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Strains and Growth Conditions. P. aeruginosa PA14 WT and its isogenic strains carrying mutations in the ΔpilA (1), ΔpilT, ΔpilJ (2), and
ΔpilU genes were used in this study. For cAMP reporter experiments, WT and ΔpilU with the YFP/CFP reporter/control plasmid were
used (3). Multigenerational tracking is at present not technologically feasible using a FRET sensor or a chromosomally tagged re-
porter. Details about strains and their construction are in SI Materials and Methods, Construction of ΔpilT and ΔpilU Mutants and
Construction of cAMP Reporter Strains. Bacteria were plated onto LB agar plates and incubated at 37 °C overnight. The plates were
then sealed with Parafilm and stored in a refrigerator at 4 °C. Individual colonies were swabbed from the plate and grown overnight to
an OD600 nm ∼1.5 (∼20 h) in an incubator at 37 °C shaking at 220 rpm. Overnight growth medium contained M63, which contained (per
liter of deionized water) 3 g potassium phosphate monobasic, 7 g potassium phosphate dibasic, and 2 g ammonium sulfate, supple-
mented with 1 mM MgSO4, 0.2% glucose, and 0.5% CAA (Sigma-Aldrich). For mutants with gentamicin-resistance or carbenicillin-
resistance plasmids, LB agar plates and overnight media were also supplemented with 20 and 25 μg/mL gentamicin or 300 and 250 μg/mL
carbenicillin (Sigma-Aldrich), respectively. The overnight culture was regrown under the same conditions as the overnight growth
(without antibiotics) to an OD600 nm ∼0.4 at dilutions of 1:50, 1:100, and 1:200. Cultures were then diluted to an OD600 nm ∼0.01
(∼0.1 for initial cAMP reporter intensity imaging) in flow-cell medium, which consisted of M63 supplemented with 1 mM MgSO4,
0.05% glucose, and 0.125% CAA. The diluted culture was used for injection into the flow chamber.

Single-Channel Flow-Cell Experiments. The flow cell was purchased from the Department of Systems Biology, Technical University of
Denmark, and prepared as previously described (4, 5). The prepared flow cell was connected to a syringe through a 0.22-μm filter (Fisher
Scientific) using Silastic silicon tubing of inner diameter 1.57 mm and outer diameter 3.18 mm (Dow Corning) and a natural Kynar
PVDF female Luer to 1.6-mm barb adapter (Value Plastics DBA Nordson Medical). The assembled system was flushed with 3% H2O2
at a volumetric flow rate of 20 mL/h using a syringe pump (KD Scientific or Harvard Apparatus) and allowed to sit for a total of 4 h
including flushing time. The sterilized system was then flushed with autoclaved, deionized water at a flow rate of 5 mL/h using a syringe
pump and allowed to sit overnight. Before inoculation of the bacteria into the flow cell, the flow-cell system was flushed with flow-cell
medium at 30 mL/h. The diluted bacteria culture was injected into the flow cell and allowed to incubate for 10 min on the heating stage
at 30 °C. Then, the flow cell was flushed with flow-cell medium at 30 mL/h to wash away cells that had not adhered to the surface. For
these experiments, data were collected using a flow rate of 3 mL/h and total flow time of 10∼40 h.
In all flow-cell experiments, no new cells are introduced into the system after the initial inoculation. However, not all cells that do not

attach to the surface are flushed out of the system by flow. Despite the flow, some cells will remain in the liquid throughout the
experiment. Cells that “replenish” the surface by attaching to it come from the liquid in the flow cell. These cells from the liquid are
either cells that have never attached to the surface (surface-naive) or are cells that have previously attached to and then detached from
the surface (surface-sentient).

Tandem-Channel Flow-Cell Experiments. To optimize for flow-cell design and data acquisition between flow-cell channels, the channels
were joined in series by connecting the outlet tubing of one channel (FC1) and the inlet tubing of a second channel (FC2) using two T
junctions and additional tubing cut as short as possible. The T junctions and tubing were introduced as close as possible to the inlet/outlet
to minimize nonchannel volume and with enough spacing to allow for clamping of the tubing. Each channel of the combined flow cell was
then sterilized as described for a single channel experiment. Before inoculation, FC1 was filled with flow-cell medium, FC2 had its liquid
drained out, and the channel-to-channel connection tubing was clamped next to each T junction to prevent bacteria growth and
contamination in FC2 while imaging FC1. FC1 was then inoculated and imaged following the single channel protocol. After the bacteria
reached the required surface cell density at time T from initial inoculation, the harvesting procedure was performed. The outlet tubing of
FC1 was flushed, FC2 was filled with flow-cell medium, the connection tubing was opened, and bacteria in FC1 were harvested into
FC2 via the connection tubing and flow at 10 mL/h. Cells that were harvested into the liquid of FC2 came from the liquid of FC1.
However, during the harvesting stage, some cells on the surface of FC1 could detach and join the liquid subpopulation of cells and
subsequently get harvested into FC2. After a harvesting period of 10 min, the connection tubing was once again clamped to seal off
FC1 and the connection tubing. FC2 was then imaged following the single channel protocol. This protocol can be extended tom number
of flow-cell channels in series, treating channel m – 1 as FC1 and channel m as FC2.

