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SI	Appendix	A:	The	number	of	markers	per	karyollele	pair	can	be	
asymmetric	
Most karyollele pairs have the same number of markers per karyollele. This is illustrated by large 
points along the diagonal of figure SF.A.1. However, some markers have different numbers of 
markers. Figure SF.A.2 illustrates an example of how this asymmetry occurs due to differences in the 
variant boundaries. Furthermore, asymmetry can also be introduced by duplication events which make 
markers non-unique across the rest of the genome, or even domain sequences with a mutation in one 
homokaryon, but not in the other.  

This variation can be explained by the non-symmetric number of markers produced by the different 
kinds of variation. While a SNP will result in one marker in each karyollele, an indel (if longer than 
21bp) will result in one marker in one karyollele, and at least two in the other. 

 



Figure SF.A.1: The number of karyollele pairs with a given number of markers. On the x-axis and y-axis is given the 
number of markers discovered in P1, and P2 respectively. The size of a point represents the number of karyollele 

pairs with that number of markers per homokaryon.  

 

 

Figure SF.A.2: Different variants cause different marker counts per nuclear type. SNPs and inversions will result in 
an equal number of markers per nuclear type, whereas an indel can result in many more, due to the increased 

number of variant boundaries, and the novel sequence introduced. 

 	



SI	Appendix	B:	Differences	in	CG	content	is	not	correlated	to	
differences	in	expression	
Figure SF.B.1 shows the relationship between CG content and karyollele expression. For each 
karyollele pair, we calculate the average CG content and the average expression across all markers for 
each karyollele. We calculate the difference between CG contents. Additionally, the difference in read 
depth and normalize it to lie within [1,-1] (1 represents an entirely P1 expressed karyollele, and -1 an 
entirely P2 expressed karyollele, 0 represents equal expression).  The difference in karyollele 
expression and CG content of its markers is not correlated (p=0.05) 

 

Figure SF.B.1: Relationship between the difference in gene expression between karyollele pairs (y-axis) and average 
marker CG content per karyollele (x-axis).  The average expression and average CG content of markers do not seem 

to be related. Here shown only for the vegetative stage in the mushroom dataset; Other samples show the same 
behaviour. 

  



SI	Appendix	C:	PCA	plots	of	tissue	and	compost	samples	
For each sample, we construct two vectors of size 5,060, describing the expression of each karyollele 
in P1 and P2, respectively. With this, we perform a PCA to observe the relationships between the 
different samples and nuclear types. Figure SF.C.1 shows a divergence of P1 (shown in red) and P2 
(shown in blue) expression measurements in mushroom samples, indicating that P1 homokaryons are 
more similar to P1 homokaryons than to any P2 homokaryon, and vice versa. Figure SF.C.2 shows the 
same for compost data. 

 

Figure SF.C.1: PCA dimensionality reduction of karyollele expression data. The first and second components are 
plotted on the X and Y axes, respectively. P1 homokaryon samples are shown in red, and P2 homokaryons are shown 

in blue. 

 

 

Figure SF.C.2: The first and second components of a PCA are shown on the X and Y axes, respectively for compost 
data.  



SI	Appendix	D:	Bias	of	extreme	genes	
Figure SF.D.1 shows the influence of highly expressed genes on the Chromosome Read Ratio (CRR 
measure). We sort the genes on each chromosome based on the sum of their expression in the two 
nuclear types. Sorting the genes by their expression (lowest to highest), and starting with the lowest 
expressed gene, we calculate the CRR and CGR (Equations 4 and 6, respectively) ratios per 
chromosome, for increasingly larger sets of genes.  We see that the CRR (red line) considerably 
changes once we consider highly expressed genes. The CGR (black line) is more stable towards 
highly expressed genes. 



 

Figure SF.D.1: The bias of highly expressed genes. X-axis represents P1 expression, and Y-axis represents P2 
expression. The red points represent the genes on each chromosome and their expression values in the P1 and P2 

nuclear types. The blue line is the identity line; points on or near this line have near-identical expression. The red and 
black lines are the CRR and the CGR, with a separate y-axis on the right hand side, calculated by continuously 

considering the next most highly expressed gene. Read ratio is very affected by the highest expressed genes. Each 
chromosome is plotted individually.  

 	



SI	Appendix	E:	Extreme	genes	
In Figure 2 of the main text, we showed that more mRNA originates from P2 in the case of, for 
example, chromosome 9 than from P1. This was in part due to a few genes which were very highly 
expressed. These highly expressed genes skew the read count ratios (see Supplementary Material 
Note E). The differences can be quite extreme; In one case, a P1 karyollele accounted for <1% of all 
reads originating from chromosome 9, while its P2 karyollele accounted for 21% of all the 
chromosome 9 reads. Hence, most of the observed differences for chromosome 9 (Figure 2a) is 
explained by such highly expressed genes. 

