the p-value of this observation
with respect to the distribution of the J-statistics over the
entire duration of the surrogate data is given by p = 0.0007
(One-tailed Z-test).

This analysis verifies that the highly significant AGC links
inferred from the data vanish under random shuffling of the
repetitions, and are therefore highly specific to the correct
temporal ordering of the repetitions in the experiment.
Analysis of Surrogate Data from Network Subsampling. Next,
we assess the reliability of the inferred AGC interactions in the
analysis of the ferret A1-PFC interaction through surrogate
data obtained by network subsampling. To this end, we inves-
tigate the robustness of the inferred AGC patterns and their
time course against excluding a single or a group of neurons
from the observed ensemble. For brevity, we focus on the two
bottom-up and top-down AGC links and assess their reliability
under three different network subsampling scenarios:
Scenario 1. We first exclude the single-unit 8, the only unit
in PFC with a significant GC link to A1, from the analysis.
We explore the presence of any possible new inter-region GC
interactions, and expect that the top-down and bottom-up GC
links between PFC and A1 would vanish due to the exclusion
of unit 8. Fig. S14 shows the resulting AGC network maps
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Fig. S13. Analysis of surrogate data from random shuffling of the repetitions in the ferret A1-PFC experiment. The J-statistics of the (4 7→ 8) and (8 7→ 3) links inferred from
the original data are shown in red and green traces, respectively. The average J-statistics obtained from the randomly shuffled ensemble are shown by black traces, with 95%
confidence regions shown by the gray hulls. The J-statistics inferred from the original data show a significant statistical separation from those obtain from the surrogate data.
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Fig. S15. Analysis of surrogate data from network subsampling in the ferret A1-PFC
experiment, where unit 4 (shown in gray) is excluded from the analysis. As expected,
the bottom-up link from A1 to PFC vanishes.

and the time courses of the corresponding J-statistics. Indeed,
the significant bottom-up and top-down interactions between
A1 and PFC vanish, while the rest of the networks within A1
and PFC remain unchanged. The only notable exception is a
small transient link from 2 to 7 for t ∈ [135, 140]s.
Scenario 2. Next, we exclude the single-unit 4 in A1, with a
bottom-up link to PFC, and test the robustness of our method
in terms of the new detected GC links, and expect that no
new bottom-up links from A1 to PFC are discovered. Fig. S15
shows the resulting AGC network maps and the time courses
of the corresponding J-statistics. As expected, the bottom-up
link from unit 4 to 8 vanishes, while the rest of the AGC
interactions, notably the top-down link from 8 to 3, remain
unchanged.
Scenario 3. Finally, we consider a highly undersampled case
where we restrict the observable set to the three units {3, 4, 8}

1

2

5

9 6

7
A

A1

PFC

A1

PFC

A1

PFC
Passive PassiveActive

3
4

8

1

2

5

9 6

7

3
4

8

1

2
3

4

5

9

8

6

7

B

8

3

240 420
Time (s)

0 120

4

1

0

1

0

1

0

1

2

5

9 6

7

Source

Ta
rg

et

Fig. S16. Analysis of surrogate data from network subsampling in the ferret A1-PFC
experiment, where only units 3, 4 and 8 are included in the analysis (all other units
shown in gray). As expected, the significant bottom-up and top-down links and their
respective time courses are preserved.

which are involved in the top-down and bottom-up interactions.
We expect that the same bottom-up and top-down patterns
between these units are discovered in the absence of all the
other 6 neurons which did not exhibit any inter-region GC
links. Fig. S16 shows the resulting AGC network maps and
the time courses of the corresponding J-statistics. Indeed, the
expected pattern of GC interaction between these three units
is preserved, with the exception of a weak excitatory GC link
from 3 to 4 with low statistical significance.

These results show that the inferred AGC maps and the
times courses of the corresponding J-statistics, and notably
those pertaining to the bottom-up and top-down network
structure, are robust to network subsampling. Hence, they
are specific to the interactions between the single-units under
study in this experiment, and there is no evidence to believe
that they are the byproduct of this particular observable
subsampled network of 9 neurons.