Memory-Loss Flow-Cell Experiments.For these experiments, we captured cells exiting from FC1, simulated nonsurface conditions using
the planktonic culturing conditions used for overnight growth before inoculation into FC1, then assessed in a new FC2 the surface
colonization behavior of these bacteria transitioned back to planktonic growth. Experiments here were performed as described for a
single-channel experiment for a period of T = 30∼40 h, after which the recording was ended and the flow cell was dismounted from
the microscope. Approximately one milliliter of flow-cell liquid was extracted, 250 μL was resuspended in 1.75 mL of overnight
medium, and then this culture was incubated with previous overnight growth conditions. This overnight culture was grown and
sampled at various time points tr. Each sample was prepared for flow-cell imaging experiments in a fresh flow-cell channel as
described for a single-channel experiment (including regrowth, dilution, inoculation, and imaging).

Data Acquisition. Images were taken using an EMCCD camera (Andor iXon) with IQ software (Andor) on an Olympus IX81 microscope,
which was equipped with a Zero Drift Correction autofocus system. Bright-field images were taken every 3 s (30 ms exposure time). For
cAMP reporter experiments, fluorescence images were also taken every 15 min (100-ms or 150-ms exposure time) using a Lambda LS
(Sutter Instrument) xenon arc lamp; this time interval was optimized for longitudinal studies lasting ∼2 d. cAMP reporter experiments
used YFP and either DAPI or CFP filters. Acquisition for a single flow-cell channel continued for a total recording time of about
10∼40 h, which resulted in 12,000∼48,000 bright-field images and 40∼160 fluorescence images. The image size was 67 × 67 μm2
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(1,024 × 1,024 pixels). For imaging cAMP reporter intensities immediately after inoculation of FC1, a slightly modified imaging protocol was
used where fluorescence images were taken every 30 s for 1∼5 h (bright-field images were still taken every 3 s).

cAMP-Dependent lacP1-lacZ Reporter Activity Assays. The cAMP-dependent lacP1-lacZ reporter plasmid and the corresponding control
plasmid were provided by M. C. Wolfgang, University of North Carolina at Chapel Hill, Chapel Hill, NC and described previously (6).
PA14 strains were transformed with pR-P1-lacZ (cAMP-dependent reporter) or pR-lacZ (vector control) via electroporation.
Transformants were selected on gentamicin. To perform the reporter activity assay, cultures were grown overnight in LB with 20 μg/mL
gentamicin, diluted 1:100 in M8 broth supplemented with 1 mMMgSO4, 0.2% glucose, and 0.5% CAA, and grown for 3 h at 37 °C with
shaking. Cultures were then spread onto M8 medium-based 1% agar plates. After 5 h, cells were harvested from plates in 1× PBS.
β-Galactosidase assays were performed as previously described (7). Significance was determined by one-way ANOVA followed by
Dunnett’s posttest comparison for differences relative to WT.

Multigenerational Cell-Tracking and Image Analysis. The image analysis algorithms and software are adapted from methods previously
described (5, 8–12) and written in MATLAB R2015a (MathWorks). First, all raw bright-field images were processed using a sequence
of background correction, intensity normalization, Gaussian and edge filters, and Otsu thresholding to generate binary images, which
contained main features of bacteria. Then, a tracking routine (with a sequence of algorithms using maximum bacteria feature overlap
and minimum displacement between consecutive frames and history-based segmentation of neighboring cells) was used to link cells in
different frames in time. Cells that are related to one another by division are likewise incorporated in a “tree-like” data structure so
that it is possible to generate a bacterial “family tree,” where each node in the tree is a single bacterium identity. To minimize errors
generated in both recognizing and tracking cells, we manually validated each tracked family (minimum of three families per strain) to
make sure that the final assignment of bacterial lineage in the family tree was correct [SI Materials and Methods, Manual Data
Validation Using a Custom Graphical User Interface (GUI)]. Validated families were chosen by randomly sampling bacteria in an
image of the dataset, tracking the families in which they appear, and repeating this for multiple images. An example video showing
the final validated tracking data are shown in Movie S1. A typical dataset contains 18,000∼24,000 frames and up to 1 million
bacteria images.
After the error correction stage, fluorescence information was integrated into the family tree. For cAMP reporter experiments,

reporter intensity values were extracted from fluorescence images using the following sequence of algorithms. For each fluorescence
image (reporter and control), we used the corresponding segmented bright-field image as amask to extract the intensity values. In each of
the fluorescence images that a given identity was present in, the mean intensity of all of the pixels comprising the bacterium was
calculated for both fluorescence images (reporter and control) and then divided, such that the normalized reporter intensity was reported
as a fold change of the control. To ensure that changes in the normalized reporter intensities did not result from control intensity
fluctuations, we repeated the above algorithm, except we divided the reporter intensities by the mean background intensity level
extracted using the inverse mask of the segmented bright-field image.
The final bacterial family trees were a database which contained a complete history for each cell, including motility, cell division,

lineage, and normalized cAMP reporter intensities IcAMP (if the strain had the cAMP reporter plasmid). These data were plotted using
a family tree plot, where the lengths of vertical lines on the plots were proportional to time spent in each generation. Vertical lines that
ended with downward arrows were detachment events, lines that intersected with a horizontal line were division events, and lines that
ended without a marker were out-of-bound events where we lost track of the bacterium (moving out of the field of view or reaching the
end of the recording, represented as moving outside the XYT limits of the dataset boundaries). Horizontal lines were arbitrarily spaced
to show all of the descendants. White, outlined, upside-down triangles indicated potential division events that were missed because the
bacterium was completely vertical while dividing, with the distal daughter cell out of the focal plane. Metrics were summarized as a
single value per identity and then plotted as the colors of the vertical lines in the family tree plots. To quantitatively compare family
trees, we used the proportion of “n-legged” division branching per family, where n = 2, 1, or 0 is the number of nondetached daughter
cells postdivision, and the tree asymmetry value, where 0 is a perfectly symmetric tree and 1 is a perfectly asymmetric tree (SI Materials
and Methods, Metrics for Quantitative Comparisons of Family Trees). MATLAB functions from the base installation of MATLAB
R2015a, Statistics and Machine Learning Toolbox, Curve Fitting Toolbox, Image Processing Toolbox, Signal Processing Toolbox, and
custom MATLAB functions were used for all analyses.