In total, we identified 22 genes whose contribution exceeds 10% of the total expression of the 
chromosome it is located on. Most of these genes are differentially expressed between the two nuclear 
types, with 16 showing fold changes larger than 2. These genes are primarily metabolic. 

These genes, and their contribution to the CRR scores are provided in data sheet SI Dataset S1.  



SI	Appendix	F:	Nuclear	type	Gene	Ratio	(NGR)	measures	in	the	
mushroom	dataset	
Figure SF.F.1 shows the Nuclear type Gene Ratio measures for the mushroom dataset. It becomes 
clear that on average, the P1 nuclear type is dominant over the P2 nuclear type. This is statistically 
significant (the log-transformed chromosome gene ratios are significantly > 0, following a t-test in 
mushroom tissue, with p < 0.01). 

 

Figure SF.F.1: The Nuclear type Gene Ratio measures in the mushroom dataset.  



SI	Appendix	G:	Methylation	
A sample of vegetative stage mycelium of A15 was treated with the EpiTect Bisulphite conversion 
and cleanup kit and sequenced with the Illumina HiSeq 2000. Raw reads were trimmed using 
TRIMMOMATIC(1) and aligned to the A15 P1 genome using Bismark(2) and bowtie2(3). 
Methylated bases were analyzed with Methylkit(4). Only bases which had a minimum coverage of 10 
were retained. For samples with mixed methylation states, we will observe what appear to be 
incomplete conversions of unmethylated cytosines but in reality represents the mixed methylation 
states of those bases. Therefore, to include only differentially methylated bases between the two 
nuclei (i.e. methylated in one homokaryon, but not in the other), we considered only those bases 
which were measured to be methylated between 40 and 60% of all reads (Supplementary Material 
Notes I). While 164,290 bases had an indication of methylation signal, 10,325 bases had methylation 
signals of about 50%, suggestive of differential methylation states. Methylated bases were mapped to 
genes when between the start and stop codons, or 1000bp up/downstream (Figure SF.G.1) 

To investigate the biological mechanism causing differential expression, we measured methylation on 
the A15 genome. Assuming that the relative Cystosine/Thymine coverage at each base relates to a 
differential methylation state between the two nuclear types, we conclude that 277 genes are 
differentially methylated (Methods). 42 of these 277 genes were also found to be differentially 
expressed between the two nuclear types at some point in development. Although this is a significant 
proportion (p < 0.05, 𝜒" test), methylation only explains at most 10% of the differential expression we 
observe. Noteworthy is that 40 of the 42 differentially expressed and differentially methylated genes 
are differentially expressed in mushroom tissues), whereas only 9 are differentially expressed in the 
vegetative mycelium. This indicates that the largest impact of differential methylation is much later in 
mushroom development, suggesting that methylation has a delayed effect on expression.  

Table ST.G.1 shows these overlaps for the different sets of differentially expressed genes. We find 
that the methylated genes overlap mostly with the genes which are differentially expressed in the 
mushroom data. 

Table ST.G.1: Overlap of differentially expressed genes and methylated genes. The p-values of a chi-squared 
approximation of the fisher’s exact test have been bonferroni corrected (q-values). Significant corrected values have 

been highlighted in bold. 
 

Differentially expressed Not Differentially Expressed 
Set Methylated Not 

Methylated 
Methylated Not 

Methylated 
p-value q-value 

Vegetative 
mycelium 
+ 
Mushroom 

42 369 235 4440 1.465E-05 8.791E-05 

Vegetative 
mycelium 9 73 268 4736 4.780E-02 2.868E-01 

Mushroom 40 328 237 4481 3.473E-06 2.084E-05 
Overlap 7 32 270 4777 1.937E-03 1.162E-02 
Unique 
Vegetative 
mycelium 

2 41 275 4768 9.150E-01 1.000E+00 

Unique 
Mushroom 33 296 244 4513 2.493E-04 1.496E-03 

 



Figure SF.G.1 shows the regions on the genome which are differentially methylated in green. These 
mostly overlap with regions that are represented by repetitive elements (Sonnenberg et al. 2016), 
where we cannot distinguish genes based in sequence. In Figure SF.G.2, we show the fraction of 
methylated and unmethylated cytosines for a given base. This figure is indicative of an organism with 
mixed methylation statuses, which is to be expected in our case.  