12. Supporting Example: Ferret A1-PFC Interaction

In this section, we present the application of our proposed
AGC inference on another instance of spike recordings from
the same set of experiments on ferrets as described in the
Applications section of the main manuscript, where the animal
is performing a pure tone detection task (25).

Fig. S17 shows the results of our AGC inference for a
selected experiment consisting of four main blocks: pre-active,
active, and two post-active conditions. Each block is composed
of 5 repetitions. Within each repetition, a complete set of 30
randomly permuted 1 sec-long TORCs was presented along
with a randomized repetition of the target tone at f = 8 kHz.
A total number of C = 8 single-units are detected through
spike sorting (4 units in each region), whose spike trains are
shown in Fig. S17-A. For graphical convenience, we only
plotted the spike trains within the last repetition of each block.
Fig. S17 shares the same structural format as Fig. 6. Fig.
S17-B shows the time-course of the changes in the J-statistics
associated with detected GC links, where each row represents
the corresponding significant GC influences from all units to
a target unit, which passed the BY FDR control procedure.
Each single-unit along with its significant outgoing GC link is
color-coded uniquely as shown on the right. Fig. S17-C depicts
the detected changes in the pattern of G-causal links among
the 8 single-units during three main blocks of the experiment.
Three snapshots of the STRFs of all the four A1 units at
the endpoints of the pre-active, active and post-active blocks
are shown in Fig. S17-D, along with the target frequency
f = 8 kHz indicated by a red arrow.

The total duration of T = 600 s is binned by ∆ = 1 ms,
and segmented by windows of lengthW = 25 bins. We applied
the `1-PPF1 adaptive filter to the spiking data of all single-
units, where we selected a forgetting factor of β = 0.9995,
a step size ς = 1−β

5W , L = 20 number of iterations per step,
and regularization parameters tuned for each unit separately
via two-fold even-odd cross validation. We consider the same
dynamic GLM model to capture the spiking statistics as in the
previous analysis, with the modulation coefficients accounting
for both the ensemble spike history and stimuli. For the
stimulus modulation, we consider a vectorized STRF array
of size I × J , with I = 50 time lags and J = 50 frequency
bins in logarithmic scale represented by a Gaussian time-
frequency dictionary (1), capturing the effect of the reference
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Fig. S17. Dynamic inference of GC links among single-units in the ferret PFC and A1 during a series of auditory tasks. (A) Sample of spike train data from eight cortical
neurons (first 4 from A1 and second 4 from PFC) in passive listening and active task conditions, (B) inferred time-course of changes for the significant GC links through
J-statistics, (C) inferred AGC maps during pre-task passive, active task, and post-task passive conditions. The excitatory and inhibitory nature of each GC link is represented by
solid and hollow circles, respectively, D) snapshots of the STRF of A1 units at the endpoints of the three blocks of the experiment. Note the selective reduction in inhibition at
8 kHz (target tone frequency) in A1 cell 1 during behavior (downward arrow, middle panel). Adapted with permission from ref. 25.

acoustic stimuli spectrogram. As for the ensemble history
dependence, we select M cross

H = 3 cross-history and M self
H =

21 self-history components associated with respective non-
overlapping spike counting windows of W cross

H = [20, 30, 50]
and W self

H = [20, 30, 50, . . . , 50] bins. The FDR is controlled at
the rate α = 0.1, testing for |C| = 56 possible GC links among
the 8 single-units.

Fig. S17 reveals significant task-relevant changes in the
pattern of G-causal interactions among the units within or
across the PFC and A1 regions. The most striking observation
is the identification of 4 bottom-up and 4 top-down GC links
during active attentive behavior, which verifies the functional
interaction (in the sense of Granger) between the higher-level
PFC and the lower-level cortical region involved in active
listening. The most significant and persistent bottom-up GC
links, e.g. (1 7→ 5), belong to the A1 unit 1, whose STRF
characteristics show a frequency-selective suppression around
the target frequency. As can be observed in Fig. S17-D, this
A1 unit exhibits significant task-related plasticity (26), as its
suppressive response to the target frequency vanishes entirely
during the active attentive behavior (downward arrow, mid.
panel, Fig. S17-D) while it G-causally influences the higher
level PFC units in an inhibitory fashion. Interestingly, unit 1
retrieves its original pre-active STRF after the active task is
over. In addition to the detected inter-region GC links, several
instances of task-relevant changes in GC links within A1 (e.g.,
3 7→ 2; see upward arrows, mid. panel) or within PFC (e.g.,
5 7→ 6) occur during active behavior. In addition, the pattern
of GC links within PFC changes dramatically during active
attentive behavior as compared to the passive conditions.