Manual Data Validation Using a Custom Graphical User Interface (GUI).All segmentation and cell-tracking algorithms have compromises that
can lead to potential tracking errors that can propagate in the family trees. To ensure accuracy of our family tree tracking results, we
validate all of our tracked results manually using a custom-built GUI that propagates corrections. Common corrections, using a custom
GUI, were grouped into four categories: swapped identities, loss of identity, false division events, and inaccurately segmented bacterial
regions.
First, switching of identities between two bacteria occurred when two overlapping bacteria regions quickly changed positions such that

the tracking algorithm was unable to detect this event due to the image acquisition rate of one image every 3 s. To correct this error, the
identities of both bacteria after the error were assigned to new families to avoid having multiple cells with the same identity. Then, the
region of one of the bacteria before the error was selected and assigned to the proper region following the error. The same was done for
the other bacterium.
Second, loss of identity of individual bacteria occurred when the center of mass of a bacteriummoved in and out of the field of view or

in and out of focus. To correct this error, the region of the bacterium before the error was selected and assigned to the first frame after the
error in which either the bacterium’s center of mass could be detected. To ensure that the correct bacterium was being tracked, the
bright-field images were used to visualize the boundaries of the bacteria.
Third, false division events occurred due to several reasons. Standing up of the bacterium during a division event prevented the

tracking algorithm from properly detecting the division due to the division’s occurring out of the focal plane. To correct this error, the
first frame in which the two daughter cells could be distinguished as two distinct regions was assigned as the frame at which the division
took place. A second cause of false division events involved the moving of one cell over another cell, resulting in the detection of two
regions in the bottom cell, which the tracking algorithm incorrectly assigned as a division event. To correct this error, the region of the
falsely divided cell before the false division was selected. This region was then assigned to the identities of the two daughter cells for all
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frames in which the original cell was present as two daughter cells until the two original cells were not overlapping, at which point the
tracking algorithm combined the two daughter cells into one cell.
Fourth, inaccurate segmentation of a bacterium resulted in an incorrect region encompassing the bacterium. This error usually arose

in the frames following one of the previous errors. To correct this error, the region of the bacterium in the first frame in which the error
occurred was selected and a polygon was drawn around the incorrectly segmented bacterium to correctly define the region encompassing
the bacterium. This process was repeated for every subsequent frame in which the same error occurred.

Metrics for Quantitative Comparisons of Family Trees. To quantitatively compare family trees, we used several metrics. Built-in MATLAB
statistical test functions from the Statistics and Machine Learning Toolbox for one-way ANOVA, Kruskal–Wallis test, and χ2 test and
multiple comparison tests using Tukey’s honest significant difference criterion (with a P value less than 0.05 as the significance value) and the
Benjamini and Yekutieli (13) procedure for controlling the false discovery rate of a family of hypothesis tests were used to compare strains
with these metrics.
One metric is the proportion of “n-legged” division branching per family, where n = 2, 1, or 0 is the number of nondetached daughter

cells postdivision. Division events that result in any daughter cell’s moving out of the field of view are excluded because it is not known
whether they detach or not. To avoid effects due to each family tree being different in size and number of bacteria, we aggregate
the first six generations of three representative family trees for each strain. Another method of calculating and comparing this
metric is to count the proportion of division-branching events observed for all families of a given strain and then to compare
these proportions using the χ2 test.
Another metric is tree asymmetry, adapted from previous work that defined and used this metric for studying neuronal branching

patterns (14). To define tree asymmetry, several terms and parameters regarding our family trees must first be defined. Family trees are
plotted on a vertical time axis starting from the top, and the horizontal axis is arbitrary. Each vertical line (parallel to the time axis), or
branch, in each family tree represents a single bacterium, and each horizontal line (perpendicular to the time axis) represents a single
division event. There are n terminal branches, which represent bacteria where we do not observe a division on the surface and are
represented in the tree plot as vertical lines that do not end by intersecting a horizontal line. There are n − 1 subtrees, which represent
bacteria that divide and all their descendants (not just immediate ones) and are represented in the tree plot as vertical lines that end by
intersecting a horizontal line. The topmost branch in any subtree (the entire tree is also one) is called the founder branch. The number
of subtrees is also equal to the number of division events (horizontal lines). The tree asymmetry calculation involves several steps and
operates on all possible subtrees. The first step is to calculate branch asymmetry for the founder branch of every subtree:

Branch Asymmetry :AbðL,RÞ= jL−Rj
L+R− 2

;Abð1,1Þ= 0.

The number of terminal branches to the left and right of the founder branch are L and R, respectively. The second step is to calculate
subtree asymmetry using all of the branch asymmetries that are in the subtree:

Subtree Asymmetry :As =
1

ns − 1

Xns−1
b=1

AbðL,RÞ.