 

Figure SF.G.1: Differentially methylated bases in the A15 genome. As in figure 2 of the main text, the red and blue 
marks indicate genes with upregulation in the P1 and P2 homokaryons, respectively. The green marks indicate bases 

which are methylated at that point. 

 

Figure SF.G.2: Frequency distribution of methylated vs. non methylated cytosines. 

  



SI	Appendix	H:	Overlapping	differentially	expressed	genes	that	
changed	origin	
5 genes changed their differential expression between P1 and P2 between the vegetative mycelium 
and the mushroom datasets. These are provided in SI Dataset S2. For each karyollele pair, we provide 
the samples for which the differential expressions were significant. The blue rows indicate the 
samples in which they were more highly expressed by the P2 nuclear type in the vegetative mycelium, 
and the red rows indicate the samples in which they were more highly expressed by the P1 nuclear 
type in the mushroom tissue.  



SI	Appendix	I:	Manganese	Peroxidase	
Of 90 genes with named annotations in A. bisporus (see SI Appendix R), 42 were identified as 
differentiable karyollele pairs, and one, manganese peroxidase (mnp1) was differentially expressed 
between the two nuclear types in any stage of development. mnp1 is known to be highly expressed in 
early stages of development, and drops to much lower levels (log fold change of -2.8) after mushroom 
formation(5, 6). In our datasets, the individual contributions of P1 and P2 to mnp1 expression are 
largely different. In the vegetative mycelium, we find that P2 produces four-fold more mnp1 
immediately before mushroom formation than P1. In the mushroom tissue, however, mnp1 is 
expressed on average 4.2-fold higher by P1 in the stem of the fruiting body throughout development. 
Whether this switching behavior is functionally relevant remains unclear, as two karyolleles of mnp1 
have the same protein domain annotations in the P1 and P2 homokaryon genomes. The Gene Read 
Ratio (GRR) in mushroom tissues is provided in figure SF.I.1, and the total read counts in compost 
are provided in figure SF.I.2. Notice that the scale of figure SF.I.1 is different from figure 2 in the 
text. 

mnp1 is known to be involved in lignin degradation, which occurs in the vegetative mycelium(5, 6). 
In compost, the abundance decreases dramatically throughout development. Therefore, the abundance 
of mnp1 in the stipe of the fruiting body is unexpected, although it has been shown that proteins 
produced in the mycelium can find their way into the mushroom(7). However, it does not explain the 
fact that the P1 karyollele exists in higher abundance in the mushroom tissues, while the P2 karyollele 
is higher expressed in the vegetative mycelium. Transport of the P2 karyollele from the vegetative 
mycelium into the mushroom conflicts with the abundances of the P1 karyollele observed in the 
mushroom tissues. 

 

 

Figure SF.I.1: Gene Read Ratios for Manganese Peroxidase in mushroom tissues. Red indicates a 
higher contribution of P1, and blue indicates a higher contribution of P2. Expression values range 
between [26.2,51.1] in P1, and between [9.3,38.2] in P2. 



 

Figure SF.I.2: Manganese peroxidase expression in the vegetative mycelium dataset. P2 expression is dominant in the 
vegetative growth of mycelium, but drops shortly after that, in concordance with previous literature(5). 

 	



SI	Appendix	J:	Co-localized,	co-regulated	clusters	
To detect co-regulated clusters, we slide a window of size 20,001bp (10,000- up and down-stream) 
across each chromosome. In this window, we count the number of genes that are more highly 
expressed by P1 and by P2, and calculate the difference per sample. I.e. 

, 

where W(x,y) is the set of genes between genomic location x and y, and s is a sample. This difference 
is shown in Figure 3c. Next, we identify regions where each sample in the dataset shows consistent 
regulation. That is to say, in these regions, D(x,s) > 0  s ∈ S, or D(x,s) < 0  s ∈ S, where S is the 
set of all samples. These regions contain co-localized genes that are co-regulated across all samples. 

Table ST.J.1 indicates the number of regions that are consistently upregulated in P1 and P2. We find 
that more genes are consistently upregulated in P1, in a larger number of regions than in P2. This 
observation consolidates the conflicting observations of a dominant P1 nuclear type in terms of 
mRNA production, and more upregulated, differentially expressed genes in P2. 

Figure 3c of the main manuscript showed the co-localized and co-regulated regions on chromosome 
10. In Supplementary Figures SF.J.1-13, we provide the same figures for the remaining chromosomes. 
Additionally, in SI Dataset S3 we provide the exact regions for each dataset. 