13. Experimental Procedures
Surgery. Two hours before the mouse surgery, 0.1 cc dexam-
ethasone (2 mg/ml, VetOne) was injected subcutaneously to
reduce brain swelling during craniotomy. Anesthesia is in-
duced with 4% isoflurane (Fluriso, VetOne) with a calibrated
vaporizer (Matrx VIP 3000). During surgery, isoflurane level

was reduced to and maintained at a level of 1.5%–2%. Body
temperature of the animal is maintained at 36.0 degrees Cel-
sius during surgery. Hair on top of head of the animal was
removed using Hair Remover Face Cream (Nair), after which
Betadine (Purdue Products) and 70% ethanol was applied
sequentially 3 times to the surface of the skin before removing
the skin. Soft tissues and muscles were removed to expose
the skull. Then a custom designed 3D printed stainless head-
plate was mounted over left auditory cortex and secured with
C&B-Metabond (Parkell). A craniotomy with a diameter of
around 3.5 mm was then performed over left auditory cortex.
A three layered cover slip was used as cranial window, which
is made by gluing (NOA71, Norland Products) 2 pieces of
3 mm coverslips (64-0720 (CS-3R), Warner Instruments) with
a 5 mm coverslip (64–0700 (CS-5R), Warner Instruments).
Cranial window was quickly dabbed in kwik-sil (World Preci-
sion Instruments) before mounted 3 mm coverslips facing down
onto the brain. After kwik-sil cured, Metabond was applied to
secure the position of the cranial window. Synthetic Black Iron
Oxide (Alpha Chemicals) was then applied to the hardened
Metabond surface. 0.05 cc Cefazolin (1 gram/vial, West Ward
Pharmaceuticals) was injected subcutaneously when entire
procedure was finished. After the surgery the animal was
kept warm under heat light for 30 minutes for recovery before
returning to home cage. Medicated water (Sulfamethoxazole
and Trimethoprim Oral Suspension, USP 200 mg/40 mg per
5 ml, Aurobindo Pharms USA; 6 ml solution diluted in 100 ml
water) substitute normal drinking water for 7 days before any
imaging was performed.

Awake two-photon imaging. Spontaneous activity data of pop-
ulation of layer 2/3 auditory cortex (A1) neurons is collected
from adult (3-month old) Thy1-GCaMP6s female mouse im-
planted with chronic window following the above procedure,
using two-photon imaging. Acquisition is performed using a
two-photon microscope (Thorlabs Bscope 2) equipped with
a Vision 2 Ti:Sapphire laser (Coherent), equipped with a
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GaAsP photo detector module (Hamamatsu) and resonant
scanners enabling faster high-resoluation scanning at 30–60 Hz
per frame. The excitation wavelength was 920 nm. Regions
(∼ 300 µm2) within A1 were scanned at 30 Hz through a 20x,
0.95 NA water-immersion objective (Olympus). During imag-
ing the animal was head-fixed and awake. The microscope was
rotated 45 degrees and placed over the left A1 where window
was placed. An average image of field of view was generated
by choosing a time window where minimum movement of the
brain was observed and used as reference image for motion
correction using TurboReg plugin in ImageJ. GCaMP6s posi-
tive cells are selected manually by placing a ring like ROI over
each identified cell. Neuropil masks were generated by placing
a 20 µm radius circular region over each cell yet excluding all
cell soma regions. Traces of soma and neuropil were generated
by averaging image intensity within respective masks at each
time point. A ratio of 0.7 was used to correct for neuropil con-
tamination. All procedures were approved by the University
of Maryland Institutional Animal Care and Use Committee.
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