The total number of terminal branches in a subtree is ns. The tree asymmetry value λ is then the subtree asymmetry value corresponding
to the entire tree. To account for our experimental boundary conditions (finite temporal measurement period and finite spatial frame
size), we include the concept of “true” and “pseudo” terminal branches. Cells that detach from the surface are considered true
terminal branches and use the previously defined definition of terminal branch. Cells that extend outside the spatial or temporal
boundaries of a dataset (moving out of the field of view or reaching the end of the recording) are considered pseudo terminal branches
because there is an uncertainty in the branching pattern. We account for this uncertainty by making the least intrusive assumption that
these branches continue to stay on the surface and divide for the next generation, and then count these daughter cells as true terminal
branches.
To look at values of λ for early generations, we introduce a notation λG, where G is the number of generations used to calculate the

parameter. If G is less than the total number of generations for a family, then that family is essentially truncated to only include
generations 1 − G (the first G generations). In the main text, λ6 was calculated using the exact same family data used to calculate the
metric in Fig. 3C.
In principle, λ is scale invariant, since it averages across all subtrees and ranges between 0 (perfectly symmetric) and 1 (perfectly

asymmetric). In practice, however, for finite-size and finite-time trees, λ can saturate at values that are not the theoretical limits of
0 and 1. In addition, in our datasets, there can be a big spread in λ even for perfectly symmetric and asymmetric trees. This is due to the
spread in division times, which causes desyncing of later generations, combined with the temporal truncation of the tree due to the
experimental boundary conditions. They cause different subtrees in a family tree to have different numbers of generations, thus a
spread in the calculated λ, since the family tree size (number of total generations) can influence the actual range of λ.
We introduced a correction to λ to account for these complications. The λ values were first plotted against the number of total

tracked generations. Family tree simulations for perfectly symmetric and asymmetric trees were also plotted on this diagram. The
range of values for each simulation was then obtained by fitting a boundary shape around all of the points using the function
“boundary.m” in MATLAB R2015a. Due to complications in simulating large symmetric trees, the upper boundary of the simulated
symmetric tree values for five or more generations were set to the value obtained for five generations. The lower boundary of the
simulated asymmetric tree values and the upper boundary of the simulated symmetric tree values formed the experimental upper and
lower limits, respectively, of λ in a generation-dependent manner. Values of λ obtained from experimental data were then rescaled to
be a fraction of this experimental range, and values above this range were set to 1. As a result, this corrected value, called “generation-
corrected tree asymmetry” (λGC), still had the same limits as the original λ. Note that the experimental range overlapped for three or
fewer generations, so the corrected value requires a minimum of four generations. The original values for the experimental data are
shown in Fig. 3C, while the corrected tree asymmetry vs. number of generations plot is shown in Fig. S5.
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Family Tree Simulations.Family trees were simulated using experimental input data, which were the probabilities of staying and dividing or
detaching, the division time distribution, the distributions of founder cell and detached cell lifetimes, and the temporal boundaries of the
dataset. After every division, daughter cells A and B had probabilities PA and PB of staying and dividing and probabilities 1 − PA and 1 −
PB of detaching, respectively. These probabilities were held constant when simulating a single family to represent a “memoryless” state
where the probabilities are time-independent. Division times were randomly generated from a Gaussian distribution fitted to the
experimental data. The lifetimes of the founder cell and detached cells were randomly generated from a uniform distribution
between 1 and the randomly generated division time, since we observed that these cells could land on and detach from the surface
during any part of their growth cycle. To simulate the temporal boundaries of the dataset, total tracking times were randomly
generated from a uniform distribution between the range of actual number of tracked frames in the experimental data. Any bacteria
that had not divided or detached by the end of the simulation were marked the same as experimental tracking data. Perfectly
symmetric family trees were simulated by setting PA and PB to 1, and perfectly asymmetric trees were simulated by setting PA to
1 and PB to 0. For perfectly symmetric family trees, the number of total divisions simulated increased exponentially as the number of
generations increased, so the total simulation time and number of iterations were much smaller than that for perfectly asymmetric
trees.

TFP Activity Metric. TFP-driven motility is known as “twitching” motility because of its characteristic motion: directional movement
punctuated by sudden jittery changes of direction. Based on our previous work on quantitatively characterizing twitching activity
in WT and flagellum deletion mutants, we designed a multimetric algorithm to recognize TFP activity automatically. These
previous studies include work on the “motility signature” of TFP-driven motion (10) and flagellum-driven motion (9, 15, 16) for
P. aeruginosa (WT and flagellum knockout mutants).
High-speed microscopy shows that TFP-driven twitching motility in P. aeruginosa consists mostly of translations for variable temporal

durations, alternating with combined translation-rotation “pulses” that are much shorter in temporal duration (10, 17). This behavior
contrasts with flagellum-generated motility based on “spinning” (9, 15, 16). Based on the temporal predominance of surface trans-
lations along the cell body axis in TFP-driven motion, combined with the fact that these translations generally produce trajectories that
have superdiffusive mean squared displacements (MSDs), the multiparameter metric for TFP activity is defined as follows and
summarized visually in Fig. S6. A bacterium has TFP activity during a given time point when it is “not spinning” and has nonzero
displacement over this w frame moving window every w/10 frames. A value of 100 was chosen for w (values for w ranging from 10 to
200 were tested), which corresponds to a 5-min moving window every 30 s. A cell that is “not spinning” is defined as having the
following characteristics during the w frame window: an MSD slope of greater than or equal to 0.9, having the maximum two-
point distance of its trajectory (proportional to the radius of gyration) being greater than or equal to 50% of its maximum cell
body length, and having the circularity of its visit map, defined as 4π(Area)/(Perimeter), less than 0.55. Displacement was defined
using the visit map of the cell body [the cumulative trace of the body on the surface over time (5)] during the w frame window,
finding the maximum two-point distance of the visit map, and then subtracting the maximum cell body length during this w frame
window. The resulting metric output is a binary signal (presence or absence of TFP activity at each time point), which can be
quantified by the proportion of events within a given time frame. Cells with high TFP activity have elongated visit maps and
nonspinning behavior with nonzero displacement.
To examine the robustness of these biometric recognition algorithms for TFP activity, the analysis was repeated with an alternate