Table ST.J.1: The number of regions in which the majority of the genes are coregulated (SI Appendix L) across the 
mushroom and mycelium datasets and with the number of genes in these regions. P1 and P2 columns indicate 

whether the region is consistently higher in for the P1 or P2 karyollele, respectiverly. Row Both indicates overlapping 
regions between the mushroom and vegetative mycelium datasets. 

 P1 P2 
Dataset #Regions #Genes #Regions #Genes 

Mushroom 207 741 73 233 
Vegetative 
Mycelium 414 1955 43 140 

Both 151 484 7 17 
 

 

Figure SF.J.1: Equation 8 plotted for all datasets on scaffold 1. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 



Figure SF.J.2: Equation 8 plotted for all datasets on scaffold 2. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 
Figure SF.J.3: Equation 8 plotted for all datasets on scaffold 3. Red regions indicate regions of P1 predominance, and 

blue regions indicate regions of P2 predominance. 

 

Figure SF.J.4: Equation 8 plotted for all datasets on scaffold 4. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 

Figure SF.J.5: Equation 8 plotted for all datasets on scaffold 5. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 

Figure SF.J.6: Equation 8 plotted for all datasets on scaffold 6. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 

Figure SF.J.7: Equation 8 plotted for all datasets on scaffold 7. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 



Figure SF.J.8: Equation 8 plotted for all datasets on scaffold 8. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 

Figure SF.J.9: Equation 8 plotted for all datasets on scaffold 9. Red regions indicate regions of P1 predominance, and 
blue regions indicate regions of P2 predominance. 

 

Figure SF.J.10: Equation 8 plotted for all datasets on scaffold 10. Red regions indicate regions of P1 predominance, 
and blue regions indicate regions of P2 predominance. 

 

Figure SF.J.11: Equation 8 plotted for all datasets on scaffold 11. Red regions indicate regions of P1 predominance, 
and blue regions indicate regions of P2 predominance. 

 

Figure SF.J.12: Equation 8 plotted for all datasets on scaffold 12. Red regions indicate regions of P1 predominance, 
and blue regions indicate regions of P2 predominance. 

 

Figure SF.J.13: Equation 8 plotted for all datasets on scaffold 13. Red regions indicate regions of P1 predominance, 
and blue regions indicate regions of P2 predominance. 

  



SI	Appendix	K:	Probability	of	observing	differential	expression	
imbalance	
We can judge the likelihood of observing an imbalance in the number of differentially expressed 
genes on the two homokaryons. For a given time point with x upregulated genes in P1, and y 
upregulated genes in P2, we can determine the probability of observing max(x, y) positive trials within 
x+y trials, under the null hypothesis of there being no difference in chance of a gene being 
upregulated in either homokaryon (i.e. p = 0.5). The probability of observing a value max(x,y) or 
greater can be calculated as 1-P(x < max(x,y)). If this probability is sufficiently small, we may reject 
the underlying assumption that the probability of being upregulated is the same in both homokaryons 
(i.e. p ≠ 0.5). P-values are corrected by controlling for a 0.05 FDR. The difference was only 
significant in some vegetative growth time points, shown underlined in ST.K.1. 

Table ST.K.1: The number of differentially expressed genes that are more highly expressed in P1 or P2 in each 
different sample, together with the significance of this difference 

Condition Up in P1 Up in P2 pvalue qvalue 
Day 16 11 29 0.001111 0.027768 
Flush 1 14 32 0.002267 0.028337 
Total vegetative dataset 30 52 0.005319 0.044323 
Pinning 14 29 0.006859 0.044323 
Flush 2 20 32 0.035197 0.148658 
Post Flush 2 18 30 0.029732 0.148658 
Post Flush 1 14 24 0.036476 0.148658 
YFB Stipe Center 72 86 0.116317 0.363492 
Initials 58 50 0.193286 0.487041 
Total Mushroom dataset 176 192 0.18777 0.487041 
YFB Cap Tissue 91 103 0.175335 0.487041 
PS Stipe Shell 63 54 0.17764 0.487041 
Dif. Stipe skin 75 80 0.314999 0.504822 
Dif. Cap Skin 58 60 0.391278 0.504822 
YFB Veil 72 70 0.40067 0.504822 
YFB Cap Skin 89 82 0.270406 0.504822 
Dif. Cap Skin 63 61 0.393873 0.504822 
Dif. Gill Tissue 60 59 0.427315 0.504822 
Dif. Stipe Center 87 83 0.350741 0.504822 
Dif. Stipe Shell 86 90 0.353185 0.504822 
YFB Gill Tissue 69 65 0.332975 0.504822 
YFB Stipe Skin 94 94 0.470943 0.504822 
PS Stipe Center 71 77 0.282586 0.504822 
Vegetative 47 42 0.262507 0.504822 
YFB Stipe Shell 93 92 0.441575 0.504822 

 



SI	Appendix	L:	KEGG	pathways	with	differentially	expressed	genes	
We examined the KEGG annotations of the 411 differentially expressed genes to further elucidate 
their functional impact. Sixteen of these genes were found in 20 pathways. Interestingly, three 
differentially expressed genes were found in the Aminoacyl-tRNA biosynthesis (M00359) pathway 
(Supplementary Material Note L). Two genes belonged to valine and methionine tRNAs pathways 
and were upregulated in P1. One gene in the pathway producing aspartamine tRNAs pathway was 
upregulated in P2. Together, this suggests that P1 is able to produce more valine and methionine 
tRNAs than P2. 

We overlay the differentially expressed genes on KEGG pathways using KAAS pipeline(8).  Table 
ST.N.1 shows the pathways which contained differentially expressed genes, together with the genes 
we identify. 

Table ST.L.1: KEGG pathways with differentially expressed genes. 

Pathway ID Pathway P1 Upregulated P2 Upregulated 
M00360  Aminoacyl-tRNA 

biosynthesis, 
prokaryotes  

AgabiA15p1|1761,AgabiA15p2|1770 
AgabiA15p1|2808,AgabiA15p2|2763 

AgabiA15p1|660,AgabiA15p2|686 

M00359  Aminoacyl-tRNA 
biosynthesis, 
eukaryotes  

AgabiA15p1|1761,AgabiA15p2|1770 
AgabiA15p1|2808,AgabiA15p2|2763 

AgabiA15p1|660,AgabiA15p2|686 

M00074  N-glycan biosynthesis, 
high-mannose type  

AgabiA15p1|10048,AgabiA15p2|10102 AgabiA15p1|10047,AgabiA15p2|10101 

M00073  N-glycan precursor 
trimming  

AgabiA15p1|10048,AgabiA15p2|10102 AgabiA15p1|10047,AgabiA15p2|10101 

M00009  Citrate cycle (TCA 
cycle, Krebs cycle)  

AgabiA15p1|2884,AgabiA15p2|2813 
 

M00121  Heme biosynthesis, 
glutamate => 
protoheme/siroheme  

AgabiA15p1|4282,AgabiA15p2|4299 
 

M00173  Reductive citrate cycle 
(Arnon-Buchanan 
cycle)  

AgabiA15p1|2884,AgabiA15p2|2813 
 

M00172  C4-dicarboxylic acid 
cycle, NADP - malic 
enzyme type  

 
AgabiA15p1|9348,AgabiA15p2|9524 

M00395  Decapping complex  
 

AgabiA15p1|10082,AgabiA15p2|10134 

M00179  Ribosome, archaea  
 

AgabiA15p1|9326,AgabiA15p2|9502 

M00035  Methionine 
degradation  

AgabiA15p1|8424,AgabiA15p2|8562 
 

M00010  Citrate cycle, first 
carbon oxidation, 
oxaloacetate => 2-
oxoglutarate  

AgabiA15p1|2884,AgabiA15p2|2813 
 

M00293  DNA polymerase zeta  
complex  

AgabiA15p1|615,AgabiA15p2|7069 
 

M00079  Keratan sulfate 
degradation  

 
AgabiA15p1|9068,AgabiA15p2|9247 

M00740  Methylaspartate cycle  AgabiA15p1|2884,AgabiA15p2|2813 
 

M00042  Catecholamine 
biosynthesis, tyrosine 
=> dopamine => 
noradrenaline => 
adrenaline  

AgabiA15p1|7887,AgabiA15p2|8061 
 

M00128  Ubiquinone 
biosynthesis, 
eukaryotes, 4-
hydroxybenzoate => 
ubiquinone  

 
AgabiA15p1|2051,AgabiA15p2|2031 

M00338  Cysteine biosynthesis, 
homocysteine + serine 
=> cysteine  

AgabiA15p1|8424,AgabiA15p2|8562 
 



M00169  CAM (Crassulacean 
acid metabolism), light  

 
AgabiA15p1|9348,AgabiA15p2|9524 

M00178  Ribosome, bacteria  
 

AgabiA15p1|9326,AgabiA15p2|9502 

M00295  BRCA1-associated 
genome surveillance 
complex (BASC)  

AgabiA15p1|1458,AgabiA15p2|1537 
 

M00012  Glyoxylate cycle  AgabiA15p1|2884,AgabiA15p2|2813 
 

 	



SI	Appendix	M:	Differential	protein	domain	annotations	
Figure SF.M.1 shows the number of karyollele pairs in which karyollele pairs exhibit different protein 
domain annotations.  While most (4287) karyollele pairs have the same number of annotations (see 
the diagonal), a few (215) have different protein domain annotations. This is a result of sequence 
differences. 