definition of spinning and nonspinning behavior based on bacteria centroid and pole tracking instead of bacterial visit maps. This
alternate definition was similar to the ones used in our previous studies (9, 10, 15). This coordinate algorithm compared the value of three
parameters over time: the displacement of each pole and centroid between consecutive frames with a 21-framemoving window. Spinning
and nonspinning behavior was classified based on whether the displacement of these three values was above or below an empirically set
threshold, respectively. Both analyses converged on the same results, but we chose the visit map algorithm, instead of the coordinate
algorithm (SI Materials and Methods, Comparison of Visit Map vs. Coordinate Algorithms for TFP Activity Metrics).

Comparison of Visit Map vs. Coordinate Algorithms for TFP Activity Metrics.Our previous studies on the “motility signature” of TFP-driven
motion (10) and flagellum-driven motion (9, 15, 16) for P. aeruginosa on surfaces mainly utilized high-speed recording at sampling
rates around 10∼200 Hz for 5∼45 min.
To perform long-term tracking (10∼40 h), which is necessary for generation-dependent studies, lower sampling rates (<1 Hz) must be

used because of hardware and software constraints related to data acquisition and analysis. For example, since each image takes up a set
amount of storage space and the total space is finite, we must lower the sampling rate to image for a longer time without running out of
space. Having a lower sampling rate introduces several complications in the tracking algorithms. One is the stroboscopic effect when
detecting spinning behavior that occurs at frequencies higher than the sampling rate. The coordinate algorithm will fail to capture the
spinning behavior, since the stroboscopic effect will produce a jumbled collection of points that can be analyzed only if the exact frequency
of the spinning behavior is known. However, a spinning bacterium’s visit map will look circular (or a sector of a circle) if the w frame
window is large enough (Fig. S6), unless it is spinning at an exact multiple of the sampling rate for the entire w frame window. Detecting
and filtering out predominantly spinning behavior is important for characterizing TFP activity.
A lower sampling rate also results in a loss of data density, defined as all of the input spatial and temporal information that is entered

into the tracking algorithm. Lower data densities are generally correlated with higher uncertainties in the tracking and are thus un-
desirable. The visit map algorithm retains more spatial information of a bacterium compared with the coordinate algorithm, which
reduces a bacterium’s spatial information down to only its centroid and poles. Thus, using the visit map algorithm partially compensates
for the loss of data density due to a lower sampling rate, resulting in a higher overall data density and thus lower uncertainties in the
tracking compared with using the coordinate algorithm.

Family Correlation Analysis of cAMP Levels and TFP Activity. Input time series data used for cAMP levels were the normalized reporter
intensity values IcAMP extracted every 15 min; input data for TFP activity were the binary readouts (presence or absence of TFP
activity) every 30 s using 5 min worth of data to generate a single readout. Representative input data for one lineage is shown in Fig. S7.
The input data were first synchronized in time by applying the following algorithm on every tracked bacterium for a given family. For
every cAMP readout interval (from just after the previous intensity readout to just before the current intensity readout), the proportion
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of time points with presence of TFP activity was calculated. This step produced time-series data for each readout for every branch of a
given family. To correlate the readouts for a family, time points with multiple readouts from different branches were averaged to
obtain a single time series per readout. TFP activity levels of 0 were ignored in this average. Autocorrelations and cross-correlations
were performed using the function “xcov.m” in MATLAB R2015a (which subtracts the mean from each time sequence and then calls
the function “xcorr.m”).

cAMP–TFP Model.A minimal model is built based on the picture previously described (3, 18) with the following ingredients shown in
Fig. 4A: PilA monomer mðtÞ, cAMP signal sðtÞ, and TFP activity AðtÞ. Dynamical equations relating these quantities are coupled
and nonlinear, but they can be linearized around a fixed point to examine the fluctuations and response, following the spirit of
the seminal work of Alan Turing to describe generic reaction–diffusion systems (19). Hence, for the concentrations, δmðtÞ and
δsðtÞ are used. The processes described in Fig. 4A can be turned into the following linearized system of equations:

δ _sðtÞ=−ki   δmðtÞ− ks   δsðtÞ

δ _mðtÞ=−km   δmðtÞ− kt  AðtÞ

_AðtÞ= g  δmðtÞ+ σðtÞ,

where ks, ki, kt, km,and g are rates with ki > 0, kt > 0, and g> 0.
The term −kt   AðtÞ describes the constraint that accompanies TFP activity in terms of the depletion of free pilin monomers when the

pilus is elongating and reintroduction of pilin monomers when it retracts (represented by the double arrows). This activity is coupled to
the sensing via a kinematic rule: When the TFP retracts, the resulting disassembled monomers will be released back to the periplasmic
space and couple to the activity of the Pil-Chp complex; when it extends, the monomer pool in the periplasmic space will be depleted
accordingly. The term σðtÞ is a noise term that is assumed to be the main driving force for fluctuations; this is assumed to be Gaussian
white noise since the measurements for TFP activity have time scales much longer than the actual retraction/elongation process
(minutes∼hours vs. milliseconds∼seconds) (20). We can relax this and build a telegraph process for the TFP activity drive σðtÞ. The term
−ki   δmðtÞ represents the regulation of the activity of the Pil-Chp complex, which is controlled by its methylation state, by the free
monomer concentration. The term g  δmðtÞ represents a positive feedback/regulation of TFP activity by the free monomers.
This system of equations can be solved, and correlation functions can be calculated to yield the autocorrelation of TFP activity CAAðtÞ,

autocorrelation of cAMP signal CssðtÞ, and cross-correlation between TFP activity and cAMP signal CAsðtÞ (t here corresponds to time
lag and not regular time):