 

Figure SF.M.1: Implications of sequence deviations between karyollele pairs on domain predictions. The number of 
unique annotations are given on the x-axis, and the number of annotations in common between the two karyolleles is 
given on the y-axis. If the numbers are not equal, that means that both karyolleles are not annotated with the same 

domains. In the corresponding cells are given the number of genes with this combination of annotations. Most genes 
do not exhibit alternative functionality (see diagonal), but quite a number do (see below the diagonal).  



SI	Appendix	N:	PCR	duplicates	
PCR duplicates in mushroom tissues dataset and the vegetative mycelium dataset. We find a large 
amount of PCR duplication in the compost data. This can be attributed to the difficulty in isolating 
RNA from soil.  See SI Dataset S4, where we provide the original read counts for each sample, the 
reads which remain after PCR duplicate removal, and the percent removed and remaining. We find 
that the vegetative mycelium dataset contains upwards of 50% PCR duplicates. 

  



SI	Appendix	O:	Homokaryon	Genome	annotations	
The P1 and P2 genomes(9) were annotated with BRAKER1(10) and using the pooled RNA-seq data 
from the mushroom tissue dataset. In order to prevent chimeric genes (neighboring genes that are 
erroneously fused into one predicted gene) the following procedure was used. After the first round of 
gene prediction using BRAKER1, predicted introns were identified that were at least 150 bp in size 
and not supported by RNA-seq reads. The midpoint of these introns were labelled as intergenic 
regions in the next round of gene prediction using AUGUSTUS 3.0.2(11) and the parameter set 
produced in the first round of gene prediction. The SNP density between the genomes was estimated 
using MUMMER’s(12) show-snps tool. 

  



SI	Appendix	P:	Named	genes	in	Agaricus	bisporus	v.	2	
Named genes for Agaricus bisporus version 2 were downloaded from the JGI DOE Genome Portal 
(http://genome.jgi.doe.gov/pages/search-for-genes.jsf?organism=Agabi_varbisH97_2) by searching 
for genes with ‘Name’ in the ‘user annotations’ attribute. Gene names were transferred from A. 
bisporus v. 2 using reciprocal best blast hit to P1 and P2, and then selecting the best match (in the 
single case of an ambiguity). 

We mapped all transcripts from agabi2 to transcripts P1 with a bidirectional best nucleotide blast hit. 
In one case there was an ambiguous mapping, and we selected the mapping with the highest percent 
sequence identity (the e-values were identical). Table ST.O.1 provides these named genes, together 
with their mapping values. 

Table ST.O.1: Named genes in version 2, and their corresponding karyollele pairs in A15. 

P1 P2 agabi2 name evalue pident 
AgabiA15p1|9363 AgabiA15p2|9538 152135 AOX 0 98.69 
AgabiA15p1|8297 AgabiA15p2|8431 193168 ATP1 0 100 
AgabiA15p1|3836 AgabiA15p2|3811 192355 ATP16 0 99.39 
AgabiA15p1|8927 AgabiA15p2|9066 139908 ATP17 3.00E-174 98.83 
AgabiA15p1|9641 AgabiA15p2|9823 194020 ATP20 0 100 
AgabiA15p1|2115 AgabiA15p2|2093 194800 ATP3 0 100 
AgabiA15p1|3238 AgabiA15p2|3147 138704 ATP4 0 99.29 
AgabiA15p1|6514 AgabiA15p2|6684 135403 ATP7 3.00E-166 98.48 
AgabiA15p1|5614 AgabiA15p2|5757 115586 CAT1 0 100 
AgabiA15p1|5615 AgabiA15p2|5758 200291 CAT3 0 100 
AgabiA15p1|5438 AgabiA15p2|5587 190684 CDC5 0 98.71 
AgabiA15p1|3434 AgabiA15p2|3379 121800 CIPB 0 97.33 
AgabiA15p1|1432 AgabiA15p2|1515 195535 COX4 0 100 
AgabiA15p1|6236 AgabiA15p2|6400 177982 CYP63 0 98.82 
AgabiA15p1|7984 AgabiA15p2|8153 135048 CytC2 3.00E-173 100 
AgabiA15p1|6030 AgabiA15p2|6190 188638 HMG1 0 99.21 
AgabiA15p1|9296 AgabiA15p2|9473 224131 Hpt 0 100 
AgabiA15p1|3435 AgabiA15p2|3380 121801 INH1 3.00E-128 98.45 
AgabiA15p1|4008 AgabiA15p2|3983 221245 MnP 0 99.06 
AgabiA15p1|2172 AgabiA15p2|2148 226574 NDE1 0 100 
AgabiA15p1|2932 AgabiA15p2|2853 227697 NDE2 0 100 
AgabiA15p1|8485 AgabiA15p2|8625 136834 NUXM 0 100 
AgabiA15p1|4154 AgabiA15p2|4172 192611 NUZM 0 98.67 
AgabiA15p1|6172 AgabiA15p2|6334 195692 NdufA1 3.00E-123 97.29 
AgabiA15p1|6031 AgabiA15p2|6191 139455 NdufA13 0 100 
AgabiA15p1|2905 AgabiA15p2|2828 138930 NdufA2 4.00E-133 100 
AgabiA15p1|6526 AgabiA15p2|6695 202899 NdufA4 1.00E-122 99.58 
AgabiA15p1|646 AgabiA15p2|672 189651 NdufA5 0 98.97 
AgabiA15p1|3259 AgabiA15p2|3172 195108 NdufA6 0 99 
AgabiA15p1|9358 AgabiA15p2|9534 193806 NdufA9 0 99.45 
AgabiA15p1|674 AgabiA15p2|700 214389 NdufB11 7.00E-170 99.39 



AgabiA15p1|10070 AgabiA15p2|10123 208065 NdufB7 0 99.72 
AgabiA15p1|6069 AgabiA15p2|6226 139429 NdufB9 2.00E-176 99.7 
AgabiA15p1|2042 AgabiA15p2|2023 194758 NdufS1 0 100 
AgabiA15p1|1088 AgabiA15p2|1111 190005 NdufS3 0 100 
AgabiA15p1|9451 AgabiA15p2|9621 193877 NdufS4 0 98.39 
AgabiA15p1|601 AgabiA15p2|629 133027 NdufS6 0 99.03 
AgabiA15p1|4161 AgabiA15p2|4179 192620 NdufS7 0 100 
AgabiA15p1|6033 AgabiA15p2|6193 188636 NdufS8 0 99.16 
AgabiA15p1|690 AgabiA15p2|716 133109 Ndufab1 0 98.6 
AgabiA15p1|3782 AgabiA15p2|3756 135814 OSCP/ATP5 0 99.08 
AgabiA15p1|4327 AgabiA15p2|4346 192776 PAL1 0 99.4 
AgabiA15p1|4243 AgabiA15p2|4260 192690 PAL2 0 99.63 
AgabiA15p1|3454 AgabiA15p2|3399 210545 QCR2 0 98.58 
AgabiA15p1|2199 AgabiA15p2|2174 138465 QCR8 1.00E-161 100 
AgabiA15p1|6694 AgabiA15p2|6862 116951 RIM15 0 99.31 
AgabiA15p1|3383 AgabiA15p2|3330 195170 SDH4 0 98.02 
AgabiA15p1|6899 AgabiA15p2|7121 149788 SSK1 0 100 
AgabiA15p1|869 AgabiA15p2|896 114317 STK/HK 0 100 
AgabiA15p1|1449 AgabiA15p2|1531 228355 Tco1 0 100 
AgabiA15p1|8256 AgabiA15p2|8388 143539 Tco5 0 100 
AgabiA15p1|7003 AgabiA15p2|7226 230069 c2h2 0 99.86 
AgabiA15p1|4651 AgabiA15p2|4717 203612 frt2 0 97.08 
AgabiA15p1|9024 AgabiA15p2|9205 223670 fst4 0 98.9 
AgabiA15p1|4515 AgabiA15p2|4547 192934 geranylgeranyl 

diphosphate 
synthase 

0 97.73 

AgabiA15p1|4280 AgabiA15p2|4297 192725 hom2 0 99.28 
AgabiA15p1|5529 AgabiA15p2|5676 190759 hspA 0 99.62 
AgabiA15p1|4376 AgabiA15p2|4397 192819 hspC 0 99.3 
AgabiA15p1|3389 AgabiA15p2|3335 195173 hspD 0 98.77 
AgabiA15p1|10959 AgabiA15p2|10986 120944 lcc10 0 91.17 
AgabiA15p1|4698 AgabiA15p2|4766 184993 lcc12 0 98.61 
AgabiA15p1|1413 AgabiA15p2|1497 139148 lcc2 0 100 
AgabiA15p1|4686 AgabiA15p2|4752 184981 lcc3 0 99.89 
AgabiA15p1|10961 AgabiA15p2|10987 194714 lcc9 0 85.85 

 	



SI	Appendix	Q:	Functional	predictions	
When performing functional enrichment tests, we used as a background the overlap of the 
differentiable karyollele pairs and the annotated genes. This prevents an enrichment bias from the 
karyollele pairs when examining functional enrichment of the differentially expressed genes. 