CAAðtÞ= 1
T
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gkt − k2m=4

p
. These equations are then used to manually fit the experimental correlation data to extract the

parameters ½k,ω0, ks,D, kikt�.
Construction of ΔpilT and ΔpilU Mutants. P. aeruginosa in-frame deletion mutants were generated by allelic exchange as previously de-
scribed (21). The following primer pairs were used to generate DNA fragments upstream and downstream of the pilT and pilU genes,
respectively:

pilT KO P1 tgtaaaacgacggccagtgccaagcttgcatgcctgGATCTTCGCGCGTTGCTCGG and

pilT KO P2 CGCGGCGGATCGGCGCCAGGAGGGACTCCCCAATTACAAGCA, and

pilT KO P3 TGCTTGTAATTGGGGAGTCCCTCCTGGCGCCGATCCGCCGCG and

pilT KO P4 ccatgattacgaattcgagctcggtacccggggatccTCAGCAGCACCTCGATCACC.

pilU KO P1 tgtaaaacgacggccagtgccaagcttgcatgcctgGCAGCGCAAGGACTTCGAGG and

pilU KO P2 CGCTGGCCTACTGAAGACGGTGATGTTCTCGCTCACTCAGGG, and

pilU KO P3 CCCTGAGTGAGCGAGAACATCACCGTCTTCAGTAGGCCAGCG and

pilU KO P4 ccatgattacgaattcgagctcggtacccggggatccTGAGCCGCAGGTTAGCGGAG.

PCR products were cloned into pMQ30 via in vivo homologous recombination in Saccharomyces cerevisiae InvSci (Invitrogen) as previously
described (21). Knockout constructs in pMQ30 were transformed into Escherichia coli S17 and introduced into P. aeruginosa via conjugation.
Integrants were selected on LB medium containing gentamicin (20 μg/mL) and nalidixic acid (20 μg/mL) followed by sucrose
counter selection. Resolved integrants were confirmed by PCR and DNA sequencing.

Construction of cAMP Reporter Strains. The cAMP reporter plasmid was provided by Z. Gitai, Princeton University, Princeton, NJ and
described previously (3). The reporter plasmid contains a yfp transcriptional reporter for the cAMP-dependent PaQa operon and a cfp
reporter fused to the rpoD promoter as an internal control. The reporter plasmid was introduced into PA14 WT and ΔpilU by
electroporation.

Data and Code Availability.Binary images (generated from the bright-field images) and the fluorescence images (for datasets that use the
cAMP reporter) are available at figshare.com (doi:10.6084/m9.figshare.5969335). These data are stored as MATLAB data files (.mat)
containing variables that are 3-D matrices with dimensions [y,x,t]. Binary images are stored as a single variable per data file, where each
variable contains images corresponding to a single fluorescence image. Fluorescence images are stored together in a single data file
with 2 matrix variables corresponding to each fluorescence image channel. Each dataset is stored inside a .zip archive file. At present,
the MATLAB code is in the alpha phase of development and not in a state ready for circulation.

SI Discussion
Surface sensing (22–34) has been used to describe diverse behaviors, including detection of surface proximity and the signaling cascade
triggered by surface engagement. Examples include sensors based on flagellum rotation in Vibrio parahaemolyticus (22, 27, 29, 30) and
analogous work in P. aeruginosa (24, 26, 28). In P. aeruginosa PAO1, surface sensing requires the clustering of the Wsp system to
stimulate c-di-GMP synthesis (25, 32). The behavior of PAO1 can be different from that of PA14 due to differences in the repertoire of
secreted EPS in early biofilm development. In other species, flagellum rotation can activate two-component systems that impact a
range of behaviors (33, 34). Periplasmic stress pathways (Rcs and Cpx) (23, 31) activated via perturbation of the membrane and/or cell
wall can also alert the microbe to cell-to-substratum contact. At present, it is not known why cells that contact the surface do not always
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surface sense, or why surface sensing seems to be heterogeneous and enhanced with time, resulting eventually in irreversible at-
tachment. Although similar observations have perplexed the field since the 1930s (35), the technological question of how to prevent
bacterial surface adhesion (36) and the complementary scientific question of the bacterial mechanism(s) for adhering to surfaces,
remain salient concerns.

1. Kuchma SL, et al. (2010) Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: The pilY1 gene and its impact on surface-associated behaviors. J
Bacteriol 192:2950–2964.