PFAM: Conserved protein domains were predicted using PFAM version 27(13, 14). 

Transcription factor definitions: Predicted proteins with a known transcription factor-related (DNA-
binding) domain (based on the PFAM annotations) were considered to be transcription factors. 

Carbohydrate-active enzymes prediction: Using the Cazymes Analysis Toolkit (CAT) (15), we 
predicted carbohydrate-active enzymes based on the original gene definitions. If a gene’s protein 
sequence was predicted to be a cazyme by either the sequence-based annotation method or the PFAM-
based annotation method then we considered it a cazyme. 

Secreted Proteins prediction: We used the same procedure as (16) to predict secreted proteins. 
Briefly, genes with SignalP (17) signal peptides, or a TargetP (18) Loc=S were kept. The remaining 
genes were further filtered with TMHMM (19), keeping only genes with zero or one transmembrane 
domains. Finally, genes were filtered using Wolf PSort (20) to select genes with a Wolf PSort 
extracellular score greater than 17. 

Metabolic and Cytochrome P450 gene groups: Genes with the GO annotation “metabolic process” 
(annotation ID: GO:0008152) were called as metabolism genes. Genes with the PFAM annotation 
PF00067 were used as Cytochrome P450 genes. 

KEGG: KEGG annotations were made with the KAAS KEGG (8) annotation pipeline, using genes 
from all available fungi, with the exception of leotiomycetes, Dothideomycetes, and Microsporidians, 
due to the limitation of the number of species (Selected organisms by ID: cne, cgi, ppl, mpr, scm, 
uma, mgl, sce, ago, kla, vpo, zro, cgr, ncs, tpf, ppa, dha, pic, pgu, lel, cal, yli, clu, ncr, mgr, fgr, nhe, 
maw, ani, afm, aor, ang, nfi, pcs, cim, cpw, pbl, ure, spo, tml). The GHOSTX and BBH options were 
selected. Predictions were made individually for both the P1 and P2 genomes, using the translated 
protein sequences.  

  



SI	Appendix	R:	DE-Seq	differential	expression	size	factor	
Using DE-Seq(21), we perform a differential expression test for each karyollele pair in a tissue, i.e. 
we test if a gene has a differential expression between P1 and P2. DE-Seq requires a size factor to be 
calculated, which normalizes for the library sizes of each sample. Since in our case the counts from P1 
and from P2 originate from the same sample, these must have the same size factor. Size factors are 
therefore calculated manually, by counting the total number of reads for each sample, and dividing it 
by the largest value for any sample. 

 

The P1 and P2 counts originating from the same sample will then be assigned the same size factor. 
The expression counts for each gene in each replicate in each tissue (Equation 1 of Main Text) are 
provided to DE-Seq with the provided size factor. 

The normalized read counts per gene Dh(s,g) are returned by DE-Seq, together with significance 
values for each test. We select only differentially expressed genes that have a q-value < 0.05, and a 
fold change of at least three. 

  



SI	Appendix	S:	Formulas	for	GRR,	CRR,	NRR,	CGR	and	NGR	
In the main text we introduced measures that describe the relative expression between the P1 and P2 
nuclei at the Gene, Chromosome and Gene levels. Here, we provide the formulas and notation for 
these measures. 

 

The Gene Read Ratio (GRR) for gene g in sample s is defined as the ratio between the normalized 
expression (from DE-Seq) measured in P1, vs P2. Dh(s,g) is the normalized expression returned by 
DE-Seq. 

 

The Chromosome Read Ratio (CRR) for a chromosome c in sample s is defined as the ratio of the 
sums of the normalized expression of each gene on chromosome c, in P1 and P2. 

 

Similarly, the Nuclear Read Ratio (NRR) for a sample s is defined as the ratio between the sum of all 
the normalized expression counts across all chromosomes c and all genes g on chromosome c, 
between the two nuclear types P1 and P2. C is the set of all chromosomes. 

 

The Chromosome Gene Ratio (CGR) for a chromosome c in sample s is the geometric mean of the 
GRR for all genes g on chromosome c. 

 

The Nuclear Gene Ratio (NGR) for a sample s is defined as the geometric mean of the CGR across all 
chromosomes. C is the set of all chromosomes. 
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