2. Caiazza NC, O’Toole GA (2004) SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol
186:4476–4485.

3. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z (2015) Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 112:7563–7568.
4. Tolker-Nielsen T, Sternberg C (2005) Growing and analyzing biofilms in flow chambers. Current Protocols in Microbiology (Wiley, New York).
5. Zhao K, et al. (2013) Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497:388–391.
6. Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC (2010) The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate

cyclase activity. Mol Microbiol 76:889–904.
7. Miller JH (1972) Experiments in Molecular Genetics (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY).
8. Gibiansky ML, et al. (2010) Bacteria use type IV pili to walk upright and detach from surfaces. Science 330:197.
9. Conrad JC, et al. (2011) Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100:1608–1616.
10. Jin F, Conrad JC, Gibiansky ML, Wong GC (2011) Bacteria use type-IV pili to slingshot on surfaces. Proc Natl Acad Sci USA 108:12617–12622.
11. Utada AS, et al. (2014) Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat Commun 5:4913.
12. Lee CK, et al. (2016) Evolution of cell size homeostasis and growth rate diversity during initial surface colonization of Shewanella oneidensis. ACS Nano 10:9183–9192.
13. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188.
14. Van Pelt J, Uylings HBM, Verwer RWH, Pentney RJ, Woldenberg MJ (1992) Tree asymmetry–A sensitive and practical measure for binary topological trees. Bull Math Biol 54:759–784.
15. Bennett RR, et al. (2016) Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development. J R Soc Interface 13:20150966.
16. de Anda J, et al. (2017) High-speed “4D” computational microscopy of bacterial surface motility. ACS Nano 11:9340–9351.
17. Zhang R, Ni L, Jin Z, Li J, Jin F (2014) Bacteria slingshot more on soft surfaces. Nat Commun 5:5541.
18. Luo Y, et al. (2015) A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. MBio 6:1–11.
19. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72.
20. Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98:6901–6904.
21. Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O’Toole GA (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl

Environ Microbiol 72:5027–5036.
22. McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351.
23. Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 99:2287–2292.
24. Caiazza NC, Merritt JH, Brothers KM, O’Toole GA (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:3603–3612.
25. Güvener ZT, Harwood CS (2007) Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to

growth on surfaces. Mol Microbiol 66:1459–1473.
26. Merritt JH, Brothers KM, Kuchma SL, O’Toole GA (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and

flagellar function. J Bacteriol 189:8154–8164.
27. Ferreira RB, Antunes LC, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J

Bacteriol 190:851–860.
28. O’Toole GA (2008) How Pseudomonas aeruginosa regulates surface behaviors. Microbe 3:65–71.
29. Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colo-

nization and virulence. Mol Microbiol 79:240–263.
30. Ferreira RB, Chodur DM, Antunes LC, Trimble MJ, McCarter LL (2012) Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio para-

haemolyticus Scr network. J Bacteriol 194:914–924.
31. Morgenstein RM, Rather PN (2012) Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis.

J Bacteriol 194:669–676.
32. O’Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS (2012) Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system

leading to c-di-GMP production. Mol Microbiol 86:720–729.
33. Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR (2013) A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol 90:6–21.
34. Guttenplan SB, Shaw S, Kearns DB (2013) The cell biology of peritrichous flagella in Bacillus subtilis. Mol Microbiol 87:211–229.
35. Zobell CE, Allen EC (1935) The significance of marine bacteria in the fouling of submerged surfaces. J Bacteriol 29:239–251.
36. Epstein AK, Wong T-S, Belisle RA, Boggs EM, Aizenberg J (2012) Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc Natl Acad Sci USA 109:

13182–13187.

Lee et al. www.pnas.org/cgi/content/short/1720071115 7 of 14

www.pnas.org/cgi/content/short/1720071115


Division Time (h)
0 0.5 1 1.5

∆pilA

∆pilT

∆pilJ

∆pilU

WT

0 2 4 6 8
0.0

0.5

1.0

1.5

Time (h)

O
D

60
0

∆pilA
∆pilJ

WT

A

B

Fig. S1. Mean division times for each strain range between ∼1–1.5 h when measured from single cells, but bulk growth curves show similar growth pattern.
(A) Division time is calculated from the family trees as the time between two consecutively tracked divisions for a given bacterial strain. Times greater than 5 h
correspond to events where we missed potential divisions because the bacterium was completely vertical while dividing, with the distal daughter cell out of the
focal plane (white, outlined, upside-down triangles in family tree plots, Fig. 3); these events do not constitute a single division and are thus ignored. Values are
reported as mean ± SD. Significance was determined by one-way ANOVA followed by Dunnett’s posttest comparison for differences relative to WT. All strains
show significance compared with WT, with differences of ∼30% (division times range between ∼1 h and ∼1.5 h). (B) Growth curves for WT, ΔpilA, and ΔpilJ.
OD600 readings were measured every hour for 8 h. Three biological replicates were tested and showed a similar growth pattern. Growth curves from one
representative experiment are shown. Fresh single colonies were grown overnight for 16 h in overnight growth medium with shaking at 37 °C. Cells were
diluted to an OD600 of ∼0.01 in fresh overnight growth medium and incubated at 37 °C with shaking for 8 h. At every hour, cell growth was measured using a
Spectronic 20D+ spectrophotometer.
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Fig. S2. Histograms of surface residence times for tracked cells in FC1. Data here are subsets of data in Fig. 1B. Separating the histogram in Fig. 1B into
different time slices reveals that there are more cells present with longer residence times as time progresses.
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Fig. S3. Tracking cAMP reporter intensities for families in WT FC1 and FC2. (A) Normalized cAMP reporter intensities vs. generations on the surface of three
representative family trees (each is a different color). WT FC1 (Top) has mainly small families (two to three generations), and WT FC2 (Bottom) has larger
families (five to six generations). (B) Family tree representations of the red squares families in A.
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Fig. S4. Additional tandem flow-cell experiments yield consistent results. (A) Surface growth curves for a WT two-flow-cell experiment at a different time
point (T = 26.75 h) and for an additional ΔpilU mutant in FC1 dataset. Solid lines represent data. Dashed lines represent data fit to exponential functions.
Shaded areas represent 95% CI of the fits. tlag = 23.14 h (mean) [23.13 h, 23.15 h] (95% confidence interval) for WT FC1, 12.26 h [12.23 h, 12.29 h] for WT FC2,
and −0.32 [−0.35, −0.30] for the ΔpilUmutant in FC1 (i.e., the ΔpilUmutant initiates attachment immediately upon injection into the flow cell). (B) Extension of
the two-flow-cell experiment with another time point and a third tandem flow cell. Bacteria in FC1 are harvested at T1 = 32.5 h (relative to t1 = 0 in FC1), and
bacteria in FC2 are harvested at T2 = 14.75 h (relative to t2 = 0 in FC2). FC2 and FC3 have similar fast rates of surface population growth with sigmoidal-shaped
curves, while FC1 has no detectable surface population growth for ∼25 h. In FC2 and FC3, the plots are truncated at ∼5 h and ∼2,000 bacteria because the cell
density becomes too high to properly track.
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Fig. S5. Family trees for WT (Top) and TFP-related gene deletion mutants (ΔpilT, Middle; ΔpilJ, Bottom). All trees here show mainly one-legged division
branching.
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Fig. S6. Proportions of “n-legged” division branching per family, where n is the number of nondetached daughter cells postdivision. Data represent three
families per strain (generations 1–6, ≥13 bacteria per family), and the values are reported as mean ± SEM (*P < 0.05).
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Fig. S7. Generation-corrected tree asymmetry metric. In practice, for finite-size and finite-time trees, tree asymmetry λ is no longer scale-invariant. In addition,
there can be a big spread in λ values even for perfectly symmetric and asymmetric trees. To account for these complications, we introduce a correction to λ
(details are given in SI Materials and Methods). (Top Left) Plot shows λ vs. number of generations for each tracked family (colored symbols), the simulated
perfectly symmetric families (dark gray patch, solid lines), and simulated perfectly asymmetric families (light gray patch, dashed lines). (Top Right and Bottom
Left) Plots show the generation-corrected tree asymmetry metric λGC vs. the previous two metrics. (Bottom Right) Plot shows a histogram of λGC for each strain,
where each circle represents one family. Nf = the number of families used in the calculation (number in curly braces indicates the number of families that
remain after the correction).
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Fig. S8. Schematic illustration of our biometric signatures for TFP activity based on bacterial surface visit maps. We adapt previous studies on the “motility
signature” of TFP-driven motion (1) and flagellum-driven motion (2, 3) for P. aeruginosa on surfaces to track generation-dependent TFP activity. High-speed
microscopy shows that TFP-driven twitching motility in P. aeruginosa consists mostly of translations for variable temporal durations, alternating with combined
translation-rotation “pulses” that are much shorter in temporal duration (1). Based on the predominance of surface translations along the cell body axis in TFP-
driven motion, combined with the fact that these translations generally produce trajectories that have superdiffusive MSDs, the metric for TFP activity is
defined in SI Materials and Methods and summarized visually here. Cells with high TFP activity have elongated visit maps and nonspinning behavior with
nonzero displacement.

1. Jin F, Conrad JC, Gibiansky ML, Wong GC (2011) Bacteria use type-IV pili to slingshot on surfaces. Proc Natl Acad Sci USA 108:12617–12622.
2. Conrad JC, et al. (2011) Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100:1608–1616.
3. Bennett RR, et al. (2016) Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development. J R Soc Interface 13:20150966.
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Fig. S9. Raw data for representative evolution of intracellular cAMP levels and of TFP activity for one lineage. The weak oscillations are obscured by the
average trend and by noise. The raw data show a strongly damped trend: at most a few periods in TFP evolution and only about a period in the cAMP
evolution. Such strongly damped behavior is consistent with the predictions of our Turing model (via the fits which include the damping constant values k, ks,
ki, and kt). Moreover, within the time frame of these experiments, these bacteria effectively become a sessile biofilm with essentially zero TFP motility, so the
oscillations must eventually disappear if cAMP and TFP are coupled.
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Fig. S10. cAMP–TFP correlation analysis for an additional family in WT FC2 (T = 29.5 h). Autocorrelations of TFP activity (Left), autocorrelations of cAMP
reporter intensity (Middle), and cross-correlations between cAMP and TFP activity (Right) calculated from data for an additional family in WT FC2. Multi-
generational traces of single branches were averaged before performing the correlations (calculation details are in SI Materials and Methods). Circles are
experimental data; error bars indicate relative error of 1 divided by the square root of the number of points used in the correlation for that time lag. Solid lines
indicate the model fit (parameters ½k,ω0, ks,D, kikt �= ½0.1, 0.9,−0.25, 1200, 0.0125�). There are negative cross-correlations at time lag = 0 h and positive cross-
correlations at time lags of ∼±3 h (Right).
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Movie S1. Raw images annotated with the tracking results for three families (red, blue, and magenta outlines) for WT in FC1 (T = 29.5 h). Each outline is a
single bacterium boundary, and other bacteria are gray. The movie is cropped to the families’ spatial positions. The movie’s upper-left corner corresponds to (x,
y) = (361, 7) (pixels) in the raw images (origin in the upper-left corner). The lower-right corner shows the time stamp (hour:minutes:seconds) and frame number
(4,004–7,600, every four frames, 3 s per frame), where frame 1 corresponds to t = 20.5 h. The upper-left corner shows a 5-μm scale bar (movie dimensions of
664 × 608 pixels). The movie is playing back at 20 frames per s (1 min of real-time recording per second of playback). Shown here is a snapshot of frame 5,804
(25 h:20 min:12 s).

Movie S1
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